000904604 001__ 904604
000904604 005__ 20230123110547.0
000904604 0247_ $$2doi$$a10.1002/adfm.202110166
000904604 0247_ $$2ISSN$$a1057-9257
000904604 0247_ $$2ISSN$$a1099-0712
000904604 0247_ $$2ISSN$$a1616-301X
000904604 0247_ $$2ISSN$$a1616-3028
000904604 0247_ $$2Handle$$a2128/30579
000904604 0247_ $$2altmetric$$aaltmetric:116107363
000904604 0247_ $$2WOS$$aWOS:000710103100001
000904604 037__ $$aFZJ-2021-06174
000904604 082__ $$a530
000904604 1001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b0$$eCorresponding author
000904604 245__ $$aHalide Perovskites: Advanced Photovoltaic Materials Empowered by a Unique Bonding Mechanism
000904604 260__ $$aWeinheim$$bWiley-VCH$$c2022
000904604 3367_ $$2DRIVER$$aarticle
000904604 3367_ $$2DataCite$$aOutput Types/Journal article
000904604 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643201811_8201
000904604 3367_ $$2BibTeX$$aARTICLE
000904604 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904604 3367_ $$00$$2EndNote$$aJournal Article
000904604 520__ $$aOutstanding photovoltaic (PV) materials combine a set of advantageous properties including large optical absorption and high charge carrier mobility, facilitated by small effective masses. Halide perovskites (ABX3, where X = I, Br, or Cl) are among the most promising PV materials. Their optoelectronic properties are governed by the BX bond, which is responsible for the pronounced optical absorption and the small effective masses of the charge carriers. These properties are frequently attributed to the ns2 configuration of the B atom, i.e., Pb 6s2 or Sn 5s2 (“lone-pair”) states. The analysis of the PV properties in conjunction with a quantum-chemical bond analysis reveals a different scenario. The BX bond differs significantly from ionic, metallic, or conventional 2c2e covalent bonds. Instead it is better regarded as metavalent, since it shares about one p-electron between adjacent atoms. The resulting σ-bond, formally a 2c1e bond, is half-filled, causing pronounced optical absorption. Electron transfer between B and X atoms and lattice distortions open a moderate bandgap resulting in charge carriers with small effective masses. Hence, metavalent bonding explains favorable PV properties of halide perovskites, as summarized in a map for different bond types, which provides a blueprint to design PV materials.
000904604 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000904604 536__ $$0G:(BMBF)16ES1133K$$aVerbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)$$c16ES1133K$$x1
000904604 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904604 7001_ $$0P:(DE-HGF)0$$aSchön, Carl-Friedrich$$b1
000904604 7001_ $$0P:(DE-HGF)0$$aSchumacher, Mathias$$b2
000904604 7001_ $$0P:(DE-HGF)0$$aRobertson, John$$b3
000904604 7001_ $$0P:(DE-HGF)0$$aGolub, Pavlo$$b4
000904604 7001_ $$0P:(DE-HGF)0$$aBousquet, Eric$$b5
000904604 7001_ $$0P:(DE-HGF)0$$aGatti, Carlo$$b6
000904604 7001_ $$0P:(DE-HGF)0$$aRaty, Jean-Yves$$b7
000904604 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.202110166$$gp. 2110166 -$$n2$$p2110166 -$$tAdvanced functional materials$$v16$$x1057-9257$$y2022
000904604 8564_ $$uhttps://juser.fz-juelich.de/record/904604/files/Adv%20Funct%20Materials%20-%202021%20-%20Wuttig%20-%20Halide%20Perovskites%20Advanced%20Photovoltaic%20Materials%20Empowered%20by%20a%20Unique%20Bonding.pdf$$yOpenAccess
000904604 909CO $$ooai:juser.fz-juelich.de:904604$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b0$$kFZJ
000904604 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000904604 9141_ $$y2022
000904604 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000904604 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28
000904604 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000904604 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000904604 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000904604 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904604 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2021$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-15
000904604 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2021$$d2022-11-15
000904604 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000904604 980__ $$ajournal
000904604 980__ $$aVDB
000904604 980__ $$aUNRESTRICTED
000904604 980__ $$aI:(DE-Juel1)PGI-10-20170113
000904604 9801_ $$aFullTexts