000904604 001__ 904604
000904604 005__ 20230123110547.0
000904604 0247_ $$2doi$$a10.1002/adfm.202110166
000904604 0247_ $$2ISSN$$a1057-9257
000904604 0247_ $$2ISSN$$a1099-0712
000904604 0247_ $$2ISSN$$a1616-301X
000904604 0247_ $$2ISSN$$a1616-3028
000904604 0247_ $$2Handle$$a2128/30579
000904604 0247_ $$2altmetric$$aaltmetric:116107363
000904604 0247_ $$2WOS$$aWOS:000710103100001
000904604 037__ $$aFZJ-2021-06174
000904604 082__ $$a530
000904604 1001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b0$$eCorresponding author
000904604 245__ $$aHalide Perovskites: Advanced Photovoltaic Materials Empowered by a Unique Bonding Mechanism
000904604 260__ $$aWeinheim$$bWiley-VCH$$c2022
000904604 3367_ $$2DRIVER$$aarticle
000904604 3367_ $$2DataCite$$aOutput Types/Journal article
000904604 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643201811_8201
000904604 3367_ $$2BibTeX$$aARTICLE
000904604 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904604 3367_ $$00$$2EndNote$$aJournal Article
000904604 520__ $$aOutstanding photovoltaic (PV) materials combine a set of advantageous properties including large optical absorption and high charge carrier mobility, facilitated by small effective masses. Halide perovskites (ABX3, where X = I, Br, or Cl) are among the most promising PV materials. Their optoelectronic properties are governed by the BX bond, which is responsible for the pronounced optical absorption and the small effective masses of the charge carriers. These properties are frequently attributed to the ns2 configuration of the B atom, i.e., Pb 6s2 or Sn 5s2 (“lone-pair”) states. The analysis of the PV properties in conjunction with a quantum-chemical bond analysis reveals a different scenario. The BX bond differs significantly from ionic, metallic, or conventional 2c2e covalent bonds. Instead it is better regarded as metavalent, since it shares about one p-electron between adjacent atoms. The resulting σ-bond, formally a 2c1e bond, is half-filled, causing pronounced optical absorption. Electron transfer between B and X atoms and lattice distortions open a moderate bandgap resulting in charge carriers with small effective masses. Hence, metavalent bonding explains favorable PV properties of halide perovskites, as summarized in a map for different bond types, which provides a blueprint to design PV materials.
000904604 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000904604 536__ $$0G:(BMBF)16ES1133K$$aVerbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)$$c16ES1133K$$x1
000904604 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904604 7001_ $$0P:(DE-HGF)0$$aSchön, Carl-Friedrich$$b1
000904604 7001_ $$0P:(DE-HGF)0$$aSchumacher, Mathias$$b2
000904604 7001_ $$0P:(DE-HGF)0$$aRobertson, John$$b3
000904604 7001_ $$0P:(DE-HGF)0$$aGolub, Pavlo$$b4
000904604 7001_ $$0P:(DE-HGF)0$$aBousquet, Eric$$b5
000904604 7001_ $$0P:(DE-HGF)0$$aGatti, Carlo$$b6
000904604 7001_ $$0P:(DE-HGF)0$$aRaty, Jean-Yves$$b7
000904604 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.202110166$$gp. 2110166 -$$n2$$p2110166 -$$tAdvanced functional materials$$v16$$x1057-9257$$y2022
000904604 8564_ $$uhttps://juser.fz-juelich.de/record/904604/files/Adv%20Funct%20Materials%20-%202021%20-%20Wuttig%20-%20Halide%20Perovskites%20Advanced%20Photovoltaic%20Materials%20Empowered%20by%20a%20Unique%20Bonding.pdf$$yOpenAccess
000904604 909CO $$ooai:juser.fz-juelich.de:904604$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b0$$kFZJ
000904604 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000904604 9141_ $$y2022
000904604 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000904604 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28
000904604 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000904604 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000904604 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000904604 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904604 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2021$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2021$$d2022-11-15
000904604 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000904604 980__ $$ajournal
000904604 980__ $$aVDB
000904604 980__ $$aUNRESTRICTED
000904604 980__ $$aI:(DE-Juel1)PGI-10-20170113
000904604 9801_ $$aFullTexts