000904561 001__ 904561
000904561 005__ 20230228121559.0
000904561 0247_ $$2doi$$a10.1016/j.softx.2021.100708
000904561 0247_ $$2Handle$$a2128/33770
000904561 0247_ $$2WOS$$aWOS:000695854600003
000904561 037__ $$aFZJ-2021-06131
000904561 082__ $$a004
000904561 1001_ $$00000-0001-8294-9292$$aSerrao, Prince Henry$$b0
000904561 245__ $$aOptiMic: A tool to generate optimized polycrystalline microstructures for materials simulations
000904561 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000904561 3367_ $$2DRIVER$$aarticle
000904561 3367_ $$2DataCite$$aOutput Types/Journal article
000904561 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674638043_21125
000904561 3367_ $$2BibTeX$$aARTICLE
000904561 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904561 3367_ $$00$$2EndNote$$aJournal Article
000904561 520__ $$aPolycrystal microstructures, with their distinct physical, chemical, structural and topological entities, play an important role in determining the effective properties of materials. Particularly for computational studies, the well-known Voronoi tessellation technique is regularly used for obtaining microstructures. Standard Voronoi tessellations, however, exhibit statistics that are generally far removed from those in real microstructures. Nevertheless, such tessellations can be optimized to obtain certain key features and statistics seen in real microstructures. In this work, we develop the open-source software package OptiMic that enables the generation of optimized microstructures for both finite element as well as atomistic simulations. OptiMic allows for both monodispersive grains as well as irregular grains obtained currently via Voronoi tessellations. These initial microstructures can then be optimized to reflect desired statistical features. A key feature of the tool is that it gives the user extensive control on the optimization process via customizable cost functions. The software currently performs tessellations with the Voronoi method and can be easily extended to include other methods like grain-growth, phase-field etc.
000904561 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000904561 536__ $$0G:(EU-Grant)759419$$aMuDiLingo - A Multiscale Dislocation Language for Data-Driven Materials Science (759419)$$c759419$$fERC-2017-STG$$x1
000904561 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904561 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b1
000904561 7001_ $$00000-0003-0795-5777$$aPrakash, Aruna$$b2$$eCorresponding author
000904561 773__ $$0PERI:(DE-600)2819369-6$$a10.1016/j.softx.2021.100708$$gVol. 15, p. 100708 -$$p100708 -$$tSoftwareX$$v15$$x2352-7110$$y2021
000904561 8564_ $$uhttps://juser.fz-juelich.de/record/904561/files/1-s2.0-S2352711021000534-main.pdf$$yOpenAccess
000904561 909CO $$ooai:juser.fz-juelich.de:904561$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000904561 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b1$$kFZJ
000904561 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000904561 9141_ $$y2022
000904561 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-09
000904561 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904561 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-09-09
000904561 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-09
000904561 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-09
000904561 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-09
000904561 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-09
000904561 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904561 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-09
000904561 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-09
000904561 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-09
000904561 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-09
000904561 920__ $$lyes
000904561 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
000904561 980__ $$ajournal
000904561 980__ $$aVDB
000904561 980__ $$aUNRESTRICTED
000904561 980__ $$aI:(DE-Juel1)IAS-9-20201008
000904561 9801_ $$aFullTexts