001     904565
005     20230127125339.0
024 7 _ |a 10.1021/acs.est.0c07742
|2 doi
024 7 _ |a 0013-936X
|2 ISSN
024 7 _ |a 1520-5851
|2 ISSN
024 7 _ |a 2128/30328
|2 Handle
024 7 _ |a altmetric:101553044
|2 altmetric
024 7 _ |a pmid:33682412
|2 pmid
024 7 _ |a WOS:000643546400020
|2 WOS
037 _ _ |a FZJ-2021-06135
082 _ _ |a 333.7
100 1 _ |a DeLang, Marissa N.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Mapping Yearly Fine Resolution Global Surface Ozone through the Bayesian Maximum Entropy Data Fusion of Observations and Model Output for 1990–2017
260 _ _ |a Columbus, Ohio
|c 2021
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642493599_23750
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Estimates of ground-level ozone concentrations are necessary to determine the human health burden of ozone. To support the Global Burden of Disease Study, we produce yearly fine resolution global surface ozone estimates from 1990 to 2017 through a data fusion of observations and models. As ozone observations are sparse in many populated regions, we use a novel combination of the M3Fusion and Bayesian Maximum Entropy (BME) methods. With M3Fusion, we create a multimodel composite by bias-correcting and weighting nine global atmospheric chemistry models based on their ability to predict observations (8834 sites globally) in each region and year. BME is then used to integrate observations, such that estimates match observations at each monitoring site with the observational influence decreasing smoothly across space and time until the output matches the multimodel composite. After estimating at 0.5° resolution using BME, we add fine spatial detail from an additional model, yielding estimates at 0.1° resolution. Observed ozone is predicted more accurately (R2 = 0.81 at the test point, 0.63 at 0.1°, and 0.62 at 0.5°) than the multimodel mean (R2 = 0.28 at 0.5°). Global ozone exposure is estimated to be increasing, driven by highly populated regions of Asia and Africa, despite decreases in the United States and Russia.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Becker, Jacob S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Chang, Kai-Lan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Serre, Marc L.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Cooper, Owen R.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schultz, Martin
|0 P:(DE-Juel1)6952
|b 5
700 1 _ |a Schröder, Sabine
|0 P:(DE-Juel1)16212
|b 6
700 1 _ |a Lu, Xiao
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zhang, Lin
|0 0000-0003-2383-8431
|b 8
700 1 _ |a Deushi, Makoto
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Josse, Beatrice
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Keller, Christoph A.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Lamarque, Jean-François
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Lin, Meiyun
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Liu, Junhua
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Marécal, Virginie
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Strode, Sarah A.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Sudo, Kengo
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Tilmes, Simone
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Zhang, Li
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Cleland, Stephanie E.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Collins, Elyssa L.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Brauer, Michael
|0 0000-0002-9103-9343
|b 22
700 1 _ |a West, J. Jason
|0 0000-0001-5652-4987
|b 23
|e Corresponding author
773 _ _ |a 10.1021/acs.est.0c07742
|g Vol. 55, no. 8, p. 4389 - 4398
|0 PERI:(DE-600)1465132-4
|n 8
|p 4389 - 4398
|t Environmental science & technology
|v 55
|y 2021
|x 0013-936X
856 4 _ |u https://juser.fz-juelich.de/record/904565/files/acs.est.0c07742.pdf
856 4 _ |y Published on 2021-03-08. Available in OpenAccess from 2022-03-08.
|u https://juser.fz-juelich.de/record/904565/files/Preprint.pdf
909 C O |o oai:juser.fz-juelich.de:904565
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)6952
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)16212
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON SCI TECHNOL : 2019
|d 2021-02-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENVIRON SCI TECHNOL : 2019
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21