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Abstract
We study the nominal (ensemble averaged) contact pressure p(x) acting on a cylinder squeezed in contact with an elastic half 
space with random surface roughness. The contact pressure is Hertzian-like for 𝛼 < 0.01 and Gaussian-like for 𝛼 > 10 , where 
the dimensionless parameter � = h

rms
∕� is the ratio between the root-mean-square roughness amplitude and the penetration 

for the smooth surfaces case (Hertz contact).
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1  Introduction

The pressure or stress acting in point contacts, e.g., when 
an elastic ball is squeezed against a nominal flat surface, or 
in line contacts, e.g., when an elastic cylinder is squeezed 
against a flat surface, has many important applications, such 
as the contact of a railway wheel and the rail (point contact) 
or in O-ring seals (line contact). In many of these applica-
tions, the surface roughness has a big influence on the nomi-
nal contact pressure profile. In a recent study for metallic 
(steel) seals, we found that the maximum of the nominal 
contact pressure was reduced by a factor of ≈ 3 when the 
surface roughness was taken into account in the analysis [1]. 
This has a huge influence on the fluid leakrate and led us to 
perform a more general study, which we report here, of the 
influence of the surface roughness on the pressure profile 
for line contacts.

In a classical study, Greenwood an Tripp [2] (see also 
Ref. [3]) studied the influence of surface roughness on 
the elastic contact of rough spheres. They used the Green-
wood–Williamson [4] (GW) contact mechanics theory where 
the elastic coupling between the asperity contact regions 
is neglected. However, later studies have shown that this 
coupling is very important even for small nominal contact 

pressures, where the distance between the macroasperity 
contact regions may be large [5]. The reason is that there are 
smaller asperities (microasperities) on top of the big asperi-
ties, and since the contact pressure in the macroasperity con-
tact region in general is very high, the microasperity contact 
regions are closely spaced and the elastic coupling between 
them cannot be neglected. In the present study, we will use 
the Persson contact mechanics theory which includes the 
elastic coupling between all asperity contact regions in an 
approximate but accurate way [6, 7].

We note that the GW model is approximately valid if 
roughness occurs on just one length scale [8]. Now, when the 
applied squeezing force is small, the average surface separa-
tion, which determines the influence of the surface rough-
ness on the nominal contact pressure, depends mainly on the 
most long wavelength roughness component. Thus, for small 
applied force, the GW theory gives an approximately correct 
nominal pressure distribution if the asperities in the GW 
model are chosen as the long wavelength roughness part of 
the roughness spectrum. However, this approximation breaks 
down at high enough applied force and cannot describe the 
area of real contact for any applied force as it depends on the 
whole roughness spectrum.

Many studies of the contact between rough spheres have 
been presented [2, 3, 9–13]. Most of them assume only elas-
tic deformations, but a few studies include plastic deforma-
tions and adhesion. Most recent studies are based on numeri-
cal methods such as the finite element method, the boundary 
element method, or molecular dynamics. However, numeri-
cal methods cannot be easily applied to real surfaces of mac-
roscopic solids, which typically have roughness extending 
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over very many decades in length scales. Here, we will use 
the Persson contact mechanics theory [6, 15–17] to study 
the influence of surface roughness on the nominal contact 
pressure for the contact between a cylinder and a flat (line 
contact, see Fig. 1). For this case, we are only aware of one 
study of the type presented here, but using the GW theory 
[18].

2 � Theory

Consider an elastic cylinder squeezed against an elastic half 
space with the cylinder axis parallel to the surface of the half 
space (flat). The surfaces of the cylinder and the flat have 
random roughness with the power spectra C1(q) and C2(q) , 
respectively. For stationary elastic contact, we can map the 

original problem on another simpler problem, where the cylin-
der is rigid and the half space elastic with the effective Young’s 
modulus

Here, E1 and �1 are the Young’s modulus and Poisson ratio 
of the cylinder, and E2 and �2 of the half space. The cylinder 
surface is perfectly smooth, while the flat has the (combined) 
surface roughness h = h1 + h2 . We assume that the surface 
roughness on the two surfaces are uncorrelated so that the 
combined surface roughness power spectrum (on the flat)

Here, we have used that ⟨h1(�)h2(��)⟩ = 0 (uncorrelated 
roughness), where ⟨…⟩ stands for ensemble averaging.

From the theory of elasticity [19],

where p(x) and u(x) are the contact pressure and the inter-
facial separation, averaged over different realizations of 
the surface roughness. In (3), u1 must be chosen so that the 
applied normal force per unit length fN satisfies

Finally, the Persson contact mechanics theory gives a rela-
tion p(u) between the nominal contact pressure and the inter-
facial separation u, averaged over different realizations of 
the surface roughness [20]. For the case of not too high or 
too low contact pressures, where the system either approach 
complete contact or the contact is so small that only a few 
asperities makes contact (finite-size region) [14], we have 
[15]

where u0 = �hrms (with � ≈ 0.4 ) and � are numbers deter-
mined by the surface roughness power spectrum.

If we measure the surface displacement u in units of the 
sphere or cylinder radius R, and the pressure p in units of the 
effective modulus E∗ , we get from (3)–(5):

Note that the problem depends on the two dimen-
sionless parameters u0∕R and fN∕(RE∗) . We find it 
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Fig. 1   Two limiting cases when a rigid cylinder (black) with radius R 
is squeezed against a nominal flat half space (green). a If the surface 
roughness amplitude is very small, or the applied force is very high, 
the nominal contact area will be determined by bulk deformations 
and given by the Hertz contact theory. b In the opposite limit, mainly 
the surface asperities deform (but with a long-range elastic coupling 
occurring between them). In this limit, the pressure profile is Gauss-
ian-like (Color figure online)
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more useful to use instead of fN∕(RE∗) the parameter 
[u0∕R][RE

∗∕fN] = �hrmsE
∗∕fN . Defining � = [4∕�][fN∕E

∗] 
the second parameter is essentially � = hrms∕� , where � is 
the penetration for smooth surfaces (see (9) below). The 
parameter � was already introduced by Greenwood et al. [2, 
3] in their study of the influence of roughness on the contact 
between elastic spheres.

We have solved the equations given above numerically, 
but two limiting cases can be easily studied analytically, 
namely, the case of smooth surfaces where the classical 
Hertz theory is valid, and in the case where the roughness is 
very big or the applied force is fN small. In the second case, 
we can neglect the bulk deformations and just include the 
deformations of the asperities; we refer to this limit as the 
Gaussian limit.

2.1 � Hertzian Limit

For smooth surfaces ( hrms = 0 ), the contact is Hertz-like 
with the pressure distribution [19]

where

For the Hertz contact pressure (6), the ratio between the 
full-width-at-half-maximum (FWHM) w and the standard 
deviation s of p(x) is easy to calculate: w∕s = 2

√
3 ≈ 3.464.

2.2 � Gaussian Limit

When a cylinder with a smooth surface is squeezed against 
a flat smooth substrate, an infinite long rectangular contact 
region of width 2a is formed, with the contact pressure given 
by the Hertz theory (6). However, if the substrate has surface 
roughness, the nominal contact region will be larger than 
that predicted by the Hertz theory, and the pressure distribu-
tion will change from parabolic-like for the case of smooth 
surfaces to Gaussian-like if the surface roughness is large 
enough. This can be easily shown using the Persson contact 
mechanics theory.

(6)p = p0

(
1 −

(
x

a

)2
)1∕2

,

(7)p0 =

(
E∗fN

�R

)1∕2

(8)a =(R�)1∕2

(9)fN =
�

4
E∗

�.

Due to the surface roughness, if the contact pressure p 
is not too high, the interfacial separation u is related to the 
contact pressure via (see 5) [20]

Neglecting bulk deformations, for a cylinder with radius R 
squeezed against the flat, we expect (see (3) with E∗

→ ∞):

so that

where s2 = Ru0 = �Rhrms . Using (12), we get

or

We note that (12) holds only as long as the pressure p is so 
small that the asymptotic relation (10) is valid, but not too 
small as then finite-size effects become important. In addi-
tion, in deriving (12), we have neglected bulk deformations. 
This is a valid approximation only if s ≫ a  , hrms ≫ 𝛿 , or 
𝛼 = hrms∕𝛿 ≫ 1 . In this limit, the maximal contact pressure 
is much smaller than the result for smooth surfaces given by 
the Hertz formula (7). Thus, the ratio between (12) and (7) is

Since � ≈ 0.4 this ratio is about 0.9�−1∕2.
For a Gaussian function, the ratio between the FWHM 

w and the standard deviation s is easy to calculate: 
w∕s = 2(2ln2)1∕2 ≈ 2.355

The study above can also be applied to the contact between 
a sphere and a flat. In that case

giving

If FN is the applied squeezing force
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Note that the asperities act like a compliant layer on the 
surface of the body, so that contact is extended over a larger 
area than it would be if the surfaces were smooth and, in 
consequence, the contact pressure for a given load will be 
reduced. In reality, the contact area has a ragged edge which 
makes its measurement subject to uncertainty. However, the 
rather arbitrary definition of the contact width is not a prob-
lem when calculating physical quantities like the leakage 
of seals, which can be written as an integral involving the 
nominal pressure (see Ref. [1, 21]).

Note also the fact that the nominal contact pressure p(x) 
for 𝛼 ≫ 1 is a Gaussian function of x has nothing to do with 
the fact that randomly rough surfaces has a Gaussian distri-
bution of asperity heights. Rather, it results from the fact that 
there is an exponential relation between the contact pres-
sure and average interfacial separation (see (5)), and the fact 
that when bulk deformations can be neglected (which is the 
case for 𝛼 ≫ 1 ), the average interfacial separation depends 
quadratically on the lateral coordinate x as long as x∕R ≪ 1 
(see (11)).

2.3 � Role of Plastic Deformation

The derivation of the nominal contact pressure profile pre-
sented above assumes elastic deformations. If the stress at 
the onset of plastic flow is higher than the maximum stress 
p0 , and the maximal shear stress, at the surface, and also 
below the surface in the cylinder-flat contact region, then 
no macroscopic plastic deformation will occur. In that case, 
for smooth surfaces, we expect no macroscopic plastic defor-
mations and can treat the contact as elastic when calculat-
ing the nominal contact pressure distribution. However, the 
stress in the asperity contact regions is much higher than 
the nominal contact pressure. Thus, assuming elastic con-
tact, the relative contact area [7, 8] A∕A0 ≈ (2∕h�)(p0∕E

∗) , 
where h′ is the rms slope. Since the average pressure p in 
the asperity contact regions must satisfy pA = p0A0 , we 
get p = (A0∕A)p0 ≈ h�E∗∕2 . Thus, at short enough length 
scale (where h′ is large enough), we expect plastic defor-
mations to occur in many cases. However, the indentation 
hardness of many solids increases as the size of the indenta-
tion decreases, and if this effect is large enough no plastic 
deformation may occur on any length scale [22].

Even when plastic deformation occur, (12) may still be 
approximately valid if the asperities deform elastically on 
the length scale which determines the contact stiffness for 
the (nominal) contact pressures relevant for the calcula-
tion of (12). The contact stiffness (or the p(u) relation) for 
small pressures is determined by the most long wavelength 
roughness components which may deform mainly elastically. 

p0 =
FN

2�s2
.

Nevertheless, in general, a detailed study is necessary in 
order to determine the exact influence of plastic flow at the 
asperity level on the nominal contact pressure profile.

3 � Numerical Results and Discussion

We will now present numerical results to illustrate the influ-
ence of surface roughness on the nominal contact pressure 
profile. In the calculation, we will use three surfaces, 1–3, 
with the roughness power spectra shown in Fig. 2. The sur-
face 1 has the root-mean-square (rms) roughness amplitude 
10 μm , and the Hurst exponent H = 0.8 . The other two sur-
faces have hrms = 10 μm , H = 1.0 (surface 2, green line), 
hrms = 1 μm , and H = 0.8 (surface 3, blue line). Note that 
we include one decade roll-off region, from q = 103 m−1 
to q = 104 m−1 . We assume the effective Young’s modulus 
E∗ = 1.33 GPa and the radius of the cylinder R = 1 cm . We 
vary the applied pressure fN from 103 N∕m to 1.5 × 106 N∕m . 
This gives a variation in � = hrms∕� with more than 3 
decades.

Figure 3 shows the contact pressure p(x) as a function 
of the coordinate x for a rigid cylinder squeezed against an 
elastic half space with the force fN = 10 kN∕m . The red 
line is for a perfectly smooth surface (Hertz contact), and 
the black line for the surface 1 with the surface roughness 
power spectrum is given in Fig. 2 (red line). The pink line 
is obtained using (12), i.e., neglecting the elastic deforma-
tions of the bulk. Note that the surface roughness reduces 
the maximal contact pressure and makes the pressure profile 
Gaussian-like, but it becomes a perfect Gaussian only for 
much larger values of the parameter � (corresponding to 
smaller applied force fN or larger rms roughness amplitude 
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Fig. 2   The surface roughness power spectra C(q) as a function of 
the wavenumber q (log–log scale) for three different surfaces, 1–3, 
with the root-mean-square (rms) roughness amplitude and the Hurst 
exponents ( hrms = 10 μm , H = 0.8 ) (surface 1, red curve) ( 10 μm , 
1.0) (surface 2, green curve), and ( 1 μm , 0.8) (surface 3, blue curve) 
(Color figure online)
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hrms ). Note also that including both the deformations of the 
asperities and the bulk (black curve) gives a wider pressure 
distribution than assuming that only the asperities deform 
elastically (pink curve).

Figure 4 shows the ratio w/s between the full-width-at-
half-maximum (FWHM) and the standard deviation s as 
a function of the logarithm of the dimensionless number 
� = hrms∕� = (�∕4)(hrmsE

∗∕fN) . In the calculation, we have 

used the three power spectra shown in Fig. 2 and varied 
the loading force fN (between 103 N∕m and 1.5 × 106 N∕m ). 
Note that as a function of � , the ratio w/s is nearly the same 
for all three surfaces and that the contact pressure is Hert-
zian-like for 𝛼 < 0.01 and Gaussian-like for 𝛼 > 10 . This 
study suggests that the nominal pressure distribution p(x) 
depends mainly on the parameter � , as already suggested by 
Greenwood et al. [3].

Figure 5 shows the ratio p0(rough)∕p0(smooth) between 
the maximum of the contact pressure for the rough and 
the smooth surfaces, as a function of the logarithm of the 
dimensionless number � . We show results for the surfaces 
2 and 3 (surface 1 gives nearly the same result as surface 
2). The dashed line is the large � asymtotic result (14), and 
for 𝛼 > 10 , it gives nearly identical result as obtained for 
surfaces 1–3.

In this study, we have neglected plastic deformation. 
Plastic deformation may be very important for metals, in 
particular during the first contact [23, 24]. As an example, 
in Fig. 6 (top), we show the plastically deformed area of 
a sandblasted aluminum surface after squeezing (normal 
force FN = 500 N ) a steel sphere (radius R = 2 cm ) with 
very smooth surface, against the aluminum surface. Note 
that asperities have been smoothed by plastic flow and act 
as small mirrors resulting in the white regions in the opti-
cal picture (observed in reflected light). In this case, some 
bulk plastic flow has also occurred, as is clear from the 
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topography line scan in Fig. 6 (bottom), but similar experi-
ments on a steel surface exhibit only plastic deformations 
of asperities.

Note that the contact region is not compact. The diameter 
of the circular region including all the plastically deformed 
asperities is ≈ 1.5 mm , which is larger than the calcu-
lated Hertz contact region for smooth surfaces (diameter 
≈ 0.9 mm ). In fact, the nominal contact region during the 
contact with the sphere may be even larger than indicated 
by Fig. 6 because there may be an annular (elastic contact) 
region outside the plastically deformed region, where the 
contact pressure is too low to induce plastic deformations of 
the aluminum asperities. Similar plastic effects may occur in 
some cases in the line contact problem studied above.

4 � Summary and Conclusion

We have studied the dependency of the nominal contact 
pressure on the surface roughness and the loading force 
when a rigid cylinder is squeezed against an elastic half 

space. We found that the contact pressure is Hertzian-like 
for 𝛼 < 0.01 and Gaussian-like for 𝛼 > 10 , where the dimen-
sionless parameter � = hrms∕� is the ratio between the root-
mean-square roughness amplitude and the penetration for 
the smooth surfaces case (Hertz contact).
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