000904591 001__ 904591
000904591 005__ 20220228143938.0
000904591 0247_ $$2doi$$a10.1088/1751-8121/ac3469
000904591 0247_ $$2ISSN$$a0022-3689
000904591 0247_ $$2ISSN$$a0301-0015
000904591 0247_ $$2ISSN$$a0305-4470
000904591 0247_ $$2ISSN$$a1361-6447
000904591 0247_ $$2ISSN$$a1751-8113
000904591 0247_ $$2ISSN$$a1751-8121
000904591 0247_ $$2ISSN$$a2051-2155
000904591 0247_ $$2ISSN$$a2051-2163
000904591 0247_ $$2Handle$$a2128/30742
000904591 0247_ $$2altmetric$$aaltmetric:99227733
000904591 0247_ $$2WOS$$aWOS:000720541800001
000904591 037__ $$aFZJ-2021-06161
000904591 082__ $$a530
000904591 1001_ $$0P:(DE-HGF)0$$aSauer, A$$b0
000904591 245__ $$aEntanglement in bipartite quantum systems: Euclidean volume ratios and detectability by Bell inequalities
000904591 260__ $$aBristol$$bIOP Publ.$$c2021
000904591 3367_ $$2DRIVER$$aarticle
000904591 3367_ $$2DataCite$$aOutput Types/Journal article
000904591 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645197193_339
000904591 3367_ $$2BibTeX$$aARTICLE
000904591 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904591 3367_ $$00$$2EndNote$$aJournal Article
000904591 520__ $$aEuclidean volume ratios between quantum states with positive partial transpose and all quantum states in bipartite systems are investigated. These ratios allow a quantitative exploration of the typicality of entanglement and of its detectability by Bell inequalities. For this purpose a new numerical approach is developed. It is based on the Peres–Horodecki criterion, on a characterization of the convex set of quantum states by inequalities resulting from Newton identities and from Descartes' rule of signs, and on a numerical approach involving the multiphase Monte Carlo method and the hit-and-run algorithm. This approach confirms not only recent analytical and numerical results on two-qubit, qubit-qutrit, and qubit-four-level qudit states but also allows for a numerically reliable numerical treatment of so far unexplored qutrit–qutrit states. Based on this numerical approach with the help of the Clauser–Horne–Shimony–Holt inequality and the Collins–Gisin inequality the degree of detectability of entanglement is investigated for two-qubit quantum states. It is investigated quantitatively to which extent a combined test of both Bell inequalities can increase the detectability of entanglement beyond what is achievable by each of these inequalities separately.
000904591 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000904591 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904591 7001_ $$0P:(DE-Juel1)185926$$aBernád, J. Z.$$b1$$eCorresponding author$$ufzj
000904591 7001_ $$0P:(DE-HGF)0$$aMoreno, H. J.$$b2
000904591 7001_ $$0P:(DE-HGF)0$$aAlber, G.$$b3
000904591 773__ $$0PERI:(DE-600)1363010-6$$a10.1088/1751-8121/ac3469$$gVol. 54, no. 49, p. 495302 -$$n49$$p495302 -$$tJournal of physics / A$$v54$$x0022-3689$$y2021
000904591 8564_ $$uhttps://juser.fz-juelich.de/record/904591/files/Sauer_2021_J._Phys._A%20_Math._Theor._54_495302.pdf
000904591 8564_ $$uhttps://juser.fz-juelich.de/record/904591/files/2102.00312.pdf$$yOpenAccess
000904591 909CO $$ooai:juser.fz-juelich.de:904591$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904591 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185926$$aForschungszentrum Jülich$$b1$$kFZJ
000904591 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000904591 9141_ $$y2021
000904591 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000904591 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000904591 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000904591 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS A-MATH THEOR : 2019$$d2021-01-29
000904591 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000904591 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000904591 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000904591 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904591 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000904591 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000904591 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-29$$wger
000904591 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000904591 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000904591 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000904591 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0
000904591 980__ $$ajournal
000904591 980__ $$aVDB
000904591 980__ $$aUNRESTRICTED
000904591 980__ $$aI:(DE-Juel1)PGI-8-20190808
000904591 9801_ $$aFullTexts