000904565 001__ 904565
000904565 005__ 20230127125339.0
000904565 0247_ $$2doi$$a10.1021/acs.est.0c07742
000904565 0247_ $$2ISSN$$a0013-936X
000904565 0247_ $$2ISSN$$a1520-5851
000904565 0247_ $$2Handle$$a2128/30328
000904565 0247_ $$2altmetric$$aaltmetric:101553044
000904565 0247_ $$2pmid$$apmid:33682412
000904565 0247_ $$2WOS$$aWOS:000643546400020
000904565 037__ $$aFZJ-2021-06135
000904565 082__ $$a333.7
000904565 1001_ $$0P:(DE-HGF)0$$aDeLang, Marissa N.$$b0
000904565 245__ $$aMapping Yearly Fine Resolution Global Surface Ozone through the Bayesian Maximum Entropy Data Fusion of Observations and Model Output for 1990–2017
000904565 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2021
000904565 3367_ $$2DRIVER$$aarticle
000904565 3367_ $$2DataCite$$aOutput Types/Journal article
000904565 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642493599_23750
000904565 3367_ $$2BibTeX$$aARTICLE
000904565 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904565 3367_ $$00$$2EndNote$$aJournal Article
000904565 520__ $$aEstimates of ground-level ozone concentrations are necessary to determine the human health burden of ozone. To support the Global Burden of Disease Study, we produce yearly fine resolution global surface ozone estimates from 1990 to 2017 through a data fusion of observations and models. As ozone observations are sparse in many populated regions, we use a novel combination of the M3Fusion and Bayesian Maximum Entropy (BME) methods. With M3Fusion, we create a multimodel composite by bias-correcting and weighting nine global atmospheric chemistry models based on their ability to predict observations (8834 sites globally) in each region and year. BME is then used to integrate observations, such that estimates match observations at each monitoring site with the observational influence decreasing smoothly across space and time until the output matches the multimodel composite. After estimating at 0.5° resolution using BME, we add fine spatial detail from an additional model, yielding estimates at 0.1° resolution. Observed ozone is predicted more accurately (R2 = 0.81 at the test point, 0.63 at 0.1°, and 0.62 at 0.5°) than the multimodel mean (R2 = 0.28 at 0.5°). Global ozone exposure is estimated to be increasing, driven by highly populated regions of Asia and Africa, despite decreases in the United States and Russia.
000904565 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000904565 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x1
000904565 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904565 7001_ $$0P:(DE-HGF)0$$aBecker, Jacob S.$$b1
000904565 7001_ $$0P:(DE-HGF)0$$aChang, Kai-Lan$$b2
000904565 7001_ $$0P:(DE-HGF)0$$aSerre, Marc L.$$b3
000904565 7001_ $$0P:(DE-HGF)0$$aCooper, Owen R.$$b4
000904565 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin$$b5
000904565 7001_ $$0P:(DE-Juel1)16212$$aSchröder, Sabine$$b6
000904565 7001_ $$0P:(DE-HGF)0$$aLu, Xiao$$b7
000904565 7001_ $$00000-0003-2383-8431$$aZhang, Lin$$b8
000904565 7001_ $$0P:(DE-HGF)0$$aDeushi, Makoto$$b9
000904565 7001_ $$0P:(DE-HGF)0$$aJosse, Beatrice$$b10
000904565 7001_ $$0P:(DE-HGF)0$$aKeller, Christoph A.$$b11
000904565 7001_ $$0P:(DE-HGF)0$$aLamarque, Jean-François$$b12
000904565 7001_ $$0P:(DE-HGF)0$$aLin, Meiyun$$b13
000904565 7001_ $$0P:(DE-HGF)0$$aLiu, Junhua$$b14
000904565 7001_ $$0P:(DE-HGF)0$$aMarécal, Virginie$$b15
000904565 7001_ $$0P:(DE-HGF)0$$aStrode, Sarah A.$$b16
000904565 7001_ $$0P:(DE-HGF)0$$aSudo, Kengo$$b17
000904565 7001_ $$0P:(DE-HGF)0$$aTilmes, Simone$$b18
000904565 7001_ $$0P:(DE-HGF)0$$aZhang, Li$$b19
000904565 7001_ $$0P:(DE-HGF)0$$aCleland, Stephanie E.$$b20
000904565 7001_ $$0P:(DE-HGF)0$$aCollins, Elyssa L.$$b21
000904565 7001_ $$00000-0002-9103-9343$$aBrauer, Michael$$b22
000904565 7001_ $$00000-0001-5652-4987$$aWest, J. Jason$$b23$$eCorresponding author
000904565 773__ $$0PERI:(DE-600)1465132-4$$a10.1021/acs.est.0c07742$$gVol. 55, no. 8, p. 4389 - 4398$$n8$$p4389 - 4398$$tEnvironmental science & technology$$v55$$x0013-936X$$y2021
000904565 8564_ $$uhttps://juser.fz-juelich.de/record/904565/files/acs.est.0c07742.pdf
000904565 8564_ $$uhttps://juser.fz-juelich.de/record/904565/files/Preprint.pdf$$yPublished on 2021-03-08. Available in OpenAccess from 2022-03-08.
000904565 909CO $$ooai:juser.fz-juelich.de:904565$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich$$b5$$kFZJ
000904565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16212$$aForschungszentrum Jülich$$b6$$kFZJ
000904565 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000904565 9141_ $$y2021
000904565 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000904565 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000904565 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-02
000904565 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000904565 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000904565 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-02-02
000904565 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904565 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENVIRON SCI TECHNOL : 2019$$d2021-02-02
000904565 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENVIRON SCI TECHNOL : 2019$$d2021-02-02
000904565 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000904565 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000904565 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000904565 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-02-02
000904565 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000904565 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000904565 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000904565 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000904565 980__ $$ajournal
000904565 980__ $$aVDB
000904565 980__ $$aUNRESTRICTED
000904565 980__ $$aI:(DE-Juel1)JSC-20090406
000904565 9801_ $$aFullTexts