001     904560
005     20230228121559.0
024 7 _ |a 10.1007/s40544-020-0438-4
|2 doi
024 7 _ |a 2223-7690
|2 ISSN
024 7 _ |a 2223-7704
|2 ISSN
024 7 _ |a 2128/33771
|2 Handle
024 7 _ |a WOS:000595394000007
|2 WOS
037 _ _ |a FZJ-2021-06130
082 _ _ |a 540
100 1 _ |a Hu, Jianqiao
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Multiscale study of the dynamic friction coefficient due to asperity plowing
260 _ _ |a Heidelberg
|c 2021
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674638133_22568
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A macroscopically nominal flat surface is rough at the nanoscale level and consists of nanoasperities. Therefore, the frictional properties of the macroscale-level rough surface are determined by the mechanical behaviors of nanoasperity contact pairs under shear. In this work, we first used molecular dynamics simulations to study the non-adhesive shear between single contact pairs. Subsequently, to estimate the friction coefficient of rough surfaces, we implemented the frictional behavior of a single contact pair into a Greenwood-Williamson-type statistical model. By employing the present multiscale approach, we used the size, rate, and orientation effects, which originated from nanoscale dislocation plasticity, to determine the dependence of the macroscale friction coefficient on system parameters, such as the surface roughness, separation, loading velocity, and direction. Our model predicts an unconventional dependence of the friction coefficient on the normal contact load, which has been observed in nanoscale frictional tests. Therefore, this model represents one step toward understanding some of the relevant macroscopic phenomena of surface friction at the nanoscale level.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a MuDiLingo - A Multiscale Dislocation Language for Data-Driven Materials Science (759419)
|0 G:(EU-Grant)759419
|c 759419
|f ERC-2017-STG
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Song, Hengxu
|0 P:(DE-Juel1)186711
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 2
|u fzj
700 1 _ |a Liu, Xiaoming
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Wei, Yueguang
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1007/s40544-020-0438-4
|g Vol. 9, no. 4, p. 822 - 839
|0 PERI:(DE-600)2787589-1
|n 4
|p 822 - 839
|t Friction
|v 9
|y 2021
|x 2223-7690
856 4 _ |u https://juser.fz-juelich.de/record/904560/files/Hu2021_Article_MultiscaleStudyOfTheDynamicFri-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904560
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)186711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-31
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRICTION : 2019
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-31
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FRICTION : 2019
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-31
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21