000904560 001__ 904560
000904560 005__ 20230228121559.0
000904560 0247_ $$2doi$$a10.1007/s40544-020-0438-4
000904560 0247_ $$2ISSN$$a2223-7690
000904560 0247_ $$2ISSN$$a2223-7704
000904560 0247_ $$2Handle$$a2128/33771
000904560 0247_ $$2WOS$$aWOS:000595394000007
000904560 037__ $$aFZJ-2021-06130
000904560 082__ $$a540
000904560 1001_ $$0P:(DE-HGF)0$$aHu, Jianqiao$$b0
000904560 245__ $$aMultiscale study of the dynamic friction coefficient due to asperity plowing
000904560 260__ $$aHeidelberg$$bSpringer$$c2021
000904560 3367_ $$2DRIVER$$aarticle
000904560 3367_ $$2DataCite$$aOutput Types/Journal article
000904560 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674638133_22568
000904560 3367_ $$2BibTeX$$aARTICLE
000904560 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904560 3367_ $$00$$2EndNote$$aJournal Article
000904560 520__ $$aA macroscopically nominal flat surface is rough at the nanoscale level and consists of nanoasperities. Therefore, the frictional properties of the macroscale-level rough surface are determined by the mechanical behaviors of nanoasperity contact pairs under shear. In this work, we first used molecular dynamics simulations to study the non-adhesive shear between single contact pairs. Subsequently, to estimate the friction coefficient of rough surfaces, we implemented the frictional behavior of a single contact pair into a Greenwood-Williamson-type statistical model. By employing the present multiscale approach, we used the size, rate, and orientation effects, which originated from nanoscale dislocation plasticity, to determine the dependence of the macroscale friction coefficient on system parameters, such as the surface roughness, separation, loading velocity, and direction. Our model predicts an unconventional dependence of the friction coefficient on the normal contact load, which has been observed in nanoscale frictional tests. Therefore, this model represents one step toward understanding some of the relevant macroscopic phenomena of surface friction at the nanoscale level.
000904560 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000904560 536__ $$0G:(EU-Grant)759419$$aMuDiLingo - A Multiscale Dislocation Language for Data-Driven Materials Science (759419)$$c759419$$fERC-2017-STG$$x1
000904560 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904560 7001_ $$0P:(DE-Juel1)186711$$aSong, Hengxu$$b1$$eCorresponding author$$ufzj
000904560 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b2$$ufzj
000904560 7001_ $$0P:(DE-HGF)0$$aLiu, Xiaoming$$b3$$eCorresponding author
000904560 7001_ $$0P:(DE-HGF)0$$aWei, Yueguang$$b4
000904560 773__ $$0PERI:(DE-600)2787589-1$$a10.1007/s40544-020-0438-4$$gVol. 9, no. 4, p. 822 - 839$$n4$$p822 - 839$$tFriction$$v9$$x2223-7690$$y2021
000904560 8564_ $$uhttps://juser.fz-juelich.de/record/904560/files/Hu2021_Article_MultiscaleStudyOfTheDynamicFri-1.pdf$$yOpenAccess
000904560 909CO $$ooai:juser.fz-juelich.de:904560$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000904560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186711$$aForschungszentrum Jülich$$b1$$kFZJ
000904560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b2$$kFZJ
000904560 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000904560 9141_ $$y2022
000904560 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000904560 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-31
000904560 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904560 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRICTION : 2019$$d2021-01-31
000904560 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-31
000904560 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-31
000904560 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000904560 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000904560 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904560 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-31
000904560 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRICTION : 2019$$d2021-01-31
000904560 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000904560 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000904560 920__ $$lyes
000904560 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
000904560 980__ $$ajournal
000904560 980__ $$aVDB
000904560 980__ $$aUNRESTRICTED
000904560 980__ $$aI:(DE-Juel1)IAS-9-20201008
000904560 9801_ $$aFullTexts