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Abstract. Euclidean volume ratios between quantum states with positive partial

transpose and all quantum states in bipartite systems are investigated. These

ratios allow a quantitative exploration of the typicality of entanglement and of its

detectability by Bell inequalities. For this purpose a new numerical approach is

developed. It is based on the Peres-Horodecki criterion, on a characterization of the

convex set of quantum states by inequalities resulting from Newton identities and

from Descartes’ rule of signs, and on a numerical approach involving the multiphase

Monte Carlo method and the hit-and-run algorithm. This approach confirms not only

recent analytical and numerical results on two-qubit, qubit–qutrit, and qubit–four-

level qudit states but also allows for a numerically reliable numerical treatment of so

far unexplored qutrit–qutrit states. Based on this numerical approach with the help of

the Clauser-Horne-Shimony-Holt inequality and the Collins-Gisin inequality the degree

of detectability of entanglement is investigated for two-qubit quantum states. It is

investigated quantitatively to which extent a combined test of both Bell inequalities

can increase the detectability of entanglement beyond what is achievable by each of

these inequalities separately.
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1. Introduction

Entanglement is one of the characteristic quantum phenomena of distinguishable

composite quantum systems [1, 2]. Therefore, questions concerning how to distinguish

entangled and separable quantum states and how to quantify their typicality play an

important role in quantum information science [3]. For two special cases, namely for

two-qubit and for qubit-qutrit states a simple necessary and sufficient condition for

identifying entanglement is known, the Peres-Horodecki criterion [4, 5]. For these special

quantum systems complications originating from bound entanglement do not arise and

therefore all quantum states having positive partial transpose (PPT) are separable.

Thus, in these quantum systems a convenient measure for the typicality of separability

and thus also of entanglement is the relative volume of PPT quantum states in the space

of all possible quantum states. After the early work of Zyczkowski et al. [6, 7] numerous

investigations have been performed aiming at estimating the volumes of separable and

entangled states by various volume measures [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] and

by using various approaches, such as Bloore’s representation [19], Bures’ metric [20], or

the Ginibre ensemble [21] combined with Monte Carlo strategies [22].

Although by now numerous results are available estimating not only volumes of

separable and entangled states but also volume ratios of PPT and non-PPT quantum

states, there is still a need for new ideas capable of estimating these volume ratios

accurately also for higher dimensional bipartite quantum systems. It is a main purpose

of this paper to present and test such a new numerical approach by applying it to the

estimation of the typicality of PPT quantum states and consequently also of non-PPT

entangled quantum states. For this purpose a systematic approach is developed based on

measuring these typicalities in several quantum systems by using an Euclidean volume

measure. This is possible because the vector space of square matrices has a natural scalar

product, namely the Hilbert-Schmidt inner product. Therefore, each square matrix can

be considered as a point in an Euclidean vector space with a well defined associated

volume measure. Furthermore, the possible quantum states are described by all possible

positive semidefinite matrices with unit trace. It is known that the convex set formed by

all quantum states can be described in a convenient way by inequalities resulting from an

application of Newton identities [23] and Descartes’ rule of signs [24, 25] to characteristic

polynomials of density matrices describing these quantum states [26, 27, 28, 29, 30]. As

a result the Euclidean volumes of the convex set of all possible quantum states and of the

convex set of all PPT quantum states can be estimated numerically by a combination of

the Muller [31, 32, 33] and multiphase [34, 35] Monte Carlo methods and of the hit-and-

run algorithm [36, 37, 38]. The main advantage of the use of the Newton identities in

this context lies in the reduced number of arithmetic operations required. This reduction

of complexity is possible, because for deciding whether a given Hermitian n× n matrix

is a quantum state or not, we need only a test for non-negativity of the eigenvalues and

not their precise values. Based on this approach it is demonstrated that not only known

results on the typicality of entangled quantum states can be confirmed in a unified way,
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but also new reliable results on the typicality of PPT quantum states can be obtained

in higher dimensional bipartite quantum systems.

Another purpose of this paper is to explore the detectability of bipartite

entanglement by violations of Bell inequalities[39, 40]. In particular, on the basis of

our numerical Monte-Carlo approach we investigate the Euclidean volume ratio between

entangled two-qubit quantum states violating Bell inequalities and all entangled states.

For this purpose we concentrate on two types of Bell inequalities, the Clauser-Horne-

Shimony-Holt (CHSH) [41] and the Collins-Gisin inequality [42]. Bell inequalities define

half-spaces which are convex sets in the Euclidean vector space of the Hilbert-Schmidt

inner product. These half-spaces contain the set of all separable quantum states. Thus,

all Bell inequalities define a common non-empty convex set [43] which is larger than

the convex set of all separable states. The quantum states belonging to this common

convex set are not able to violate any kind of Bell inequality and are thus consistent

with local realistic theories. Within this geometrical context, we are able to compare

the performance of the CHSH and the Collins-Gisin type Bell inequalities with respect

to detectability of entanglement. It is shown that each of these two types of Bell

inequalities is capable of detecting only a small fraction of all entangled states. As

there are entangled quantum states which violate only one of them but not the other

one [42], it is demonstrated that the combination of both types of inequalities is able to

detect significanlty more entangled quantum states.

The paper is organized as follows. In Sec. 2 the necessary and sufficient conditions

are discussed under which a self-adjoint matrix is positive semidefinite and describes a

quantum state. With the help of Newton identities and Descartes’ rule of signs these

conditions can be described systematically by a set of inequalities characterizing the

convex set of quantum states. In Sec. 3 the isomorphism between the set of self-adjoint

matrices with unit trace and points in an Euclidean vector space over the field of real

numbers is used to develop two numerical Monte Carlo procedures. These numerical

procedures are based on the Muller method, the multiphase Monte Carlo method and the

hit-and-run algorithm. Numerical results for different classes of two-qubit and qubit-

qutrit states are discussed in Sec. 4 including also general qutrit-qutrit states and

qubit-qudit states for four-level qudits. In Sec. 5 with the help of the CHSH and the

Collins-Gisin Bell inequalities the ratios between detectable entangled states and all

entangled states are investigated for different classes of two-qubit states. A summary

and concluding remarks are presented in Sec. 6.

2. Characterization of the convex set of quantum states in an Euclidean

space

In this section a general mathematical framework is presented for describing quantum

states of an n dimensional Hilbert space as elements of a convex set embedded in a d =

n2 − 1 dimensional real Euclidean vector space. Thereby the positive semidefiniteness

of quantum states is taken into account by a set of inequalities which originate from
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applying Newton identities [23] and Descartes’ rules of signs [24, 25] to the characteristic

polynomials of self-adjoint matrices with unit trace. The purpose of this section is

to summarize the key ingredients of this approach, which can also be found in Refs.

[27, 28, 29, 30].

We consider the finite dimensional vector space Cn whose elements are represented

in the canonical basis by all n-tuples of complex numbers. With the scalar product

〈x, y〉 =
n∑
i=1

xiyi = (x1, x2, . . . , xn)


y1

y2

.

.

yn

 , ∀x, y ∈ Cn

this vector space is a Hilbert space. Thereby, z is the complex conjugate of the complex

number z ∈ C. This scalar product is antilinear in the first and linear in the second

variable. The norm 〈x, x〉1/2 of any element x in Cn will be denoted by ‖x‖. The space

of n×n matrices with complex entries Mn(C) can be identified with the linear operators

of this n dimensional Hilbert space Cn if a canonical orthonormal basis is fixed. Keeping

this identification in mind in the following we shall no longer distinguish between linear

operators and their representations as matrices in Mn(C). The adjoint of a matrix A

is the unique matrix A† satisfying 〈A†x, y〉 = 〈x,Ay〉 for all x, y in Cn, or in other

words the complex conjugate of the transpose of A. The trace Tr{A} of A ∈ Mn(C) is

given by the sum of its diagonal matrix elements and is independent of the choice of an

orthonormal basis.

The n2 dimensional vector space Mn(C) together with the Hilbert-Schmidt scalar

product 〈A,B〉HS = Tr{A†B} with A,B ∈Mn(C) constitutes an n2 dimensional Hilbert

space. An elementary orthonormal basis in Mn(C) with respect to this Hilbert-Schmidt

scalar product is given by the n × n matrices {(Ei,j)a,b}16i,j,a,b6n with (Ei,j)a,b = δiaδjb
with δia, δjb denoting Kronecker delta functions. A convenient orthonormal basis for the

subspace of self-adjoint matrices can be constructed with the help of the n2−1 traceless

orthogonal self adjoint generators Ti = T †i , 2 ≤ i ≤ n2 of the Lie group SU(n) which

can be chosen such that they fulfill the orthonormality conditions[27]

Tr{TiTj} = δij, i = 2, . . . , n2. (1)

Together with the properly normalized unit matrix T1 := In/
√
n they form a convenient

orthonormal basis, which allows to identify every self-adjoint matrix A ∈ Mn(C) by n2

independent real-valued parameters ai ∈ R, 1 ≤ i ≤ n2 according to the relation [47]

A =
n2∑
i=1

〈Ti, A〉HSTi =
n2∑
i=1

Tr{TiA}Ti ≡
n2∑
i=1

aiTi. (2)

In this basis the norm ||A||HS of this self-adjoint operator A is given by the relation

||A||2HS = 〈A,A〉HS =
n2∑
i=1

〈Ti, A〉2. (3)
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For n = 2 the normalized unit matrix I2/
√

2 together with the normalized Pauli matrices

σi/
√

2 with i = x, y, z are an example of such an orthonormal self-adjoint basis involving

the generators of the Lie group SU(2). For n = 3 we have the normalized unit matrix

I3/
√

3 together with the eight normalized Gell-Mann matrices (see Eq.(34)). As an

outlook, it is worth mentioning that there are also other interesting orthonormal bases

[48], though not all are suitable for our approach based on real vector spaces.

Within the subspace of self-adjoint matrices the set of density matrices describing

quantum states is given by the subset of positive semidefinite matrices with unit trace,

i.e.

D(Cn) = {ρ ∈Mn(C) : ρ > 0, Tr{ρ} = 1}. (4)

Therefore, not every self-adjoint matrix of the form of Eq.(2) with unit trace, i.e.

Tr{ρ} = 1 or equivalently a1 = 1/
√
n, is a quantum state. In order to characterize

the positive semidefiniteness of quantum states in an efficient way we start from the

characteristic polynomial pA(ξ) of an arbitrary self-adjoint matrix A ∈Mn(C), i.e.,

pA(ξ) = det(ξIn − A) =
n∑
k=0

(−1)kc
(n)
k ξn−k (5)

with

c
(n)
0 = 1, c

(n)
1 =

n∑
i=1

λi, c
(n)
2 =

∑
16i<j6n

λiλj, · · ·

c(n)
n = λ1λ1 . . . λn (6)

and with λi ∈ R (1 ≤ i ≤ n) denoting the eigenvalues of A. All coefficients c
(n)
i are

elementary symmetric functions of these eigenvalues and can be related to traces of

powers of the linear operator A of the form pk = Tr{Ak} by the Newton identities [23],

i.e.

p1 = c
(n)
1 ,

pk =
k−1∑
i=1

(−1)i+1c
(n)
i σk−i + (−1)k+1kc

(n)
k , 1 < k 6 n,

pk =
k−1∑
i=1

(−1)i+1c
(n)
i σk−i, k > n. (7)

For a self-adjoint matrix with unit trace, i.e. Tr{A} = 1, all coefficients c
(n)
i can be

obtained from these Newton identities recursively, i.e.,

c
(n)
1 = 1, (8)

c
(n)
2 =

1

2
− 1

2
p2,

c
(n)
3 =

1

6
− 1

2
p2 +

1

3
p3,

c
(n)
4 =

1

24
− 1

4
p2 +

1

3
p3 +

1

8
p2

2 −
1

4
p4, . . .
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The characteristic polynomial pA(ξ) of a self-adjoint matrix A has only real valued roots

[47]. Therefore, according to Eq. (8) pA(ξ) is a polynomial with real valued coefficients

so that Descartes’ rule of signs [24, 25] can be used to address the question of positive

semidefiniteness of A. This rule states that the number of positive real roots of the

polynomial pA(ξ) equals the number of sign changes in the sequence of coefficients.

Therefore, based on Eq. (5) we have

A > 0⇔ c
(n)
k > 0, ∀k ∈ 0, 1, . . . , n. (9)

It is evident from Eq. (8) that a self-adjoint matrix A with unit trace is a quantum

state, i.e. A ∈ D(Cn), iff

1

2
− 1

2
p2 > 0, (10)

1

6
− 1

2
p2 +

1

3
p3 > 0,

1

24
− 1

4
p2 +

1

3
p3 +

1

8
p2

2 −
1

4
p4 > 0, · · ·

These conditions fully characterize the positive semidefiniteness of self-adjoint matrices

with unit trace. The Monte Carlo algorithms presented in the following sections start

from the representation of the convex set of quantum states of an n dimensional Hilbert

space by Eq.(2) and by the inequalities (10).

3. Numerical Monte Carlo methods

In this section we describe two numerical methods for the estimation of volume ratios

of convex bodies. The primary task is to compute numerically the volumes of convex

sets of the form

VC =

∫
Mn(C)

dµ χK (11)

where χK is the characteristic function of the convex set K of interest and µ is a volume

measure on Mn(C). As shown in Sec. 2 the set of self-adjoint matrices forms a subspace

in Mn(C) isomorphic to Rn2
. Therefore, the Hilbert-Schmidt norm of the difference

between two self-adjoint matrices, say A and B, is connected to the Euclidean distance

function in Rn2
by the relation

‖A−B‖HS =

∥∥∥∥∥
n2∑
i=1

(ai − bi)Ti

∥∥∥∥∥
HS

=

√√√√ n2∑
i=1

(ai − bi)2

(12)

with ai, bi ∈ R and with Ti (1 ≤ i ≤ n2) denoting an orthonormal basis of self-adjoint

n×n matrices according to Eq. (2). This implies that the measure µ in Eq. (11) is the

volume of measurable subsets of the n2 dimensional Euclidean space.

A key ingredient of volume estimates is to generate random points uniformly over

the corresponding convex set. However, the dimension of the Euclidean space containing
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this convex body plays an important role in the efficiency of the random point generator.

In the following we investigate an exact random point generation and an approximate

generation method, or Markov chain Monte Carlo sampler. Both approaches belong

to the acceptance-rejection method and they have their pros and cons. The exact

random point generator guarantees that we sample from a uniform distribution on a

d dimensional ball but not all the points will lie inside the convex body in question,

which has a non-empty intersection with this d dimensional ball. The Markov chain

Monte Carlo sampler generates points from the convex body, but the convergence to a

uniform distribution requires more and more points as we increase the dimension of the

Euclidean space.

3.1. Multiphase Monte Carlo method

The first numerical approach employs the Muller method [31, 32, 33], which is applied

to generate random points uniformly in the d dimensional ball, and combines it with the

multiphase Monte Carlo method by using a ’sandwiching’ technique [34, 35]. For this

purpose d dimensional vectors ~v are drawn from the uncorrelated multivariate normal

distribution. If, in addition, the random variable u is distributed uniformly in the unit

interval [0, 1], the vectors ~u = r u1/d ~v/
√
~v · ~v are randomly and uniformly distributed

in the d dimensional ball with radius r. Furthermore, we consider m concentric d

dimensional balls with radii r1 < r2 < · · · < rm around the origin of the convex set of

interest, say K, and we apply the Muller method within each of these balls. According

to Ref. [35] the natural number m should be larger than d log d. The Euclidean volume

of the convex set of interest K can be estimated by the ’product estimator’

vol(K) = vol(K1)
m∏
i=2

vol(Ki)

vol(Ki−1)
(13)

with Ki = K ∩ B(0, ri) denoting the intersection between the convex set K and the d

dimensional ball B(0, ri) with radius ri and center at the origin of the Euclidean space.

It is apparent that K1 ⊆ K2 ⊆ · · · ⊆ Km. Each domain Ki with i = 1, · · · ,m or ’phase’

requires the generation of uniformly distributed independent points for estimating its

Euclidean volume vol(Ki). However, for high dimensional convex sets this algorithm

may already break down before the last ’phase’ is reached, because the number of states

found is too small for a satisfactory statistics. With each new ball in the sequence

more and more points need to be generated which requires increasing running times

of this algorithm. Therefore, eventually the application of this algorithm is limited

by current capacities of nowadays computers. Our implementation of this algorithm

involves manageable steps and stops whenever the number of points found inside K is

too small. We set this threshold number to be 10.
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3.2. Hit-and-run algorithm

Our second numerical approach has been introduced by Smith [36] to generate points

uniformly distributed within an arbitrarily bounded region. Thus, it is applicable to a

convex body K. This sampler makes a transition from a point a ∈ K to another point

a′ ∈ K by generating a direction vector ~x uniformly on the surface of a d dimensional

unit ball with center a followed by generating a point a′ uniformly distributed on the

line segment created by the intersection of K and the line through a with direction ~x.

The unit vector ~x is generated with the help of the Muller method and a′ is chosen by

employing a one dimensional acceptance-rejection method on the line segment, i.e., we

accept this point only if it lies in K. Now, we set a′ to be our starting point and we

repeat the procedure. This algorithm realizes a random walk inside K that converges

efficiently to a uniform distribution and this is independent of the starting point inside

K [37]. It is worth noting that one can combine the multiphase Monte Carlo technique

with the hit-and-run algorithm in order to obtain even more efficient volume estimates

[38], but this is left out by us for future investigations.

4. Euclidean volume ratios for bipartite quantum states with positive

partial transpose

In this section we investigate numerically the Euclidean volume ratios R between

bipartite quantum states with positive partial transpose (PPT) and all bipartite

quantum states. In two-qubit and qubit-qutrit systems the Euclidean volume ratio R

determines the volume ratio R/(1−R) between separable and entangled states, because

in these systems all quantum states with negative partial transpose are entangled. Our

aim is to provide new estimates of R for several bipartite quantum systems and to assess

the reliability and efficiency of our numerical approaches by comparing our estimates

with known analytical and numerical results.

In general, the set D(Cn) of all quantum states is a convex set because any convex

combination of two density matrices is also a density matrix. A density matrix ρAB of

a bipartite system with constituents A and B is called separable if it can be written as

a convex combination of product states, i.e.

ρAB =
∑
k

pkρ
(A)
k ⊗ ρ

(B)
k , 0 6 pk 6 1,

∑
k

pk = 1,

(14)

where ρ
(A)
k (ρ

(B)
k ) is a possible quantum state of system A (B). It is clear from this

definition of separability that the set of separable quantum states also forms a convex

set.

Let us consider a finite dimensional bipartite quantum system with Hilbert space

CnA ⊗ CnB , where nA and nB are the dimensions of the subsystems. The map ρ →
(τnA⊗InB)ρ with the identity operation InB on MnB(C) is called partial transposition and

is defined with respect to the canonical product basis as 〈ij|(τnA⊗ InB)ρ|kl〉 = 〈kj|ρ|il〉.
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If a state is separable its density matrix has a positive partial transpose (PPT), i.e, the

result of the map is again a density matrix. All states having positive partial transpose

are called PPT quantum states. They form a convex set. This procedure is independent

of the subsystem that is transposed, because the eigenvalues of a square matrix are

equal to the eigenvalues of its full transpose. For example, the transposition operator

τ2, which acts on qubits, has the following properties

τ2 I2 = I2, τ2σx = σx,

τ2σy = −σy, τ2σz = σz (15)

with {σx, σy, σz} denoting the Pauli spin matrices. According to the Peres-Horodecki

criterion [4, 5] in two special cases, namely for two-qubit systems with Hilbert space

C2 ⊗ C2 ∼= C4 and for qubit-qutrit systems with Hilbert space C2 ⊗ C3 ∼= C6, all PPT

quantum states are separable, i.e., the so-called phenomenon of bound entanglement or

entangled PPT quantum states does not occur in these cases.

Let us first of all discuss our numerical approach for estimating Euclidean volume

ratios R between bipartite PPT quantum states and all bipartite quantum states with

the help of the multiphase Monte Carlo method. As quantum states have unit trace in

the following we restrict ourselves to the subspace of self-adjoint matrices A with unit

trace, i.e. a1 = 1/
√
n. According to Eq. (2) an arbitrary element A of this d = (n2− 1)

dimensional subspace is identified by its real-valued coordinates (a2, . . . , an2) ∈ Rn2−1.

For a numerical estimate of the Euclidean volume ratio R it is necessary to generate

vectors of this type randomly and uniformly at first. For this purpose it is convenient to

take also into account the first constraint of (10) as a necessary condition for quantum

states, i.e.

1 > Tr{A2} ⇔ n− 1

n
>

n2∑
i=2

a2
i , (16)

so that the point (a2, . . . an2) is element of the d = (n2− 1) dimensional ball with radius

rn =
√
n− 1/

√
n. Therefore, the starting point of the multiphase Monte Carlo method

is that we choose rm ≡ rn =
√
n− 1/

√
n to be the radius of the largest ball containing

all quantum states. The smallest radius r1 can be chosen in a convenient way with the

help of Mehta’s lemma [50]. This lemma states that a self-adjoint matrix A in Cn is

positive if

Tr{A2} 6 1

n− 1
. (17)

Taking into account that the partial transposition required for an application of the

Peres-Horodecki criterion leaves the Hilbert-Schmidt norm invariant, it is apparent that

the d dimensional ball with radius 1/
√
n(n− 1) is a subset of the separable states [3, 50].

Therefore, it is convenient to choose r1 = 1/
√
n(n− 1) for the radius of the smallest d

dimensional ball. In order to select quantum states randomly, in a second step for each of

these sampled points, say A, in each of the d dimensional balls the remaining constraints

in (10) have to be tested in order to determine whether the randomly selected matrix
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A belongs to the convex set of quantum states or not. Due to Mehta’s lemma R1 = 1

and the ratio R between the volumes of separable states and all states is estimated by

R = R1

m∏
i=2

Ri

Ri−1

. (18)

It is clear from Eq. (18) that if we can obtain Rm then R = Rm. However, generating

uniformly random points in the largest balls in high dimensional spaces with the Muller

method is subject to the so-called ”curse of dimensionality” phenomenon [49].

In order to obtain reliable statistics we repeat this numerical procedure several

times. Denoting the number of these sampling repetitions by s we eventually obtain an

arithmetic mean ratio

R̄ =

∑s
k=1 Rk

s
(19)

based on the individual results Rk (k = 1, . . . , s) of these repetitions. This is the main

estimation parameter for the Euclidean volume ratio between PPT quantum states and

all quantum states. The standard deviation of the sample is then given by

σ =

√√√√ 1

s− 1

s∑
k=1

(
Rk − R̄

)2
. (20)

In the case of the hit-and-run algorithm we are allowed to choose the starting point

arbitrarily. Therefore, we start with (a2, . . . an2) = (0, 0, . . . 0), i.e., the origin of the d

dimensional Euclidean space or the maximally mixed state. We apply the acceptance-

rejection method to the next point by testing for the constraints of (10). The only

difficulty is that the boundaries of the line segments are hard to determine. Therefore

we approximate the boundary in each direction by checking whether the point with a

distance of b0 =
√
n− 1/

√
n to the starting point fulfills the constraints. If it does,

which is rarely true, the point with a distance of 2b0 to the starting point is used as

the upper bound. If not, the procedure is repeated for bi+i = bi/2 until the constraints

are fulfilled by bi+i such that bi can be set as the upper bound. As we know that the

d dimensional ball with radius rn =
√
n− 1/

√
n is a closing convex body for the set of

all quantum states, this method will always yield an upper bound on the boundary of

the line segment. Furthermore, at least half of the resulting line segment intersects with

the set of all quantum states. Then, random points are sampled from this line segment

until the chosen point fulfills the constraints of (10). This is used as the starting point

for the next iteration. To obtain the standard deviation of the sampling, all obtained

points are grouped into blocks of size NB. This procedure for obtaining the number

of points NBi,PPT fulfilling the PPT criterion within each block can be viewed as a

Bernoulli trial with a success probability of R, if all points are independent samples

from the set of all quantum states. For large block sizes, the distribution of NBi,PPT

can then be approximated by a Gaussian with mean R · NB and a standard deviation

σB which depends on the block size and on the independence of the points sampled by
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Figure 1. Schematic representation of the convex set of separable Bell diagonal two-

qubit states (octahedron) inside the convex set of all Bell diagonal two-qubit states

(tetrahedron): Both convex sets are embedded in the d = 3 dimensional Euclidean

space of all self-adjoint linear operators of the form of Eq. (21).The four vertices of

the tetrahedron represent the four maximally entangled two-qubit Bell states.

the hit-and-run algorithm. If not stated otherwise, a block size of 106 points was used.

As we are interested in the standard deviation of the mean σR̄, the number of blocks

NI is taken into account to get σ2
R̄

= σ2
B/NI .

4.1. Two-qubit Bell diagonal states

As a first example we consider Bell diagonal two-qubit states for which the Euclidean

volume ratio R is known analytically. Bell diagonal two-qubit states are characterized

by three real-valued independent parameters. They form a d = 3 dimensional convex

set embedded in the d = 3 dimensional linear subspace of self-adjoint matrices with unit

trace, and their representation reads

ρ =
I4

4
+

1

2

∑
i=x,y,z

ai σ
(A)
i ⊗ σ(B)

i (21)

with ai ∈ R. A and B label the two distinguishable subsystems and {σx, σy, σz} are the

Pauli spin matrices. Newton identities and the related inequalities (10) determine the

possible values of the three parameters ai, which restrict self-adjoint operators of the

form of Eq.(21) to quantum states. It has been shown (cf. Fig.1) that the state space of

Bell diagonal two-qubit states is a tetrahedron with separable quantum states forming

an octahedron inside this tetrahedron [51, 52]. Therefore, the Euclidean volume ratio

of Bell diagonal two-qubit states can be determined analytically. It is given by R = 0.5.

For this case the multiphase Monte Carlo (MMC) method with s = 100 repetitions and

108 points generated in each 3 dimensional ball yields the numerical result

R̄MMC = 0.4999, σMMC = 0.0001. (22)
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The analytical value of R = 0.5 is also confirmed by the hit-and-run (HR) algorithm

with 5.4× 109 quantum states and the numerical estimate is

R̄HR = 0.499998, σHR = 0.000014. (23)

4.2. Two-qubit X-states

Two-qubit X-states represent another class of quantum states which has received

considerable attention for purposes of quantum information processing [53]. These states

are characterized by seven independent real-valued parameters, i.e., d = 7, and have the

form

ρ =


ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44

 .

Thus their definition is basis dependent. Bell diagonal states are a subset of X-states.

The Euclidean volume ratio between separable X-states and all X-states is analytically

known to be given by R = 0.4 [16]. These X-states form a 7 dimensional convex set

within the 7 dimensional subspace of self-adjoint matrices with unit trace, and their

representation reads

ρ =
I4

4
+

1

2

7∑
i=1

ai Ti (24)

with ai ∈ R and with

T1 = σ(A)
z ⊗ I(B)

2 , T2 = I
(A)
2 ⊗ σ(B)

z , T3 = σ(A)
x ⊗ σ(B)

x ,

T4 = σ(A)
x ⊗ σ(B)

y , T5 = σ(A)
y ⊗ σ(B)

x , T6 = σ(A)
y ⊗ σ(B)

y ,

T7 = σ(A)
z ⊗ σ(B)

z .

The multiphase Monte Carlo method with s = 150 repetitions and 107 points generated

in each 7 dimensional ball yields the numerical result

R̄MMC = 0.3998, σMMC = 0.0005, (25)

and the hit-and-run algorithm with 4× 109 quantum states results in

R̄HR = 0.400003, σHR = 0.000022. (26)

Both numerical estimates are in very good agreement with the analytically known result

of R = 0.4. Comparing this result with the result for Bell diagonal two-qubit states it

is apparent that increasing the number d of independent coefficients characterizing the

two-qubit states reduces the volume of the separable states inside the convex set of all

two-qubit X-states.
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4.3. Rebit-rebit states

Another interesting class of quantum states which has an analytical ratio of R = 29/64

are the real valued two-qubit states [17]. They form a 9 dimensional convex set within

the 9 dimensional subspace of self-adjoint matrices with unit trace. Using the notation

of (2) they can be represented in the form

ρ =
I4

4
+

1

2

9∑
i=1

ai Ti (27)

with ai ∈ R. Thereby, the 9 dimensional basis with elements Ti with 1 ≤ i ≤ 9 has

the be chosen in such a way that only real-valued basis vectors are included from the

complete 15 dimensional basis, namely

T1 = I
(A)
2 ⊗ σ(B)

x , T2 = I
(A)
2 ⊗ σ(B)

z , T3 = σ(A)
x ⊗ I(B)

2 ,

T4 = σ(A)
z ⊗ I(B)

2 , T5 = σ(A)
x ⊗ σ(B)

x , T6 = σ(A)
x ⊗ σ(B)

z ,

T7 = σ(A)
y ⊗ σ(B)

y , T8 = σ(A)
z ⊗ σ(B)

x , T9 = σ(A)
z ⊗ σ(B)

z .

The multiphase Monte Carlo method with s = 200 repetitions and 108 points

generated in each 9 dimensional ball yields the numerical result

R̄MMC = 0.45309, σMMC = 0.0013 (28)

and the hit-and-run algorithm and 4× 109 quantum states yields the numerical result

R̄HR = 0.453111, σHR = 0.000027. (29)

These estimated values are very close to the analytical value of R = 29/64 = 0.453125

[17]. This shows that our numerical approaches are capable of yielding very accurate

estimates also for this benchmark value.

4.4. General two-qubit states

A general density matrix can be written in the form

ρ =
I4

4
+

1

2

∑
i=x,y,z

τ
(A)
i σ

(A)
i ⊗ I(B)

2 +
1

2

∑
i=x,y,z

τ
(B)
i I

(A)
2 ⊗ σ(B)

i

+
1

2

∑
i,j=x,y,z

νi,j σ
(A)
i ⊗ σ(B)

j (30)

with τ
(A)
i , τ

(B)
i , νi,j ∈ R. For these general two-qubit states the multiphase Monte Carlo

method yields the numerical result

R̄MMC = 0.243, σMMC = 0.007 (31)

for a sample size of 108 points in each 15 dimensional ball and for the sampling repetition

s = 150. Alternatively the hit-and-run algorithm with 4 × 109 quantum states yields

the numerical result

R̄HR = 0.242444, σHR = 0.000027. (32)
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These ratios are close to the recent combined analytical and numerical results of Slater

and Dunkl [12] supporting the conjecture that R = 8/33 ≈ 0, 24242, and are consistent

with the numerical result of Shang et al. [14], i.e. R = 0.242 ± 0.002, and of Milz et

al. [16], i.e., R = 0.24262± 0.0134. Furthermore, our method is able to provide a very

accurate estimate for a significantly smaller number of states than required in the recent

numerical study of Fei et al. [18], where 5 × 1011 points have had to been sampled to

obtain the value R = 0.24243± 0.00001.

It is worth mentioning that the number of 108 randomly generated points in

the case of the multiphase Monte Carlo method becomes slightly problematic for the

largest balls, because a few tens of states are found only. This significant increase of

the number of randomly selected points required can be made plausible by a simple

qualitative argument. For this purpose let us consider the d = n2 − 1 dimensional

convex set of quantum states Kd which is in contact with the largest d dimensional

ball B(0, rn) of radius rn =
√
n− 1/

√
n within which points have to be selected

uniformly and randomly according to the Muller method or according to the last step

of the multiphase Monte Carlo method. In d dimensions their volume ratio is given

by Vd = vol(Kd)/vol(B(0, rn)) = qd with 0 < q < 1 and q being a slowly varying

function of d [35]. This quantity measures the probability of finding a point inside Kd.

Therefore, finding with certainty a point inside Kd, i.e. a quantum state, requires at

least the random selection of Nd = q−d uniformly distributed points. As a result of

this scaling and under the simplifying assumption of a d independent value of q, finding

a quantum state inside Kd′ in d′ dimensions requires at least the random selection of

Nd′ = q−d
′

= Nd(Nd)
(d′−d)/d uniformly distributed points. This exponential increase

of Nd′ with increasing dimensions d′ and the corresponding numerical problems also

affected our numerical simulations already for d = 15. In our numerical simulations the

number of quantum states found decreased significantly when changing d from d = 7

to d = 15. Thus, for N = 106 randomly selected points, for example, the number

of quantum states in the largest d dimensional ball B(0, rn) decreased from 3340 in

the case of X-states (d = 7) to 34 in the general two-qubit case (d = 15). From this

observation one extrapolates that at least N35 = 108× (108)(35−15)/15 > 1018 points have

to be selected randomly in the last step of the multiphase Monte Carlo method for

finding a quantum state of a general qubit-qutrit system characterized by n = 6 and

d = n2 − 1 = 35. In view of this considerable computational effort in the following the

properties of qubit-qutrit states are explored only for a few subcases with the help of

the multiphase Monte Carlo method and its efficiency is compared to the hit-and-run

algorithm.

4.5. A few families of qubit-qutrit states

In this section numerical results are presented for the Euclidean volume ratios R for

some special cases of qubit-qutrit states. In particular, results are presented for convex

subsets of qubit-qutrit states which are embedded in linear subspaces of dimensions
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d = 8, 12 and d = 24. In the case of a qubit-qutrit system a general density matrix can

be written in the form

ρ =
I6

6
+

1√
6

∑
i=x,y,z

τ
(A)
i σ

(A)
i ⊗ I(B)

3 +
1

2

8∑
j=1

τ
(B)
j I

(A)
2 ⊗ γ(B)

j

+
1

2

∑
i=x,y,z

8∑
j=1

νi,j σ
(A)
i ⊗ γ(B)

j (33)

with τ
(A)
i , τ

(B)
j , νi,j ∈ R and the Gell-Mann matrices γi

γ1 =

0 1 0

1 0 0

0 0 0

 , γ2 =

0 −i 0

i 0 0

0 0 0

 , γ3 =

1 0 0

0 −1 0

0 0 0

 ,

γ4 =

0 0 1

0 0 0

1 0 0

 , γ5 =

0 0 −i
0 0 0

i 0 0

 , γ6 =

0 0 0

0 0 1

0 1 0

 ,

γ7 =

0 0 0

0 0 −i
0 i 0

 , γ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 . (34)

The qubit and qutrit subsystems are denoted by A and B, respectively.

Let us consider three subspaces of increasing dimensions d = 8, 12 and d = 24 which

involve self-adjoint matrices ρ of the form

(i) ρ =
I6

6
+

1

2

8∑
i=1

νy,iσ
(A)
y ⊗ γ(B)

i , (35)

(ii) ρ =
I6

6
+

1

2

4∑
i=1

νx,i σ
(A)
x ⊗ γ(B)

i (36)

+
1

2

4∑
i=1

νy,i σ
(A)
y ⊗ γ(B)

i +
1

2

4∑
i=1

νz,i σ
(A)
z ⊗ γ(B)

i ,

(iii) ρ =
I6

6
+

1

2

8∑
i=1

νx,i σ
(A)
x ⊗ γ(B)

i (37)

+
1

2

8∑
i=1

νy,i σ
(A)
y ⊗ γ(B)

i +
1

2

8∑
i=1

νz,i σ
(A)
z ⊗ γ(B)

i .

Case (i) with d = 8 is an interesting special case. All quantum states within this 8

dimensional subspace are separable so that we obtain the ratio R = 1. This is due to

the fact that there is a local unitary transformation acting on qubit A, i.e.

U (A) =

(
e−

iπ
4 cos

(
β
2

)
−e− iπ4 sin

(
β
2

)
e
iπ
4 sin

(
β
2

)
e
iπ
4 cos

(
β
2

) ) ,
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with β ∈ [0, 2π]. This unitary transformation has the characteristic property(
U (A)

)†
σ(A)
y U (A) = cos βσ(A)

x + sin βσ(A)
z .

As a local unitary transformation does not change the PPT property it is apparent from

the transformation properties of the Pauli matrices under transposition that all states

of the form of (35) are PPT quantum states.
Numerical results for Euclidean volume ratios R of the convex sets of quantum

states within these linear subspaces are presented in Tables 1 and 2.

Case N R̄MMC σMMC

(i) 107 1.0 0.0

(ii) 107 0.198 0.029

(iii) 107 0.016 0.006

Table 1. Estimates of the Euclidean volume ratios R and their standard deviations

σ for three classes of qubit-qutrit states using the multiphase Monte Carlo method:

(i) states of the form of Eq. (35) (d = 8); (ii) states of the form of Eq.(36) (d = 12);

(iii) states of the form of Eq. (37) (d = 24). The sample size in each d dimensional

ball is denoted by N . The sampling repetition has been set to s = 50.

Case N R̄HR σHR

(i) 107 1.0 0.0

(ii) 2× 107 0.1937 0.0003

(iii) 7× 107 0.02229 0.00006

Table 2. Estimates of the Euclidean volume ratios R and their standard deviations

σ for three classes of qubit-qutrit states using the hit-and-run algorithm: The three

cases are the same as inTable 1. N denotes the number of quantum states.

In case (ii) with d = 12 there is a good agreement between the two Tables. However,

consistent with the discussion of the previous subsection, the multiphase Monte Carlo

technique with the Muller method has problems in finding enough quantum states for

case (iii) with d = 24. This is the reason why the ratios are different for case (iii)

and it is also a clear indication that the limits of this method are reached. However, as

apparent from the standard deviation of Table 2 the hit-and-run algorithm produces a

reliable estimate for R also in this case.

4.6. General qubit-qutrit states

In the most general case of qubit-qutrit states, which lie within a linear subspace of

dimension d = n2 − 1 = 35 (n = 2 × 3 = 6), see (41), the ratio according to our

numerical results based on the hit-and-run algorithm is

R̄HR = 0.026969, σHR = 0.000042, (38)
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with 3.25×108 states. For the qubit-qutrit case a conjecture of R = 32/1199 ≈ 0.026688

was made by Slater in [54], which is close to the estimate obtained by us. Furthermore,

our result is also consistent with the numerical result of Milz et al. [16], i.e. R =

0.02700± 0.00016.

4.7. Qubit–four-level qudit states

For these quantum states a negative partial transpose is only a sufficient but not a

necessary condition for entanglement. All quantum states can be represented in the

form

ρ =
I8

8
+

1

2
√

2

∑
i=x,y,z

τ
(A)
i σ

(A)
i ⊗ I(B)

4 +
1

2
√

2

15∑
j=1

τ
(B)
j I

(A)
2 ⊗M (B)

j

+
1

2
√

2

∑
i=x,y,z

15∑
j=1

νi,j σ
(A)
i ⊗M (B)

j (39)

with τ
(A)
i , τ

(B)
j , νi,j ∈ R. The basis elements M

(B)
j of the four-level qudit system are

considered to be identical with the basis elements of the two-qubit system, because

C2 ⊗ C2 ∼= C4. The qubit and four-level qudit subsystems are denoted by A and B,

respectively. This means that the quantum states form a d = 63 dimensional convex set

embedded in the 63 dimensional linear subspace of self-adjoint matrices with unit trace.

For the ratio R between PPT quantum states and all quantum state we have obtained

the following numerical result

R̄HR = 0.001294, σHR = 0.000004 (40)

with the help of the hit-and-run algorithm with 1.2×109 quantum states. This numerical

result is again in good agreement with the numerical result of Milz et al. [16].

4.8. General qutrit-qutrit states

Also for these quantum states a negative partial transpose is only a sufficient but not

a necessary condition for entanglement. In this case quantum states form a d = 80

dimensional convex set and can be represented in the form

ρ =
I9

9
+

1√
6

8∑
i=1

τ
(A)
i γ

(A)
i ⊗ I(B)

3 +
1√
6

8∑
i=1

τ
(B)
i I

(A)
3 ⊗ γ(B)

i

+
1

2

∑
i,j=1,...,8

νi,j γ
(A)
i ⊗ γ(B)

j (41)

with τ
(A)
i , τ

(B)
i , νi,j ∈ R and the Gell-Mann matrices γi. For this case the hit-and-run

algorithm yields the following numerical results for the ratio R between PPT quantum
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Figure 2. Schematic representation of the Steinmetz solid in (46) together with the

convex set of separable Bell diagonal two-qubit states (octahedron) inside the convex

set of all Bell diagonal two-qubit states (tetrahedron), see also Fig. 1: The Steinmetz

solid contains the whole octahedron and has also parts lying outside of the tetrahedron

which do not represent quantum states.

states and all quantum states

R̄HR = 0.0001025, σHR = 0.0000012 (42)

with a sample size containing 9× 108 quantum states.

5. Bell inequalities and detectable entanglement

In his seminal paper [40] John Bell presented an inequality capturing the essence of

local realistic correlations which can be violated by correlations originating from some

particular quantum states. This discovery stimulated intense research activities on

Bell inequalities for different types of correlation experiments [39]. Although there are

entangled quantum states, which do not violate Bell inequalities, testing for violations

of these inequalities is still a convenient tool for assessing entanglement experimentally.

In this section we investigate the typicality of bipartite two-qubit entanglement which

can be detected by violations of Bell inequalities. For this purpose we focus on two

types of Bell inequalities, namely the CHSH inequality [41] and the inequality proposed

by Collins and Gisin [42].

5.1. The CHSH inequality

The CHSH inequality refers to bipartite correlation experiments on sites A and B with

an observation of two measurements on each site with two possible outcomes, say ±1.

Therefore, four possible observables are involved, namely A1 = v1 · σ, A2 = v2 · σ,

B1 = w1 · σ and B2 = w2 · σ with unit vectors v1,v2,w1,w2 and with the the Pauli
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vector σ. An experimental setting for a particular Bell experiment is characterized by a

particular quadrupel of unit vectors (v1,v2,w1,w2). In terms of these observables the

CHSH inequality is given by

− 2 6 E(A1B1) + E(A1B2) + E(A2B1)− E(A2B2) 6 2 (43)

with E(.) denoting the expectation value. Representing a general two-qubit density

matrix in the form of (30) with the coefficients νi,j (i, j ∈ {x, y, z}) forming the real-

valued 3 × 3 matrix Cρ, this CHSH inequality can be written also in the equivalent

form

− 2 6 2 〈v1, Cρ (w1 +w2)〉+ 2 〈v2, Cρ (w1 −w2)〉 6 2. (44)

Following Ref. [55] and using the orthogonality of the vectors w1 +w2 and w1 −w2 it

is found that this CHSH inequality is fulfilled if and only if the quantum state ρ of (30)

fulfills the condition

λ1 + λ2 6
1

4
(45)

with λ1 and λ2 denoting the two largest eigenvalues of the matrix C†ρCρ. Thus, for these

quantum states ρ no possible experimental setting of the four possible observables can

cause a violation of the CHSH inequality.

In order to gain some additional insight let us consider Bell diagonal states (cf.

(21)). In this case Eq. (45) yields

a2
x + a2

y 6
1

4
, a2

x + a2
z 6

1

4
, a2

y + a2
z 6

1

4
. (46)

These three inequalities define the so-called Steinmetz solid or tricylinder which is the

intersection of three cylinders of equal radii intersecting at right angles. As shown in

Fig. 2 the Steinmetz solid contains not only all separable states but also some entangled

states, as pointed out also in Ref. [56] in a study of entropic inequalities.

With the help of the hit-and-run algorithm we have estimated the Euclidean volume

ratio RCHSH of the quantum states which violate the CHSH inequality at least for one

possible setting of the four possible observables. As for large samples the randomly

selected points in the relevant Euclidean space become uniformly distributed this volume

ratio can be estimated by the ratio of the number of points NCHSH in the Euclidean space

violating (45) and the total number of quantum states N . In Table 3 these numerically

determined ratios RCHSH = NCHSH/N are shown for the different classes of two-qubit

states investigated in the previous section.
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N RCHSH σCHSH

Bell diagonal states 5.4 · 109 0.087021 0.000010

X-states 4 · 109 0.057276 0.000015

Rebit-rebit states 4 · 109 0.011082 0.000008

General two-qubit states 4 · 109 0.008221 0.000008

Table 3. Estimates of the Euclidean volume ratios RCHSH = NCHSH/N for all

families of two-qubit quantum states discussed in Sec. 4: N denotes the number of

quantum states within the randomly selected sample and NCHSH is the number of

quantum states violating (45).

Comparing the results of Table 3 with the ratios obtained in Sec.4 it is apparent that

only a small fraction of entangled states is detectable by all possible Bell experiments

testing for a violation of the CHSH inequality. For Bell-diagonal states, for example, the

Euclidean volume ratio between separable states and all quantum states is 0.5 so that

the Euclidean volume ratio between CHSH-detectable entangled states and all entangled

states is estimated as 0.087/(1 − 0.5) ≈ 0.174. The corresponding estimated ratios for

the remaining three cases of Table 3 are given by 0.0955 for X-states, 0.0203 for rebit-

rebit states, and 0.0108 for general two-qubit states. These results demonstrate that

most of the entangled two-qubit states are not detectable by CHSH-type Bell tests even

if ideal measurement arrangements can be realized for all the infintely many possible

measurement setups.

In practice it is impossible to perform CHSH-type Bell tests for all possible

measurement arrangements. If only a finite number of Bell tests are performed the

number of detectable entangled states is reduced even further. Thus, the natural

question arises whether there is a finite list of special measurements which guarantees

the detection of a large fraction of all CHSH-detectable entangled two-qubit states.

states evenunder the assumption of ideal apparatuses.In the following we provide

an answer to this question. In order to address this question let us consider the simple

and geometrically lucid case of Bell-diagonal quantum states. In this case the half space

defined by each tangent plane of the Steinmetz solid represents a CHSH inequality

for a particular measurement setup. Furthermore, the four corners of the tetrahedron

characterizing all Bell-diagonal quantum states (cf. Fig. 2) are not inside the Steinmetz

solid. According to Table 3 the volume of these parts has been estimated as 8.7% of the

volume of the whole tetrahedron. As the Steinmetz solid is formed by the intersection

of three cylinders it has extreme points at which its tangent planes are not definied

uniquely. In particular, it has 8 extreme points each of which defines three different

tangent planes, one for each of the three cylinders whose intersection defines the surface

of the Steinmetz solid. Four of these extreme points are located inside of the tetrahedron

characterizing the possible quantum states (cf. Fig. 2). Therefore, it appears plausible

that the three tangent planes associated with each of these four extreme points are

capable of detecting a large fraction of all CHSH-detectable entangled states.

The corresponding 4× 3 = 12 inequalities defining these half spaces can be written
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in the following concise way

|ai|+ |aj| 6
1√
2
, for i 6= j and i, j ∈ {x, y, z}, i 6= j. (47)

With the hit-and-run algorithm we have estimated the Euclidean volume ratio R12m

between Bell-diagonal states violating at least one of the 12 inequalities (47) and all

Bell-diagonal quantum states. Comparing it with the corresponding Euclidean volume

ratio RCHSH for Bell-diagonal states we find that 86, 63% of all CHSH-detectable Bell-

diagonal states are detected by the 12 inequalities (47). Thus, these latter inequalities

capture a large fraction of all CHSH-detectable entangled Bell-diagonal states.

N R12m σ12m R12m/CHSH

Bell diagonal states 5.4 · 109 0.075387 0.000013 0.8663

X-states 4 · 109 0.006104 0.000006 0.1066

Rebit-rebit states 4 · 109 0.001766 0.000004 0.1594

General two-qubit states 4 · 109 0.000044 0.000001 0.0054

Table 4. Estimates of the Euclidean volume ratios R12m violating at least one of the

12 inequalities (47) for all families of two-qubit quantum states discussed in Sec. 4: N

denotes the number of quantum states, R12m/CHSH = R12m/RCHSH is the fraction of

all CHSH-entangled states that can be detected using one of the 12 Bell measurements.

Table 4 summarizes numerical results for Euclidean volume ratios R12m for all

families of two-qubit quantum states discussed in Sec. 4 which violate at least one of

the 12 inequalities (47). From these results it is apparent that the usefulness of these

12 measurements for detecting entanglement quickly diminishes for non Bell-diagonal

quantum states. In the general case, for example, only 0.54% of the states which violate

a CHSH inequality for some measurement setting can be detected by one of these 12

measurements.

These results clearly demonstrate that even under the assumption of ideal

measurement setups only a small fraction RCHSH of the entangled states can be detected

by CHSH inequalities. This fraction is reduced even further if only a finite number of

measurements is taken into account in the CHSH Bell tests. Thus, finding an inequality

which is more efficient than the CHSH inequality is an important task. In our subsequent

subsection we consider a possible candidate, the Collins-Gisin inequality [42]. It has an

interesting relation to the CHSH inequality because there are quantum states which

violate the Collins-Gisin but not the CHSH inequality and vice versa. Because our

approach allows to quantify the efficiency of Bell inequalities we are able to compare

quantitatively these two families of inequalities.

5.2. Collins-Gisin inequality

For the case of three possible measurements on both sites A and B, each of which

has two possible oucomes, Collins and Gisin [42] proposed new inequalities based on
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results of Pitowsky and Svozil [57]. Apart from variations of the CHSH inequality these

inequalities also involve a new one, namely

0 6 4 + E(A1) + E(A2) + E(B1) + E(B2) + E(A1B1) + E(A1B2) (48)

+E(A2B1) + E(A2B2) + E(A1B3) + E(A3B1)− E(A2B3)− E(A3B2).

Using the general representation (30) of two-qubit quantum states this inequality can

be written in the equivalent form

0 6 2 + 〈v1 + v2, τ
(A)
ρ 〉+ 〈w1 +w2, τ

(B)
ρ 〉+ 〈v1, Cρ (w1 +w2 +w3)〉

+ 〈v2, Cρ (w1 +w2 −w3)〉+ 〈v3, Cρ (w1 −w2)〉 . (49)

In addition to the matrix Cρ, which appears also in the CHSH inequality, this inequality

contains the 6 parameters τ
(A)
ρ = (τ

(A)
x , τ

(A)
y , τ

(A)
z )T and τ

(B)
ρ = (τ

(B)
x , τ

(B)
y , τ

(B)
z )T (T

denotes the transposition) characterizing the quantum state ρ.

Analogous to our previous discussion of the CHSH inequality, which led to condition

(45), we are interested in determining the minimum of the right hand side of this

inequality with respect to all possible measurement settings. This minimum defines

the surface of a convex body. Quantum states lying inside this body are not able to

violate any kind of Collins-Gisin type inequality. By applying the Cauchy-Bunyakovsky-

Schwarz inequality

|〈x, y〉| 6 ‖x‖‖y‖, x, y ∈ Cn

we can minimize over all unit vectors v1, v2 and v3. This minimization yields the

inequality

2 + 〈w1 +w2, τ
(B)
ρ 〉+

〈
v1, Cρ (w1 +w2 +w3) + τ (A)

ρ

〉
+
〈
v2, Cρ (w1 +w2 −w3) + τ (A)

ρ

〉
+ 〈v3, Cρ (w1 −w2)〉 >

> 2 + 〈w1 +w2, τ
(B)
ρ 〉 − ‖Cρ (w1 +w2 +w3) + τ (A)

ρ ‖
− ‖Cρ (w1 +w2 −w3) + τ (A)

ρ ‖ − ‖Cρ (w1 −w2) ‖ (50)

with equality holding if and only if the scalar products on the left hand side are as small

as possible.

The inequality (50) can be further minimized in the case of Bell diagonal states for

which τ
(A)
ρ = 0 and τ

(B)
ρ = 0 by maximizing the quantity

‖Cρ (w1 +w2 +w3) ‖+ ‖Cρ (w1 +w2 −w3) ‖+ ‖Cρ (w1 −w2) ‖ (51)

for all unit vectors w1, w2 and w3. Applying the polarization identity we obtain the

relations

‖Cρ (w1 +w2 +w3) ‖ =
√
‖Cρ (w1 +w2) ‖2 + ‖Cρw3‖2 + 2〈Cρ (w1 +w2) , Cρw3〉,

‖Cρ (w1 +w2 −w3) ‖ =
√
‖Cρ (w1 +w2) ‖2 + ‖Cρw3‖2 − 2〈Cρ (w1 +w2) , Cρw3〉.
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Therefore, the maximum of

‖Cρ (w1 +w2 +w3) ‖+ ‖Cρ (w1 +w2 −w3) ‖

is obtained if and only if Cρ (w1 +w2) ⊥ Cρw3. As w1 +w2 ⊥ w1−w2 in this case we

can parametrize the unit vectors in terms of an angle α ∈ [0, π/2] and in terms of two

mutually orthogonal unit vectors c and c′ in the form

w1 +w2 = 2c cosα,

w1 −w2 = 2c′ sinα,

w1 +w2 ⊥ w3.

In terms of this parametrization relation (51) reduces to the form

2
√

4‖Cρc‖2 cos2 α + ‖Cρw3‖2 + 2 sinα‖Cρc′‖,

and its maximum with respect to the angle α is given by√
(4‖Cρc‖2 + ‖Cρc′‖2) (4‖Cρc‖2 + ‖Cρw3‖2)

‖Cρc‖
.

For Bell diagonal states CT
ρ Cρ = diag(a2

x, a
2
y, a

2
z) and the maximum of this

expression is achieved if and only if w3 ‖ c′ and if both vectors are the eigenvectors

of the second largest eigenvalue of CT
ρ Cρ. So (51) simplifies to

4‖Cρc‖2 + ‖Cρc′‖2

‖Cρc‖
,

which results in the 6 inequalities

0 6 2−
4a2

i + a2
j

|ai|
, a2

i > a2
j > a2

k (52)

with i, j, k ∈ {x, y, z}. These inequalities define a convex body, which is larger than

the Steinmetz solid obtained for the CHSH type inequalities. As shown in Fig. 3 this

convex body contains some entangled and all separable two-qubit quantum states.

With the help of the hit-and-run algorithm the volume ratio RCG = NCG/N =

0.03677±0.00001 has been estimated with N denoting all Bell-diagonal quantum states

and NCG denoting the number of all detectable entangled Bell-diagonal quantum states

which do not fulfill (52). Comparing this result with the corresponding ratio of the

CHSH inequality, i.e. RCHSH = 0.08702± 0.00001, it is apparent that for Bell-diagonal

two-qubit quantum states the CHSH inequality can detect entanglement more efficiently

than the Collins-Gisin inequality. However, it turns out this property is not valid for

arbitrary two-qubit states of the 15 dimensional Euclidean vector space. This may be

traced back to the fact that the information on the density matrix ρ stored in the vectors

τ
(A)
ρ and τ

(B)
ρ is exploited by the Collins-Gisin inequality efficiently, while the CHSH

inequality does not take this information into account at all.
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Figure 3. Schematic representation of the convex set defined by the inequalities in (52)

together with the convex set of separable Bell diagonal two-qubit states (octahedron)

inside the convex set of all Bell diagonal two-qubit states (tetrahedron), ( cf. Figs. 1

and 2): Points lying outside of the tetrahedron do not represent quantum states.

With the help of the hit-and-run algorithm violations of the Collins-Gisin inequality

have been investigated for general two-qubit quantum states using sets of random

measurements. As this procedure is very time consuming, only 106 points have been

generated per run. In Fig. 4 the fraction of two-qubit quantum states violating the

Collins-Gisin inequality RCG, violating the CHSH inequality RCHSH and violating either

the one or the other RCG+CHSH are shown for different numbers of randomly selected

measurements. Apparently the combination of both inequalities results in the highest

ratios, which is consistent with former results [42]. This is due to the fact that there are

states which violate one of these inequalities but not the other one. These numerical

results demonstrate convincingly that as far as arbitrary two-qubit quantum states

are concerned the Collins-Gisin inequality is capable of detecting entanglement more

efficiently than the CHSH inequality. According to Fig. 4 there is no convincing

convergence of our numerical results with increasing numbers of measurements even

at a level of 2 · 106 random measurement settings. Therefore, we have investigated for

given quantum states the right hand side of inequality (50), which is already optimized

for 3 vectors. This way we have obtained the following estimate

RCG = 0.07128± 0.00002. (53)

Comparison of this result with the corresponding results of the CHSH inequality, i.e.

RCHSH = 0.008221 ± 0.000008 (cf. Table 3), also hints at the better performance of

the Collins-Gisin inequality as far as detectable entanglement of two-qubit quantum

states is concerned. Imposing the condition of either violating (45) or (49) we obtain

the estimate

RCG+CHSH = 0.073364± 0.000021. (54)
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Figure 4. Fraction of two-qubit quantum states violating the Collins-Gisin inequality

RCG, the CHSH inequality RCHSH and either one or the other RCG+CHSH: For each

point m random measurement settings are generated and 106 states are tested for

possible violations.

Although this demonstrates an improvement in the ratio of detectable entanglement

it should be kept in mind that still 90.3% of all entangled two-qubit quantum states

remain undetected by these Bell inequalities.

6. Summary and conclusions

We have investigated the Euclidean volume ratios R between PPT and all quantum

states in several bipartite quantum systems. For this purpose a new approach has been

developed. On the analytical side it is based on the Peres-Horodecki criterion and tools

involving Newton identities and Descartes’ rule of signs and on the numerical side it

involves two numerical methods based on the multiphase Monte Carlo method combined

with the Muller method and on the hit-and-run algorithm.

For two-qubit states we have been able to estimate this Euclidean volume ratios

R with high accuracy in several interesting cases. Thereby, the analytically obtainable

volume ratio of two-qubit Bell diagonal states, i.e., R = 0.5, of X-states, i.e., R = 0.4

[16], and of rebit-rebit states, i.e., R = 29
64

[17], have been used as a benchmark to test the

numerical accuracy and characteristic properties of the Monte Carlo methods used in

our numerical approach. For general two-qubit states our results of the multiphase

Monte Carlo method, i.e. R = 0.243 ± 0.007, and the hit-and-run algorithm, i.e.

R = 0.242444 ± 0.000027 are close to the recent analytical and numerical results of

Slater and Dunkl [12] supporting the conjecture that R = 8/33 ≈ 0, 24242, and are

consistent with the numerical result of Shang et al. [14], i.e. R = 0.242 ± 0.002, Milz

et al. [16], i.e., R = 0.24262 ± 0.0134, and Fei et al. [18], i.e., R = 0.24243 ± 0.00001.

Compared to other numerical approaches these accuracies can already be achieved with

significantly lower sample sizes.

We have demonstrated that already in qubit-qutrit systems the advantage of

the Muller and Mutliphase Monte Carlo method, namely generating quantum states

uniformly, is compromised by increasing the dimension of the Euclidean space from d = 3
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(for Bell-diagonal qubit-qubit systems) to d = 35 (for general qubit-qutrit systems).

Our numerical investigations demonstrate that already for d = 24 the multiphase

Monte Carlo approach requires large numbers of points in order to find at least some

quantum states. On the other hand in the hit-and-run algorithm quantum states are

not generated uniformly and uniform distributions are obtained only in the limit of

large sample sizes. For general qubit-qutrit states, where all PPT quantum states are

separable, our result of the hit-and-run algorithm, i.e., R = 0.026969 ± 0.000042, is

again consistent with the conjecture of Slater, i.e., R = 32/1199 ≈ 0.026688 [54], and

with the numerical result of Milz et al. [16], i.e., R = 0.02700± 0.00016. We have also

tested our approach for a qubit-qudit system with a four-level qudit (d = 63) and for

qutrit-qutrit systems (d = 80). For this particular qubit-qudit system we have obtained

the result R = 0.001294 ± 0.000004 which is consistent with the result of Milz et al.

[16]. As a new result of this approach we find the ratio R = 0.0001025± 0.0000012 for

general qutrit-qutrit quantum states.

With the help of our numerical approach we have also investigated the typicality

of detectable bipartite entanglement in two-qubit systems which can be detected by

violations of Bell inequalities. Our results demonstrate that for general two-qubit

quantum states the Collins-Gisin type Bell inequality is capable of detecting more

entangled states than the CHSH inequality. Whereas the CHSH type Bell inequality can

detect only 1% of all entangled two-qubit states, the Collin-Gisin inequality is capable

of detecting almost 9.4% of all entangled two-qubit states. A combined test of both

inequalities is even capable of detecting 9.6% of all entangled two-qubit states.

For the special case of Bell-diagonal two-qubit quantum states we have also

presented an analytical criterion for violating the Collins-Gisin inequality at least for one

possible measurement setup. Within this special class of quantum states this analytical

result generalizes the result of Horodecki et al. [55] (cf. (45)) for the CHSH inequality to

the Collins-Gisin inequality. Contrary to the case of general two-qubit quantum states

it turned out that for Bell-diagonal two-qubit quantum states the CHSH inequality

is more efficient in detecting entanglement than the Collins-Gisin inequality. As these

results apply to the highly idealized situation, in which Bell tests can be realized with all

possible measurement setups, we have also addressed the question which finite number

of Bell measurements is capable of detecting a large part of entangled states. For the

CHSH inequality we have proposed a list of 12 special measurement setups. Despite

their small number these measurement setups are capable of detecting already 86.63%

of all detectable Bell-diagonal entangled two-qubit states.

All our numerical results support the expectation that the Euclidean volume ratios

between PPT quantum states and all quantum states in bipartite quantum systems is

decreasing fast and tends to zero with increasing dimension of the quantum systems

involved [58]. Despite the resulting dominance of entangled bipartite quantum states

with negative partial transpose we have demonstrated quantitatively that already in

two-qubit systems the detectability of entanglement by Bell inequalities is very limited.

Therefore, this dichotomy between the abundance of entangled quantum states on the
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one hand and the detectability of entanglement by Bell-type inequalities on the other

hand deserves further investigation.
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