001     904602
005     20230123110547.0
024 7 _ |a 10.1002/aelm.202100974
|2 doi
024 7 _ |a 2128/31705
|2 Handle
024 7 _ |a WOS:000720738700001
|2 WOS
037 _ _ |a FZJ-2021-06172
082 _ _ |a 621.3
100 1 _ |a Müller, Maximilian J.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Tailoring Crystallization Kinetics of Chalcogenides for Photonic Applications
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH Verlag GmbH & Co. KG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661316618_27669
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Chalcogenides possess interesting optical properties, which are attractive for a variety of applications such as data storage, neuromorphic computing, and photonic switches. Lately a group of covalently bonded chalcogenides including Sb2Se3 and Sb2S3 has moved into the focus of interest for such photonic applications, where high optical contrast as well as reliable and fast switching is of crucial importance. Here, these properties of Sb2Se3 are examined and compared with typical phase change materials such as GeSb2Te4 and Ge2Sb2Te5. Sb2Se3 is favorable for many photonic applications due to its larger band gap, yet, the maximum optical contrast achievable is smaller than for GeTe and Ge2Sb2Te5. Furthermore, crystallization needs significantly longer and exhibits a distinctively wider stochastic distribution of reflectances after crystallization, which provides challenges for the usage in photonic applications. At the same time, the glassy/amorphous state of Sb2Se3 is more stable. These differences can be attributed to differences in bonding of the crystalline state, which is more covalent for Sb2Se3. A quantum-chemical map can help to understand and explain these trends and facilitates the design of tailored materials for photonic applications.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
536 _ _ |a Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)
|0 G:(BMBF)16ES1133K
|c 16ES1133K
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Yadav, Aakash
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Persch, Christoph
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wahl, Sophia
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hoff, Felix
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wuttig, Matthias
|0 P:(DE-Juel1)176716
|b 5
|e Corresponding author
773 _ _ |a 10.1002/aelm.202100974
|g p. 2100974 -
|0 PERI:(DE-600)2810904-1
|n 8
|p 2100974 -
|t Advanced electronic materials
|v 8
|y 2022
|x 2199-160X
856 4 _ |u https://juser.fz-juelich.de/record/904602/files/Adv%20Elect%20Materials%20-%202021%20-%20M%20ller%20-%20Tailoring%20Crystallization%20Kinetics%20of%20Chalcogenides%20for%20Photonic%20Applications.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904602
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)176716
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ELECTRON MATER : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV ELECTRON MATER : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21