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We review a theory of crack propagation in viscoelastic solids. We consider both cracks in infinite
systems and in finite sized systems. As applications of the theory we consider two adhesion prob-
lems, namely pressure sensitive adhesives and the ball-flat adhesion problem. We also study crack
propagation in the pig skin dermis, which is of medical relevance, and rubber wear in the context

of tires.

1 Introduction

The cohesive strength of solids usually depend on
crack-like defects, and the energy to propagate cracks
in the material. Similarly, the strength of the adhesive
bond between two solids is usually determined by the
energy to propagate interfacial cracks. Here we are in-
terested in crack propagation in viscoelastic materials,
such as rubber[IH9, T2HI9]. This topic is of great im-
portance, e.g., the wear of tires or wiper blades result-
ing from the removal of small rubber particles by crack
propagation[20].

In this article we will review a theory for crack propa-
gation in viscoelastic solids. We will consider crack prop-
agation in both infinite sized solids and in finite sized
solids. The latter is also relevant for rubber wear where
small particles (often micrometer sized) are removed from
the rubber surface by the high tensile stresses which ex-
ist in the asperity contact regions during sliding. We will
also consider interfacial crack propagation which is im-
portant for adhesion. As applications of the theory we
consider: (a) Adhesion for the sphere-flat contact prob-
lem, and for pressure sensitive adhesives. (b) Crack prop-
agation in the skin dermis as may be relevant for intra-
dermal fluid injection. (c¢) Rubber wear for the case of a
tread block sliding on a road surface.

2 Theory of crack propagation in viscoelastic
solids

Rubber wear usually involves crack propagation in the
bulk of the material (see Fig. [[(a)). For a bulk crack the
stress and strain are usually very high close to the crack
tip and nonlinear effects, involving the breaking strong
covalent bonds, chain pull-out and and cavity formation,
will occur close to the crack tip. This region of space
is denoted the crack-tip process zone. The detailed na-
ture of the crack-tip process zone is still a research topic,
specially in cases involving heterogeneous media.

Another important set of applications involves inter-
facial crack propagation, e.g., between rubber materials
and a hard counter surface (see Fig. [Ifb)). In this case
the strain and stresses at a crack tip can be much smaller,
in particular if the interaction at the interface is domi-
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FIG. 1: (a) Crack propagation in the bulk of a viscoelastic
solid (cohesive crack propagation), and (b) at the interface
between a viscoelastic solid and a countersurface (adhesive
crack propagation).

nated by the weak van der Waals interaction. In this
case nonlinear viscoelastic effects may occur only in a
very small region close to the crack tip where the bond
breaking occurs.

2.1 Viscoelastic modulus

Assume that a rectangular block of a linear viscoelastic
material is exposed to the stress o(¢). This will result in
a strain €(t) (see Fig. 2). If we write

o (1) = [ : dw o (w)e "

e(t) = f dw e(w)e ™!
then

o(w) = BE(w)e(w) )

For viscoelastic materials like rubber the viscoelastic
modulus E(w) is a complex quantity, where the imagi-
nary part is related to energy dissipation (transfer of me-
chanical energy into the random thermal motion). In a



FIG. 2: The length of a strip of rubber exposed to the stress
o(t) will fluctuate as L(t) = Lo(1 + €(t)), where Lo is the
unperturbed length and €(t) the strain at time ¢.
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FIG. 3: The real and the imaginary part of the viscoelastic
modulus as a function of frequency w (log-log scale). For a
NBR rubber compound with filler at T = 20°C.
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FIG. 4: The loss tangent tand = InE/ReFE as a function of
the logarithm of the frequency w. For a NBR rubber com-
pound shown in Fig. 3|at T' = 20°C.
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FIG. 5: The crack loss function Q(w) = (1/w)Im[1/E(w)] as
a function of the logarithm of the frequency w. For a NBR
rubber compound shown in Fig. [3[at T" = 20°C.

typical case F(w) depends on the frequency as indicated
in Fig. 13| (log-log scale). For low frequencies (or high
temperatures) the rubber respond as a soft elastic body
(rubbery region) with a viscoelastic modulus E(w) of or-
der ~ 1 MPa for the rubber used in tires, or for the human
skin dermis, or » 1 kPa for the weakly crosslinked rubber
used in pressure sensitive adhesives. At very high fre-
quencies (or low temperatures) is behaves as a stiff elastic
solid (glassy region) with the viscoelastic modulus F(w)
of order » 1 GPa. In the transition region it exhibits
strong internal damping and this is the region important
for energy loss processes, e.g., involved in rubber friction.
In this context the loss tangent ImE(w)/ReE(w) is very
important and is shown in Fig. [4]

The viscoelastic modulus E(w) is a causal linear re-
sponse function. This imply that the real and the imag-
inary part of F(w) are not independent functions but
given one of them one can calculate the other one us-
ing a Kramers-Kronig equation[2I]. One can also derive
sum-rules, and the most important in the present context
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where Eg = E(0) is the static (w = 0) modulus, and F; =
E(o0) the modulus for infinite high frequency w = oo.
The function

Q) = I ®)

occurring in the integral in (1) is very important in vis-
coelastic crack propagation, and we will denote it as the
the crack loss-function. It is shown in Fig. for the
same rubber compound (acrylonitrile butadiene (NBR)
with filler particles) as in Fig. [3|and 4| Note that Q(w)
decays monotonically with increasing frequencies, and is
hence largest in the rubbery region in spite of the small



magnitude of the damping in this frequency region. This
has important implications for the finite-size effect in rub-
ber crack propagation (see below).

2.2 Opening crack in infinite solid

We consider first an opening crack in an infinite vis-
coelastic solid characterized by the viscoelastic modulus
E(w) which depends on the frequency w. Consider a
crack loaded in tension (mode I) (see Fig. [1). The en-
ergy dissipated per unit time and unit length of the crack
line, P, is given by

P=fd21,‘ éijO'ij (4)

where ¢;; is the strain rate tensor and o;; the stress ten-
sor (summation over repeated indices is implicitly under-
stood). For an opening crack the stress field close to the
crack tip has the universal form (also for a viscoelastic
solid)

K

t) g —m—————
oD~ kv

(5)
where K is the stress intensity factor, and where v is
the velocity of the crack tip. Using (4) and (5) and the
relation (1) between stress and strain one can calculate[§]

P:UKQ%/(;% dwF (w)Q(w) (6)

where we have introduced a high-frequency cut-off w, =
2mv/a, where a is the radius of the crack tip. The func-
tion

971/2
r=[1-(2)] ™
We
Now, let us consider the energy conservation condition
relevant to the crack propagation. In the present case,
the elastic energy stored in the solid in front of the crack
tip is dissipated at the crack tip. The flow of elastic
energy into the crack is given by vG (where G is the crack
propagation energy per unit surface area), which must
equal the fracture energy term vG (the energy dissipated
in the crack tip process zone) plus the bulk viscoelastic
dissipation term P given by (6). Energy conservation
gives

vG =vGy + P (8)
Using (6) and (8) gives
G =G+ KQ% fow dwF(w)Q(w)
Using the standard relation G' = K2/E, from the theory

of cracks[22] we obtain

Go

= 1- Ep2 [ dwF(w)Q(w)

(9)

Equation (9) depends on the cutoff length a, and (9) is
of limited practical importance unless we have a way of
determining this length. FExperiments have shown that
the crack-tip radius in polymers increases with increasing
speed of the crack tip[I0]. We choose a equal to the
radius of the crack tip, which we determine as follows.
The stress at the crack tip must be equal to the stress
necessary to break the atomic bonds at the tip in order
for the tip to propagate. If o. denotes this stress, which
is a characteristic property of the material in question,
we obtain, from (5)

K

O = Gra) 2 (10)

where a depends on the crack tip velocity. Combining
this with G = K?/Ey gives

2 2
G = Lbi‘j (11)

Combining (9) and (11) gives

W _q_pg2 [ dur@)Q) (12)
a m Jo

where w. = 2mv/a and where ag = E¢Go/(270?). Since
w. depends on a this is an implicit equation for a = a(v).
Thus the theory gives both the (velocity-dependent) ra-
dius of the crack tip, a(v), and the crack propagation
energy G(v) = Goa(v)/ao.

For large crack tip velocities G(v) » GoE1/Eq or a(v) »
agF1/Ey. The ratio between the high frequency and low
frequency modulus, F/Ep, is typically very large, e.g.,
~ 1000 for the rubber in Fig. [3| Hence for large crack tip
velocity the denominator in (9) will almost vanish. Thus
any small error in the evaluation of the integral will result
big numerical error for G(v) and a(v). For numerical
accuracy reason it is therefore useful to rewrite (12) using
the relation (2). If we eliminate Ey in (12) using (2) we
get

2 Wa 1 1
a Ei= [y dw;F(w)Im—E(w) . (13)
a 1+ E % I dw%lmﬁ

Since F(w) typically varies with w over very many
decades in frequency, for the numerical evaluation of the
integrals in (13) it is convenient to write (see Ref. [0])
w = wpet, so that if w varies over ~ 30 decades, ¢ varies
only by a factor ~ 100.

2.3 Numerical results

We now present some numerical results for the depen-
dency of the crack propagation energy G(v) on the crack
tip velocity. We first consider the highly idealized three
element viscoelastic model shown in Fig. [6] The low fre-
quency modulus E(0) = Ey and the high frequency mod-
ulus E(o0) = Fy and the viscosity 7 are indicated in the
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FIG. 6: Three element viscoelastic model used in model
calculation of the crack propagation energy G(v). The low
frequency modulus E(0) = Ey = E(E1/(E}+ E1) and the high
frequency modulus E(oo) = E1 and the viscosity n are indi-
cated.

E./E, = 100

3 2 -1 0 1 2 3 4 5 6
log;, (Vt/a,)

FIG. 7: The crack propagation energy G (in units of adi-

abatic value Go) as a function of the crack tip speed v (in

units of ao/7) (log-log scale) for the three element viscoelas-
tic model shown in Fig.
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FIG. 8: The crack propagation energy G (in units of adia-
batic value Go) as a function of the crack tip speed v (log-log
scale) for filled and unfilled NBR rubber at 7' = 20°C. In the
calculations we have used the measured low-strain viscoelastic
modulus (shown in Fig. |3| for the filled NBR compound).

figure. Real rubber materials have a very wide range of
relaxation times while the present model is characterized
by a single relaxation time 7. However, this model has
been used in most model studies so far, and is therefore
a good test case.

Fig. [7| shows the crack propagation energy G (in units
of adiabatic value Gg) as a function of the crack tip speed
v (in units of ag/7) (log-log scale) for the three element
viscoelastic model shown in Fig. [f] In the calculation
we have assumed E;/FEy = 100 and that is the reason for
why G/Gy increases from 1 to 100 with increasing crack
tip speed.

The results presented in Fig. [7] are virtually identical
to the numerical results obtained by Greenwood using
the Barenblatt process zone model[I1]. This shows that
the detailed nature of the process zone is not very im-
portant as the present study use a completely different
description of the process zone (just a cut-off radius a(v))
then in the Barenblatt model where a linearly extended
process zone is used. The advantage of the present ap-
proach is that it can trivially be applied to real materials
using the measured viscoelastic modulus E(w).

To illustrate this, in Fig. [§] we show the crack prop-
agation energy G (in units of adiabatic value Gp), as a
function of the crack tip speed v (log-log scale) for filled
and unfilled NBR rubber at 7" = 20°C. In the calcula-
tions we have used the measured low-strain viscoelastic
modulus (shown in Fig. [3|for the filled NBR compound).
For the unfilled compound F1/Ey > 1000 and this explain
the large increase in G(v) with increasing crack speed.

2.4 Opening crack in finite solid

Most theories of cracks in viscoelastic solids assumes an
infinite large system[4], 5] 8, [9] [12] 13 23]. A few studies
exist for the slab geometry[24] [25], where the solid is
infinite in the z-direction but finite in the perpendicular
z-direction, say with thickness hg (see Fig. [1). If the
surfaces z = 0 and z = hg are clamped the stress field
from the crack tip in a slab is screened by the solid walls,
in which case the slab geometry is similar to a finite solid
with linear size L » hg, and the results presented below
are approximately valid also for the slab geometry.

The viscoelastic energy dissipation is determined by an
integral over the relevant frequencies of the crack dissi-
pation function Q(w). We show Q(w) for a typical case
in Fig. The biggest contribution to the integral over
frequencies of Q(w) will be from the lowest frequency re-
gion in spite of the fact that in this region the loss tangent
tand is very small. Hence, any effect which influence the
low-frequency part of the viscoelastic modulus can have
a big impact on the crack propagation energy. One such
influence is finite-size effects.

The theory described in Sec. 2.2 (see also Ref.
8, @, M2, M3]) is for an opening crack in an infinite
viscoelastic media. The theory predicts that as the
crack tip velocity v — oo, the crack propagation energy



G — (E1/Ey)Gy, where Gy is the crack propagation en-
ergy as v - 0, where no viscoelastic energy dissipation
takes place. The high and low frequency modulus, F;
and FEj, respectively, are both real, and can be obtained
from the complex viscoelastic modulus E(w) as the fre-
quency w — oo and w — 0, respectively.

For an infinite solid there will always be a region far
enough from the crack tip where the solid can be con-
sidered as purely elastic and characterized by the static
(or low frequency) modulus Ey = E(w = 0). This fol-
lows from the observation that if the crack tip propagate
with the velocity v the time-dependent deformations of
the rubber a distance r from the crack tip are character-
ized by the frequency w = v/r. Thus, as r - oo we get
w — 0. However, all solids have a finite extent, say with
linear dimension L. In this case r < L and hence w > v/L.
It follows that for high crack-tip speed, the frequency w
will be very large everywhere, and the rubber will be in
the glassy, purely elastic, state everywhere in the solid.
Hence in this limiting case there is no viscoelastic energy
dissipation i.e. G(v) » Gy for large enough v. This is not
the case for infinite solids where G(v) = (E1/Ey)Gy for
large enough v.

Here we will study how the finite-size of real solid ob-
jects influence the crack propagation energy. For exam-
ple, consider the pull-off of a rubber ball from a flat sur-
face. This can be considered as a circular opening crack
propagating towards the center of the circular contact re-
gion. Let L be the linear size of the contact area. The
region where the viscoelastic crack propagation theory is
valid is limited to distances from the crack tip a <r < L,
where a is the crack tip radius. Some time-dependent
deformations of the rubber will occur also for » > L in
this case, but only for r < L the stress field (as a function
of ) has the inverse square-root singular nature charac-
teristic of crack-like defects. When the crack tip moves
with the velocity v the viscoelastic spectra will be probed
in the frequency range 2mv/L < w < 2wv/a. We denote
wr, =2mv/L and w, = 27v/a.

We can (approximately) use the theory for viscoelastic
crack propagation in an infinite medium also for a finite
system of linear size L by using the following procedure:
We replace the measured viscoelastic modulus FE(w) with
another modulus E(w) where InE~!(w) = ImE~!(w) for
w > wr, and ImE~"(w) = 0 for w < wy. This imply that
viscoelastic energy dissipation will only occur for dis-
tances from the crack tip » < L. Given ImE~"(w) we
obtain ReE~!(w) using a Kramers-Kronig relation[21],
which holds for all causal linear response functions. We
can choose the high-frequency modulus (which is real)
E, = E; but the static (or low frequency modulus)
Ey > Eq, which is expected to be of order Ey ~ ReE(wr).

To obtain G(v) for a finite size solid we replace E(w)
in (13) with E(w) defined so that ImnE~(w) = ImE~!(w)
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FIG. 9: The viscoelastic enhancement factor Gopen/Go as a
function of the crack-tip speed for filled NBR at T = 20°C.
Results are shown for the system sizes L =1 pym, 10 cm, and
for infinite system.

for w > wy, and ImE~ (w) = 0 for w <wy,. We get

ao E, % f:’L‘L dw%F(w)Im—E(lw)
- K . 14
Py ey e

Note that as v > 0 and v - o, a > ag and G — Gy.

Fig. [0 shows the viscoelastic enhancement factor
Gopen/Go as a function of the crack-tip speed for filled
NBR at T' = 20°C. Results are shown for the system sizes
L =1 pm, 10 cm, and for infinite system. The system size
L =10 cm is typical for the sample size used in studies
of the crack propagation in macroscopic rubber samples,
and is clearly not equivalent to the infinite sample size.
The reason for the strong finite size effects is that the
function Q(w) decreases monotonically with increasing
frequencies, making the integrals in (14) very sensitive
to the lower cut-off frequency wy, determined by the size
of the system. Note that for the finite sized sample there
is a maximum in the G(v)-curve, corresponding to an
instability in the crack-tip motion.

2.5 Role of temperature

The crack propagation energy G(v,T) = Go(1 +
f(v,T)) depends strongly on the temperature. The vis-
coelastic factor 1+ f(v,T) depends on temperature via
the temperature-frequency shift factor ar since f(v,T) =
f(var,Ty) where Ty is a reference temperature with
ar, = 1. Thus, increasing the temperature shift the
factor 1+ f(v,T) to higher sliding speeds. The factor
Go = Go(v,T) depends also on the crack tip speed and
the temperature because breaking the bonds in the crack
tip process zone is a thermally activated, stress aided
process|26, 27]. This temperature effect is particular im-
portant for low-energy bonds, e.g., for weak adhesive
bonds[26H29].

In a recent study[30] using fluorogenic mechanochem-
istry with quantitative confocal microscopy mapping, it



was found how many and where covalent bonds are bro-
ken as an elastomer fractures. The measurements reveal
that bond scission near the crack plane can be delocalized
over up to hundreds of micrometers and increase Gy by
a factor of ~» 100 depending on temperature and stretch
rate, pointing to an intricated coupling between strain
rate dependent viscous dissipation and strain dependent
irreversible network scission. These findings shows that
energy dissipated by covalent bond scission accounts for
a much larger fraction of the total fracture energy than
previously believed.

At low crack tip speed the temperature will everywhere
be close to surrounding (background) temperature, but
for a fast moving crack tip the energy dissipated close to
the crack tip will not have time to diffuse away resulting
in a higher temperature close to the crack tip. Including
this temperature increase in the theory is a complex topic
addressed in Ref. [12, 13} B1].

We note that it is possible to reformulate (14) as an
integral over temperature rather than frequency which is
useful if the viscoelastic modulus has been measured only
as a function of temperature for one frequency. Assume
that the viscoelastic modulus has been measured as a
function of temperature for the frequency w = wi, i.e.
E(w1,T) is known. Let T denote the temperature of
interest so that (14) takes the form:

12 [ dwl F(w)Im g

ag E(aT w)
- 2 (15)
a 1+E 2 wa dw%ImE(alle)

where FE(am,w) = E(w,T1) = E(ar,w,Ty). Next, let us
write w = wiar/ar,. We consider T as the new integra-
tion variable and get

1
dw— =dT (Inar)’
w

where (Inar)’ = d(lnar)/dT. Denoting the solution to
we =wiar/ar, as T, and to wy, = wiar/ar, as Ty, we can
write (15) as

dT ( Inar)’ F(T)Im+}=
2 - N @ (16)
a 1+E 2 [, Tear (-lnar)’ ImE(T)

where E(T) = E(an,w,Ty) = E(an[wiar/ar,],Ty) =
E(arwi,Ty) = E(w1,T) and where

971/2
F(T) = l1- (%STT) ] (17)

2.6 Closing crack

When an opening crack propagates in the bulk of a
viscoelastic solid the breaking of the bonds in the crack
tip process zone is usually an irreversible process: the
broken (dangling) bonds formed during the crack open-
ing react quickly with molecules from the atmosphere, or

(a) opening crack
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FIG. 10: Fast moving opening crack (a) and closing crack (b)
in thin viscoelastic slab under tension. In (a) negligible vis-
coelastic energy dissipation occur and the crack propagation
energy is given by the energy to break the interfacial bonds,
G ~ Go. In (b) viscoelastic energy dissipation occur and the
effective crack propagation energy G ~ (Eo/E1)Gy is reduced
by a factor Eg/E1 (see text for details).

with mobile molecules in the solid. Hence if the external
crack driving force is removed no closing crack propaga-
tion involving the reformation of the original bonds will
occur. However, for interfacial crack propagation the sit-
uation may be very different. Thus, in many cases rubber
bind to a countersurface mainly with the weak and long-
ranged van der Waals bonds. In this case the bonds bro-
ken during crack opening and the bonds formed during
crack closing may be very similar.

For an opening crack in a viscoelastic solid energy con-
servation require that vG = vGg + P i.e. G > GGy. For a
closing crack the energy conservation condition gives

vG =vGy - P

so that G < Gy. Physically, the energy gained by the
binding of the solids at the crack interface is in part lost
as viscoelastic energy dissipation inside the solid. For
an opening crack, as the crack speed v - oo we have
G/Gy — E1/Ey but for a closing crack G/Gy — Ey/E}.
The latter result is most easily understood by considering
the simple crack problem shown in Fig.

Fig. shows a fast moving opening crack (a) and
closing crack (b) in a thin viscoelastic slab under ten-
sion. In case (a) the slab is elongated by Lge, and we
wait until a fully relaxed state is formed before insert-
ing the crack. Thus the elastic energy stored in the strip
C of width Az is oceLgAx/2 = Ege’?LoAx/2. For a fast
moving crack, in the present finite-size set up (Lo is fi-
nite), there will be negligible viscoelastic energy dissi-
pation in the solid and G ~ Gy is determined by the
energy conservation condition GoAz = Ege?LoAx/2 or
Go = Eoe?Lo/2 = 02Lo/(2Ep). The fact that G ~ G in



this case is a finite-size effect (for an infinite system we
would instead get G = (E1/Ey)Go).

For the closing crack (case (b)) the situation is dif-
ferent: For a fast moving crack the strip A is quickly
elongated when it approach the crack tip, which require
a large stress o = F1e determined by the high frequency
modulus F;. Since the crack moves very fast the stress
in the strip will remain at this large value even when
the crack tip has moves far away from the strip as in
position B. However, due to viscoelastic relaxation the
stress will finally arrive at the relaxed value o = FEje
as at position C. The time this takes depends on the
nature of the viscoelastic relaxation process, e.g., for a
process characterized by a single relaxation time 7, a
time ¢ > 7 (and distance s > v7) would be needed to
reach the relaxed state. During this relaxation mechani-
cal energy is converted into heat. Since the crack tip is
far away from the region where this relaxation process
takes place, it does not know about it, and the interfa-
cial binding energy is converted into elastic energy in the
rapid stretching of the strip in the process going from
strip position A to B. Thus GoAx = E1e?LoAx/2. How-
ever, the crack propagation energy G refer to the relaxed
state configuration so that GAx = Eye?LoAx/2. Thus
G-= E062L0/2 = (EQ/El)E1€2L0/2 = (Eo/El)GO

Using the Barenblatt description of the crack tip pro-
cess zone, Greenwood has shown that for an infinite sized
system GopenGlelose ® G%. Thus if we write the opening
crack tip propagation energy as

Gopen = [1 + f(UaT)]GO (18)
then
Gclose ~ 1+ f(’U,T) (19)

Thus we can use the theory presented in Sec. 2 to pre-
dict the crack propagation energy also for closing cracks.
However, the theory for closing cracks in viscoelastic
solids is still not fully understood, e.g., for a fast moving
crack a region of compressible stress occur close to the
crack tip for which no physical explenation exist[16] [17].

The results presented here are crucial for adhesion in-
volving viscoelastic solids, e.g., rubber materials. Thus
in a typical case no adhesion can be detected when two
solids are squeezed in contact (closing crack propaga-
tion), but strong adhesion is observed during separation
(opening crack propagation). One well known case is the
contact involving adhesive tape: when the tape is pushed
in contact no adhesion can be detected but during sep-
aration a strong adhesion force prevail. In general these
are several reasons for contact hysteresis (e.g. related to
roughness or chain interdiffusion) but in many cases the
most important effect is viscoelasticity.

As an example illustrating contact hysteresis effects,
in Fig. we show the interaction force between a glass
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FIG. 11: The interaction force between a glass ball (diameter
2R = 2.5 cm) moved in contact with a pressure sensitive ad-
hesive film (double sided adhesive tape attached to a smooth
glass surface) and then removed. The approach and retrac-
tion speed is 36 pum/s. Note the strong adhesion hysteresis:
no adhesion is observed during approach but a strong adhe-
sion (corresponding to the work of adhesion G ~ 2 J/m?) is
observed during pull-off.
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FIG. 12: A rubber block in contact with a road asperity.
We assume the contact region is circular with the diameter
L = 2rg. During sliding (speed v) a closing crack is observed
on the entrance side and an opening crack on the exit side.
During sliding the distance Ax the dissipated energy in an
asperity contact region (Gopen — Galose) LAz The dissipated
energy can also be written as 7emré Az, where 7¢ is an effective
frictional shear stress, giving 7¢ » (4/7)(Gopen — Gelose )/ L.

ball (diameter 2R = 2.5 cm) moved in contact with a pres-
sure sensitive adhesive film (double sided adhesive tape
attached to a smooth glass surface) and then removed.
The approach and retraction speed is 36 pm/s. Note the
strong adhesion hysteresis: no adhesion is observed dur-
ing approach but a strong adhesion (corresponding to the
work of adhesion G ~ 2 J/m?) is observed during pull-off.

2.7 Implications for sliding friction

When a rubber block slides on hard and rough sub-
strate surface, such as an asphalt or concrete road sur-
face, the rubber-road contact will in general not be com-
plete, but it will consist of many small asperity contact
regions. The contact area is usually a very small fraction
of the nominal contact area, e.g., for a tire it may be only
~1 cm?. A very important contribution to the friction
force is derived from the interaction between the rubber
molecules and the road surface in the area of real contact.



For clean surfaces two different (adhesive) contributions
to the frictional force have been considered, namely from
the opening crack on the exit-side of the asperity contact
region (see Fig. [12) [32,[33], and from bonding-stretching-
debonding process within the area of real contact[34] [35].
If the typical diameter of a contact region is L one can
show that the contribution from the opening cracks gives
a contribution to the frictional shear stress given by (see
Fig. TR (Gopen - Gclose)/L-

For a rubber tread block sliding on an asphalt
road surface, contact mechanics calculations (including
adhesion)[36, [37] show that the lateral size of a typical
asperity contact region is of order L ~ 1 ym. For this case
it was shown in Ref. [38] that the maximum of the fric-
tional shear stress is about 10—-20 times smaller than the
adhesive contribution to the friction needed to explain
measured friction data. We conclude that the contribu-
tion to the friction from the opening crack propagation
cannot explain the observed magnitude (or velocity de-
pendency) of the shear stress acting in the area of real
contact. This suggest another origin for the main contri-
bution to the friction from the area of real contact. In
Ref. [39, [40] it was proposed that molecular bonding-
stretching-debonding process[34] B5] in the area of real
contact can explain the observed magnitude (and veloc-
ity dependency) of the contribution to the friction from
the area of real contact.

If the asperity contact regions would be much smaller
than ~ 1 um, the crack opening contribution to the fric-
tion could be much more important and may dominate
the adhesive contribution. Furthermore, the adhesive
contribution to rolling friction on a smooth rubber sur-
face, and the friction associated with Schallamach waves,
are both determined by the crack opening (and closing)
contribution[I].

2.8 Role of surface roughness

Surface roughness has a big influence on interfacial
crack propagation. For very soft rubber compounds, like
pressure sensitive adhesives, the pull-off force is propor-
tional to the relative area of real contact A/A,. We il-
lustrate this in Fig. [[3] which shows the squeeze-together
force and the pull-off force between a pressure sensitive
adhesive film, attached to a smooth glass plate, and a
glass ball. Note that the pull-off force is proportional to
the applied normal force (see Fig. which we attribute
to the fact that the area of real contact is proportional
to the normal force. Thus due to surface roughness the
adhesive film (see Fig. makes only partial contact
with the glass ball in the nominal contact area, and the
effective crack propagation energy for opening crack

G (A/Ao)Gopcn(v)7

where A/ Ay is the relative contact area at the rim of the
nominal contact area at the point of snap-off (where the
opening crack speed is v). The crack propagation en-
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FIG. 13: The pull-off force (red) and the maximum applied
squeezing force (green) as a function of time during repeated
contacts (75 contacts) between a glass ball (diameter 2.5 cm)
and an adhesive tape attached to a smooth flat glass plate.
Based on force-time curves such as shown in Fig. [TI] Note
that the pull-off force is proportional to the applied squeezing

force (see Fig. [14)).
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FIG. 14: The pull-off force between a glass ball and an ad-
hesive tape as a function of the maximum applied squeezing
force. Based on the data shown in Fig.

ergy (also denoted the work of adhesion) Gopen(v) is the
interfacial crack propagation energy for smooth surfaces.

For a thick rubber film the pull-off force is given by
the Johnson-Kendall-Roberts theory

3
Fpull—off = 7RG

If the elastic modulus of the rubber compound is high
enough the effective crack propagation energy G must be
corrected for the elastic energy stored when the rubber
when the rubber surface is bent to make contact with the
substrate

G~ [(A/AO)GO - Uel](l + f(’l),T)),



FIG. 15: Optical picture of the double sided adhesive film
(tesa 5338) (attached to a smooth glass plate) used in the
adhesion experiments. Note the surface roughness. Single
sided adhesive films gives very smooth surface if pulled rapidly
(but a rough surface if pulled very slowly), while the present
film gives a rough surface independent of the pull-off speed.

where Uy is the elastic energy per unit surface area due
to the surface roughness. Thus if the roughness is big
enough, (A/A¢)Go » Uq, the pull-off force will vanish.

3 Applications

3.1 Pulling adhesive tape

A pressure sensitive adhesive typically consist of a soft
(weakly crosslinked) rubber film (with tacky additives)
on a stiffer polymer film, e.g. of polyester type. In re-
cent studies of peeling of adhesive tapes[42H45] the crack
propagation energy G(v) was measured as a function of
the peeling velocity v. Thus, for example, peeling of the
3M Scotch 600 tape, which consist of a polymer film cov-
ered by a thin d ~ 20 um (acrylic) adhesive film, resulted
in a G(v) function very similar in form to what is shown
in Fig. E[, with a maximum around v, ~ 0.1 m/s. For
peeling velocities v < vy, the crack-tip process zone is very
complex involving cavitation and stringing, and Go(v) is
likely to depend on the crack tip speed. Thus for v < vy,
the velocity dependency of G(v) will depend not only
on the bulk viscoelastic energy dissipation, but also on
Go(v), which was considered as a constant above.

The complex processes occurring close to the crack tip
for low peeling velocities result in a very rough rubber
surface which appear white due to light scattering from
the surface inhomogeneities[46]. However, high peeling
speeds result in a much smoother (and transparent) rub-
ber film. This indicate a much simpler crack-tip process
zone for v > vy,. Thus, the theory developed above may
be directly applied to v > vy,. In this velocity region the
decrease in G(v) may result from the finite thickness of
the adhesive film as predicted by the theory above. This
is expected for a thin film, but not for an infinite system
where G(v) increases monotonically with the crack tip
speed (see Fig. E and . This origin of a maximum in

pressure sensitive
adhesive A
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FIG. 16: The viscoelastic modulus as a function of the log-
arithm of the frequency for the pressure sensitive adhesive A
used in Ref. [48]. (a) shows the real and imaginary part of E
(log-scale) and (b) ImE/ReFE = tand.

the G(v) curve was already suggested by de Gennes[47].

Let us present some numerical results for a pressure
sensitive (acrylic) rubber compound used in an earlier
study (see Ref. [48]). Fig. shows the viscoelastic
modulus as a function of frequency (log-log scale) for
a pressure sensitive adhesive denoted A in Ref. [48].
(a) shows the real and imaginary part of E and (b)
ImE/ReE = tand. Fig. shows the logarithm of the
(horizontal) frequency-temperature shift factor ar as a
function of the temperature for the same compound.

Using the viscoelastic modulus in Fig. [I[6]and assuming
a L =20 pm thick rubber film, in Fig. [I§ we show the
calculated viscoelastic enhancement factor Gopen/Go as a
function of the crack-tip speed for the pressure sensitive
adhesive A, for the temperatures T' = 20°C (red lines),
30°C (green lines) and 40°C (blue lines). The slope of
the curve and the velocity where G(v) is maximal is close
to what is observed in Ref. [42] 43].

The maximum of the G(v) curve in the experiments
presented in Ref. [42, 43] is about 100 J/m?. We have
found that at the maximum G/Gy ~ 30. So this imply
Go ~ 3 J/m2. This is much bigger than the adiabatic work
of adhesion A~y =1 + v — 12, which probably is around
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FIG. 1T: The logarithm of the (horizontal) frequency-

temperature shift factor ar as a function of the temperature
for the pressure sensitive adhesive A.
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FIG. 18: The viscoelastic enhancement factor Gopen/Go as
a function of the crack-tip speed for the pressure sensitive
adhesive A, for the temperatures T' = 20°C (red lines), 30°C
(green lines) and 40°C (blue lines). The results are shown for
the system sizes (film thickness) L = 20 pm.

0.05 J/m? (because of the inert backing of the tape). So
G| is increased by a factor of ~ 60 or so compared to the
adiabatic case. We attribute this to the cavitation and
stringing in the crack tip process zone.

3.2 Ball-flat adhesion: role of finite size effects

Here we compare the theory prediction with a ball-flat
pull-off (adhesion) experiment[49-60]. Adhesion experi-
ments are typically performed by moving a spherical ball
(radius R) in and out of contact with a substrate. This
type of experiments can be analyzed using the Johnson-
Kendall-Roberts (JKR) theory, which predict the pull-
off force Fyoun-onr = (37/2)GR, where G is the work of
adhesion. The work of adhesion is the energy per unit
surface area to propagate an interfacial (opening or clos-
ing) crack. Hence, for viscoelastic solids such as rubber,
there will be a viscoelastic contribution to G given by the
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FIG. 19: The viscoelastic enhancement factor Gopen/Go

as a function of the temperature for the crack-tip speed
v = 10 pm/s. The system size L = 100 um as is the typical
diameter of the contact between a ball and a flat surface in
JKR[55] adhesion experiments. Results are shown for unfilled
and filled (20.4 Vol.% carbon black) HNBR (red solid and
dashed lines, respectively) and for a tread compound (blue
curve). The glass transition temperature of the HNBR and
tread compound are —16°C and —32°C, respectively.
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FIG. 20: The pull-off force as a function of temperature for
a glass ball with radius R = 1.5 mm first squeezed in contact
with a flat surface of a (photopolymerizable) acrylic polymer
(Tg = 53°C), and then pulled-off with the speed v, » 10 um/s.
From Ref. [56].

theory above: G/Gq =1+ f(v,T), where G the the work
of adhesion in the adiabatic limit (crack speed v — 0).
Here we are interested in a hard ball in contact with
a flat rubber surface. In a typical adhesion experiment
the ball radius R is of order a few mm, and the diam-
eter of the area of contact when the pull-off instability
occur, of order ~ 0.1 mm. The linear si<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>