Home > Publications database > Multiscale study of the dynamic friction coefficient due to asperity plowing > print |
001 | 904560 | ||
005 | 20230228121559.0 | ||
024 | 7 | _ | |a 10.1007/s40544-020-0438-4 |2 doi |
024 | 7 | _ | |a 2223-7690 |2 ISSN |
024 | 7 | _ | |a 2223-7704 |2 ISSN |
024 | 7 | _ | |a 2128/33771 |2 Handle |
024 | 7 | _ | |a WOS:000595394000007 |2 WOS |
037 | _ | _ | |a FZJ-2021-06130 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Hu, Jianqiao |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Multiscale study of the dynamic friction coefficient due to asperity plowing |
260 | _ | _ | |a Heidelberg |c 2021 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1674638133_22568 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A macroscopically nominal flat surface is rough at the nanoscale level and consists of nanoasperities. Therefore, the frictional properties of the macroscale-level rough surface are determined by the mechanical behaviors of nanoasperity contact pairs under shear. In this work, we first used molecular dynamics simulations to study the non-adhesive shear between single contact pairs. Subsequently, to estimate the friction coefficient of rough surfaces, we implemented the frictional behavior of a single contact pair into a Greenwood-Williamson-type statistical model. By employing the present multiscale approach, we used the size, rate, and orientation effects, which originated from nanoscale dislocation plasticity, to determine the dependence of the macroscale friction coefficient on system parameters, such as the surface roughness, separation, loading velocity, and direction. Our model predicts an unconventional dependence of the friction coefficient on the normal contact load, which has been observed in nanoscale frictional tests. Therefore, this model represents one step toward understanding some of the relevant macroscopic phenomena of surface friction at the nanoscale level. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a MuDiLingo - A Multiscale Dislocation Language for Data-Driven Materials Science (759419) |0 G:(EU-Grant)759419 |c 759419 |f ERC-2017-STG |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Song, Hengxu |0 P:(DE-Juel1)186711 |b 1 |e Corresponding author |u fzj |
700 | 1 | _ | |a Sandfeld, Stefan |0 P:(DE-Juel1)186075 |b 2 |u fzj |
700 | 1 | _ | |a Liu, Xiaoming |0 P:(DE-HGF)0 |b 3 |e Corresponding author |
700 | 1 | _ | |a Wei, Yueguang |0 P:(DE-HGF)0 |b 4 |
773 | _ | _ | |a 10.1007/s40544-020-0438-4 |g Vol. 9, no. 4, p. 822 - 839 |0 PERI:(DE-600)2787589-1 |n 4 |p 822 - 839 |t Friction |v 9 |y 2021 |x 2223-7690 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/904560/files/Hu2021_Article_MultiscaleStudyOfTheDynamicFri-1.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:904560 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)186711 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)186075 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-31 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FRICTION : 2019 |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-01-31 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-31 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-01-31 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b FRICTION : 2019 |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-31 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-9-20201008 |k IAS-9 |l Materials Data Science and Informatics |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-9-20201008 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|