000904602 001__ 904602
000904602 005__ 20230123110547.0
000904602 0247_ $$2doi$$a10.1002/aelm.202100974
000904602 0247_ $$2Handle$$a2128/31705
000904602 0247_ $$2WOS$$aWOS:000720738700001
000904602 037__ $$aFZJ-2021-06172
000904602 082__ $$a621.3
000904602 1001_ $$0P:(DE-HGF)0$$aMüller, Maximilian J.$$b0
000904602 245__ $$aTailoring Crystallization Kinetics of Chalcogenides for Photonic Applications
000904602 260__ $$aWeinheim$$bWiley-VCH Verlag GmbH & Co. KG$$c2022
000904602 3367_ $$2DRIVER$$aarticle
000904602 3367_ $$2DataCite$$aOutput Types/Journal article
000904602 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661316618_27669
000904602 3367_ $$2BibTeX$$aARTICLE
000904602 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904602 3367_ $$00$$2EndNote$$aJournal Article
000904602 520__ $$aChalcogenides possess interesting optical properties, which are attractive for a variety of applications such as data storage, neuromorphic computing, and photonic switches. Lately a group of covalently bonded chalcogenides including Sb2Se3 and Sb2S3 has moved into the focus of interest for such photonic applications, where high optical contrast as well as reliable and fast switching is of crucial importance. Here, these properties of Sb2Se3 are examined and compared with typical phase change materials such as GeSb2Te4 and Ge2Sb2Te5. Sb2Se3 is favorable for many photonic applications due to its larger band gap, yet, the maximum optical contrast achievable is smaller than for GeTe and Ge2Sb2Te5. Furthermore, crystallization needs significantly longer and exhibits a distinctively wider stochastic distribution of reflectances after crystallization, which provides challenges for the usage in photonic applications. At the same time, the glassy/amorphous state of Sb2Se3 is more stable. These differences can be attributed to differences in bonding of the crystalline state, which is more covalent for Sb2Se3. A quantum-chemical map can help to understand and explain these trends and facilitates the design of tailored materials for photonic applications.
000904602 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000904602 536__ $$0G:(BMBF)16ES1133K$$aVerbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)$$c16ES1133K$$x1
000904602 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904602 7001_ $$0P:(DE-HGF)0$$aYadav, Aakash$$b1
000904602 7001_ $$0P:(DE-HGF)0$$aPersch, Christoph$$b2
000904602 7001_ $$0P:(DE-HGF)0$$aWahl, Sophia$$b3
000904602 7001_ $$0P:(DE-HGF)0$$aHoff, Felix$$b4
000904602 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b5$$eCorresponding author
000904602 773__ $$0PERI:(DE-600)2810904-1$$a10.1002/aelm.202100974$$gp. 2100974 -$$n8$$p2100974 -$$tAdvanced electronic materials$$v8$$x2199-160X$$y2022
000904602 8564_ $$uhttps://juser.fz-juelich.de/record/904602/files/Adv%20Elect%20Materials%20-%202021%20-%20M%20ller%20-%20Tailoring%20Crystallization%20Kinetics%20of%20Chalcogenides%20for%20Photonic%20Applications.pdf$$yOpenAccess
000904602 909CO $$ooai:juser.fz-juelich.de:904602$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b5$$kFZJ
000904602 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000904602 9141_ $$y2022
000904602 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904602 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000904602 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000904602 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904602 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000904602 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ELECTRON MATER : 2021$$d2022-11-12
000904602 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000904602 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000904602 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000904602 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000904602 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000904602 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV ELECTRON MATER : 2021$$d2022-11-12
000904602 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000904602 980__ $$ajournal
000904602 980__ $$aVDB
000904602 980__ $$aUNRESTRICTED
000904602 980__ $$aI:(DE-Juel1)PGI-10-20170113
000904602 9801_ $$aFullTexts