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Abstract
We show that the Persson-Brener theory of crack propagation in viscoelastic solids gives a viscoelastic fracture energy 
factor G∕G

0
= 1 + f  which is nearly the same as the viscoelastic factor obtained using the cohesive-zone model. We also 

discuss finite size effects and comment on the use of crack propagation theories for “solids” with a viscoelastic modulus 
that vanishes at zero frequency.
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1  Introduction

Crack propagation in viscoelastic solids, or at the interface 
between a viscoelastic solid and a counter surface, have 
many important applications, e.g., for rubber wear [1], or in 
adhesion and friction involving rubber-like materials [2–10]. 
Two different approaches have been applied to crack propa-
gation in viscoelastic solids. One focus on the stress using 
the cohesive-zone model, and another is based on an energy 

approach. The first approach was used by Knauss [4] and by 
Schapery [11, 12] and later by Hui et al [13] and by Green-
wood [14, 15]. Since the exact relation between the stress � 
and the surface separation u in the cohesive (process) zone, 
where the bond-breaking is assumed to occur, is not known 
in general, in the simplest approach it was assumed that the 
stress is constant and equal to �0 for 0 < u < h0 and � = 0 
for u > h0 . The second (energy) approach was used by de 
Gennes [16] in a qualitative way, and by Persson and Brener 
[17] in a quantitative way. In the latter approach enters a 
cut-off radius a0 , which can be interpreted as the radius of 
curvature of the crack tip in the adiabatic limit, and the stress 
�c at the crack tip (the stress to break the adhesive or cohe-
sive bonds).
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2 � Viscoelastic Factor G∕G
0

The stress �0 in the cohesive-zone approach, is in general not 
the same as the stress �c in the theory of Persson and Brener 
(see Appendix A). In Ref. [14] it was assumed that the stress 
in the process zone is a constant � = �0 for 0 < z < h0 , where 
�0 can be any number as long as the (adiabatic) work of 
adhesion is given by G0 = h0�0 . If one use another wall-
wall interaction, e.g., based on the Lennard-Jones potential, 
one gets another relation between G0 and �0 [15]. Since the 
final result depends on �0 this approach is in fact somewhat 
ill-defined unless the exact relation between the stress and 
the separation is known (which in general is not the case) 
and used in the theory. On the contrary in the theory of 
Persson and Brener only well-defined (experimental) quan-
tities occur. Thus the adiabatic crack tip radius a0 could in 
principle be measured using, e.g., an electron microscope. 

In any case for cohesive cracks we expect a0 to be of order 
the length of the polymer chains between the cross links, i.e., 
typically of order 1 nm.

In Ref. [17, 18], it was stated that the Persson–Brener 
theory gives nearly the same result for the viscoelastic fac-
tor G∕G0 = 1 + f (v) as the cohesive-zone model. Thus the 
numerical results for G∕G0 obtained by Greenwood and 
by Hui et al for the three-element viscoelastic model (see 
Fig. 1) is nearly the same as predicted by the Persson–Brener 
theory if one chooses �0 to get the best possible overlap 
between the two curves (which means using �0 ≈ 3�c ), see 
Fig. 2 (see Appendix B for the equations used in the calcula-
tions). Shifting like this is the only meaningful way to com-
pare the factor G∕G0 between the two theories, because the 
velocity normalization factor in the cohesive-zone approach 
depends on the cut-off stress �0 which differ from �c (see 
Appendix A).

The fact that the two curves in Fig. 2 agree so well indi-
cate that the viscoelastic factor G∕G0 is not sensitive to the 
form of the bond-breaking process at the crack tip. This is 
also consistent with the observation that using a Lennard-
Jones type of wall-wall interaction potential [15], or another 
shorter range potential [19], result in nearly the same result 
as presented above.
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Fig. 3   Crack propagation in a viscoelastic slab clamped between two 
rigid flat surfaces. a The slab is infinite long ( L = ∞ ) in the crack 
propagation direction (x-direction). b The slab is of finite length L. In 
a the segment (of width Δx ) at A is stretched with the strain � . At B, 
the strain is reduced (high frequency relaxation) by Δ� = �
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tip pass the segment. At C, far away from the crack tip, the strain van-
ish due to (slow) viscoelastic relaxation
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3 � Finite Size Effect

At high crack tip speed (or at low temperatures) the main 
contribution to the viscoelastic energy dissipation comes 
from a region far from the crack tip. This follows from 
dimensional arguments: the perturbing deformation fre-
quencies from the moving crack (velocity v) a distance r 
away from the crack tip must be of order v/r. Thus close 
to the crack tip the rubber will effectively be in the glassy 
state (elastic response) and the dominant contribution to 
the energy dissipation will come from regions far from the 
crack tip. Hence if the solid has a finite extent, say of lin-
ear dimension L, at high enough crack tip speed the solid 
will, from the point of view of viscoelastic dissipation, 
effectively be in the glassy elastic state everywhere and 
no viscoelastic energy dissipation will occur during the 
crack propagation. Thus one may be tempted to claim that 
for finite solids f → 0 as v → ∞ . This result was used by 
de Gennes to argue that for the slab geometry (thickness 
d0 ), as occur for example in pressure sensitive adhesives, 
for large crack tip speed the crack propagation energy 
G(v) will decrease with increasing v which may result in 
mechanical instabilities [16]. However, I will now shown 
in that this argument is in fact not correct and G(v) does 
not decrease for large velocities (see also Ref. [20]).

Figure 3a shows a fast moving opening crack in a thin 
viscoelastic slab (thickness d0 ) under tension. The slab 
is assumed to be infinite long in the crack propagation 
direction. The slab is elongated by d0�0 , and we wait until 
a fully relaxed state is formed before inserting the crack. 
Thus the elastic energy stored in the strip A of width Δx 
and volume ΔV = wd0Δx (where w is the width of the solid 
in the y-direction) is

This energy is partly used to break the interfacial bonds and 
partly dissipated due to the material viscoelasticity. The 
crack propagation energy G = U0∕(wΔx) = �2

0
d0∕(2E0).

Consider now the slab Δx as it moves from one side of 
the crack to the other side. During this transition, it will 
experience an (elongation) stress �(t) which for a very fast 
moving crack can be considered as a step function where 
� = �0 for t < 0 and � = 0 for t > 0 , where t = 0 corre-
spond to the case where the segment Δx is at the crack 
tip. The viscoelastic material will respond to this step-
like change in the stress with its high frequency modulus 
E1 so the strain in the segment Δx will abruptly drop by 
Δ� = �0∕E1 as the crack pass the segment. The drop in the 
elastic energy

U0 =
1

2
�0�0ΔV =

�2
0

2E0

ΔV .

is used to break the interfacial bonds (energy Δ� = G0 per 
unit surface area), i.e. G0 = ΔU∕(wΔx) or

so that G = G0E1∕E0 . The remaining elastic energy stored 
in the segment Δx,

is dissipated in the slow viscoelastic relaxation occurring far 
away from the crack tip so that finally the material reach its 
fully relaxed state (zero strain and stress).

For a solid with a finite extent in all directions the fast 
relaxation process at the crack tip is the same as above 
so the result G = G0E1∕E0 still holds. However for a fast 
moving crack the time, it takes for the crack to fracture the 
whole interface, Δt = L∕v is so short that in accordance 
with the discussion presented earlier, negligible viscous 
energy relaxation has occurred during the crack propaga-
tion act. Thus when the crack separate the two solids the 
viscoelastic solid is still in a strained state. Only after a 
possible long time period it will return to a strain- (and 
stress) free state. Thus in this case, the viscoelastic energy 
dissipation occur in a process separated from the actual 
crack propagation (see Fig. 3b), and this fact was over-
looked in the earlier energy-based discussions of finite size 
effects [21–23]. However, this argument does not exclude 
that the G(v) relation depends on the system size for inter-
mediate crack tip velocities.

4 � Loading Followed by Immediate 
Unloading

The discussions of finite size effects presented above has 
assumed that at the onset of pull-off, the viscoelastic solid 
far from the crack tip is in a fully relaxed state character-
ized by the low frequency modulus E0 . Only in this case 
will the crack propagation energy G → G0E1∕E0 as the 
crack tip velocity v → ∞ . Consider, for example, moving 
a rigid sphere in and out of contact with a viscoelastic 
halfspace with the speed ±v . After bringing the sphere in 
contact with the viscoelastic solid, the contact is kept fixed 
for a time period t0 before the pull-off. If t0 is long enough 
(e.g. t0 >> 𝜏 for the three-element rheology model) the 
deformation field resulting from the loading (indentation) 
can, before the onset of pull-off, relax to its fully relaxed 
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state, characterized by the low frequency modulus E0 . In 
this case, the discussion presented in Sec. 3 is valid, and 
if the pull-off speed is high, an indentation is left on the 
surface of the viscoelastic solid which only slowly relax 
(on the time-scale ∼ � ) to its undeformed state.

Assume now t0 = 0 . In this case the perturbing defor-
mation frequencies, in the region of the viscoelastic solid 
which undergoes deformations, will be of order v∕r0 or 
higher, where r0 is the maximum radius of the contact 
region between the sphere and the halfspace. For high 
enough speed v these frequencies will be in the glassy 
frequency region, and the viscoelastic solid will during the 
whole loading-unloading respond as an elastic solid with 
the high frequency modulus E1 . Thus in this case the crack 
propagation energy G → G0 as v → ∞ . On the other hand 
for low enough speed v the solid will be in the rubbery 
region (characterized by the low frequency modulus E0 ) 
everywhere except very close to the crack tip where the 
perturbing frequencies v/r (where r is the distance from 
the crack tip) are high. Hence even when t0 = 0 for low 
enough pull-off speed, the viscoelastic crack propagation 
theory presented in Sec. 3 is valid. It follows that the effec-
tive crack propagation energy will have the general form 
shown by the blue (or green) line in Fig. 4.

The blue (and green) line in Fig. 4 was obtained using 
the theory developed in Ref. [21]. This theory gives the 
effective crack propagation energy during pull-off (open-
ing crack propagation) assuming that in the absence of 

adhesion, there is no elastic energy left in the viscoelastic 
solid after removing the spherical indenter. In reality, even 
if t0 = 0 , some elastic deformation energy will be left after 
unloading. However, there is a qualitatively difference 
between long contact time and short contact time. First 
note that all real rubber materials have relaxation times 
which extend over more than 10 decades in time. When 
the sphere is in contact with a viscoelastic solid (rubber) 
for some (long) time period t0 the relaxation modes in 
the rubber with relaxation times 𝜏 < t0 will all be acti-
vated (displaced) and the time needed for the indentation 
to relax back to the undeformed state will be of order t0 
since the displacement of a mode with the relaxation time 
� will, after removing the contact, decay as ∼ exp(−t∕�) 
with increasing time. Thus, all the activated relaxation 
modes, with relaxation times longer than the retraction 
time period, will remain activated (i.e., in the displaced 
state) at the end of the pull-off. However, when retraction 
follows the approach without a delay ( t0 = 0 ) the rubber 
relaxation modes activated during approach will to some 
extent be able to relax during the retraction. Of course not 
fully relaxed, but still there is a difference from the first 
case where t0 is large compared to the indentation and 
retraction time periods. This argument is qualitative, but 
could be made more accurate.

The G(v) curve the theory predict (blue and green lines in 
Fig. 4) [21] is nearly the same as obtained in a recent study 
by Afferrante and Violano [24] using a finite element model 
with Lennard-Jones interaction forces between a rigid sphere 
and a viscoelastic solid with a flat surface. Note that in this 
case there will be a finite size effect, as indeed observed 
in Ref. [24]. Thus, for a very large sphere the (maximum) 
radius of the contact region, r0 , is very large, and the defor-
mation frequencies v∕r0 will, for all velocities of interest, 
be so low that the viscoelastic solid will respond as a soft 
elastic solid (rubbery region) everywhere, except very close 
to the crack tip. In this case G ≈ G0E1∕E0 for high (but not 
too high) velocities, as indicated by the red curve in Fig. 4.

Recent numerical simulation studies [19, 24] have shown 
that, even when we start with the fully relaxed state, the 
work W to pull-off a rigid sphere or cylinder from a viscoe-
lastic halfspace decreases with increasing pull-off speed vp 
for large vp . Thus the W(vp) curve looks on a log-log scale 
roughly like a Gaussian. This result appears at first sur-
prising since the crack propagation energy G(v) increases 
monotonically with the crack tip speed v. Hence, if the work 
would be given by the area A0 which is broken (which in the 
simulations was the same independent of the pull-off speed 
as the simulations always started from the fully relaxed 
state at vanishing applied force) times the crack propaga-
tion energy, then W should increase with increasing vp . 
In particular, for very large pull-off velocity W(vp) should 
be equal to A0G0(E1∕E0) . However, as the pull-off speed 
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increases, the snap-off occur for larger contact width (given 
by w = 2(2G(v)R2∕�E∗)1∕3 for the cylinder case) and if we 
assume that during snap-off the solid deform so quickly 
that the viscoelastic crack propagation theory is not valid, 
and that the effective G ≈ G0 rather than G ≈ G0(E1∕E0) , 
then this would explain why the work to separate the solids 
decreases with increasing vp for large pull-off speed.

Let us briefly discuss another application of the theory 
above. When a rubber block slides on a hard and rough sub-
strate surface, such as an asphalt road surface, the rubber 
road contact will in general not be complete, but it will con-
sist of many small asperity contact regions, and the area of 
real contact is usually a very small fraction of the nominal 
contact area. A very important contribution to the friction 
force is derived from the interaction between the rubber 
molecules and the road surface in the area of real contact. 
For clean surfaces two different (adhesive) contributions to 
the frictional force have been considered, namely from the 
opening crack on the exit side of the asperity contact region, 
and from a bonding-stretching-debonding process within the 
area of real contact. The crack propagation is very similar to 
the sphere approach-retraction cycle without a waiting time 
period (i.e. t0 = 0 ), and since the asperity contact regions 
in general are very small and the sliding speed is relatively 
high, it follows that the crack propagation energy G(v) may 
be only slightly increased by viscoelasticity rather than the 
large enhancement expected when the strain field is fully 
relaxed far from the crack tip.

5 � Application to “Solids” with E(! = 0) = 0

In one application Schapery studied viscoelastic crack prop-
agation in “solids” which has a viscoelastic modulus that 
vanish for zero frequency (i.e., a relaxation modulus which 
vanish for long times) [11, 12]. Such a “solid” is really a 
liquid with a non-Newtonian and possible complex rheol-
ogy, and in this case, no rigorous crack propagation theory 
can be developed. Thus, for example, the Johnson, Kendall, 
and Roberts (JKR) adhesion theory [25], can be applied also 
to viscoelastic solids if the deformations far from the crack 
tip (here the line separating the contact area from the non-
contact area), is characterized by the low frequency (fully 
relaxed state) elastic modulus E0 = E(� = 0) , which would 
vanish in the present case. We note, however, that physically 
cross linked polymer materials may have a rubbery plateau 
(see Fig. 5 and Ref. [26, 27]) for 𝜔a < 𝜔 < 𝜔b , and behave as 
an elastic solid for all practical time scales 1∕𝜔b < t < 1∕𝜔a , 
in which case the cohesive-zone (or Persson-Brener) theory 
could still be applied but with E0 being the modulus in the 
rubbery plateau region. I note that the Schapery theory is 
general, and can be applied to solids with arbitrary viscoe-
lastic modulus.

If the adiabatic crack tip radius a0 is treated as a con-
stant as the low frequency modulus E0 is varied then the 
viscoelastic factor G∕G0 is independent of E0 for low enough 
velocities and hence well-defined even in the limit E0 = 0 
(see Appendix C). Nevertheless, a0 is not well-defined in 
the limit E0 = 0 since it refer to the adiabatic limit where 
the “solid” responds as a fluid, where no crack-like defects 
can occur.

6 � Discussion

In a recent series of papers, Ciavarella et al [28, 29] have criti-
cized the Persson-Brener theory and claimed that the Persson-
Brener theory [17] gives a viscoelastic factor G∕G0 = 1 + f  
which differ strongly from what Ciavarella et al denote as the 
exact viscoelastic factor obtained using the cohesive-zone 
model [13, 14]. We have shown above that both theories gives 
nearly the same result for G∕G0 if the quantity �0 in the cohe-
sive-zone theory is chosen appropriately!

In another paper Popov [30] claim that viscoelasticity 
increases the JKR pull-off force with a factor E1∕E0 in the 
quasi-static limit. This result is incorrect: in the quasi-static 
case, the work of adhesion is not influenced by the viscoe-
lasticity and only in the limit v → ∞ is the work of adhesion 
increased by the factor of E1∕E0 . The result of Popov would 
hold if there would be no shortest length scale in the problem 
but in reality there is a short distance cut-off denoted by a0 
above.
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Appendix A

In the Persson-Brener approach, there is no cohesive-zone 
so the cut-off stress �c is not exactly the same as the cut-off 
stress �0 in the cohesive-zone model (now they differ by a 
factor of ∼ 3 ). In fact, the cut-off stress in the cohesive-zone 
model depends on the form of the wall-wall interaction stress 
(assuming the work of adhesion is given) which is not known 
in general, and may be very complex when processes such as 
chain pull-out occur.

One can derive a relation between �c and �0 by demanding 
that the stress field away from the process zone takes the same 
form K(2�r)−1∕2 in both cases. For the general case where �0 
is not a constant, but varies with the surface separation, in the 
cohesive-zone model

In the Persson-Brener theory

Using (A1) and (A2) gives

In the simplest case where �0(x) is a constant �0 for 
0 < z < h0 and 0 < x < l and zero otherwise we get

The best way to obtain the cut-off radius a0 (for low crack tip 
velocity) in the Persson–Brener model is to study the crack 
tip directly and fit it to a circular segment with radius a0 . 
This is easy to do in numerical simulations like in Ref. [19]. 
In real experimental situations it may be harder (because a0 
is very small) but if one can measure a(v) for large crack tip 
speed, where the radius is enhanced by a factor of E1∕E0 , 
one can calculate a0 from a0 = (E0∕E1)a(∞).

Appendix B

Here we give the equations for viscoelastic crack propagation 
used in the calculations in Fig. 2.

When a strip of a viscoelastic material is exposed to an 
oscillating strain �(�)exp(−i�t) the amplitude of the oscil-
lating stress

This equation define the viscoelastic modulus E(�) , which 
is a complex quantity, where the imaginary part is related to 

(A1)
K

(2�)1∕2
=

1

� ∫
∞

0

dx� �0(x
�)(x�)−1∕2

(A2)�c =
K

(2�a)1∕2

�c =
1

� ∫
∞

0

dx� �0(x
�)(ax�)−1∕2

�c =
2

�

(

l

a

)1∕2

�0

�(�) = E(�)�(�)

energy dissipation (transfer of mechanical energy into the 
disordered heat motion). In the calculation in Fig. 2, we used 
the three-element rheological model illustrated in Fig. 1. For 
this model the viscoelastic modulus

The ratio between the high frequency and low frequency 
modulus, E1∕E0 , is typically very large, e.g., ∼ 1000.

In the Persson-Brener theory, the crack propagation 
energy G(v) = G0a(v)∕a0 , where a(v) is the velocity-depend-
ent effective crack tip radius, and where a0 = E0G0∕(2��

2
c
) . 

The fracture energy G(v) satisfy [17]

where

where �c = 2�v∕a . For numerical calculations it is more 
convenient to reformulate (B2) into [7, 21]

Since �c depends on a (and hence on G since G = G0a∕a0 ) 
this is an implicit equation for G(v). Thus the theory gives 
both crack propagation energy G(v) and the (velocity-
dependent) radius of the crack tip,

Since E(�) typically varies with � over very many decades 
in frequency, for the numerical evaluation of the integrals 
in (B3) it is convenient to write (see Ref. [7]) � = �0e

x , so 
that if � varies over ∼ 30 decades, x varies only by a factor 
∼ 100.

In the cohesive-zone model assuming that the stress is 
constant and equal to �0 for 0 < u < h0 and � = 0 for u > h0 , 
and assuming the viscoelastic modulus (B1), one get [14]:

where � = l∕(v�) and

and the width l of the crack tip process zone
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Here we have assumed plane stress; for plane strain E must 
be replaced with E∕(1 − �2) , where � is the Poisson ratio. 
Since l depends on G, (B5) is an implicit equation for G(v).

Appendix C

Using the viscoelastic modulus (B1), which we can also 
write as

in (B2) and denoting � = �cx gives

where � = 2�v�∕a = 2�[v�∕a0]G0∕G . Hence G∕G0 depends 
only on v�∕a0 and on E0∕E1 and is well-defined also in the 
fluid limit E0 = 0.

Fig. 6 shows the viscoelastic factor G∕G0 as a function 
of the crack tip speed on a log-log scale. We have used 
E1 = 100 , � = 1 and E0 = 1 (green curve), E0 = 0.1 (blue 
curve) and E0 = 0 (red dashed curve), and the adiabatic 
crack tip radius a0 = 0.03 . Note that for low crack tip speed 
G∕G0 is independent of E0 . In fact, for E0 = 0 the curve 
extend linearly (on the log-log scale) towards infinite v 
with the slope 1/2 corresponding to G ∼ v1∕2 (dashed line 

(B6)l =
�

4

E0G

�2
0

1

E
=

1

E1

+

(

1

E0

−
1

E1

)

1

1 − i��
,

G0

G
= 1 −

(

1 −
E0

E1

)

2

� ∫
1

0

dx
(

1 − x2
)1∕2 �

1 + �2x2
,

in the figure). For a more realistic viscoelastic modulus the 
exponent � in G ∼ v� will be different from 1/2 as discussed 
elsewhere [17].
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