000904605 001__ 904605
000904605 005__ 20240506205521.0
000904605 0247_ $$2doi$$a10.1103/PRXQuantum.2.030314
000904605 0247_ $$2Handle$$a2128/30004
000904605 0247_ $$2altmetric$$aaltmetric:110488417
000904605 0247_ $$2WOS$$aWOS:000680528300001
000904605 037__ $$aFZJ-2021-06175
000904605 082__ $$a530
000904605 1001_ $$00000-0003-4800-2518$$aBattistel, F.$$b0$$eCorresponding author
000904605 245__ $$aHardware-Efficient Leakage-Reduction Scheme for Quantum Error Correction with Superconducting Transmon Qubits
000904605 260__ $$aCollege Park, MD$$bAmerican Physical Society$$c2021
000904605 3367_ $$2DRIVER$$aarticle
000904605 3367_ $$2DataCite$$aOutput Types/Journal article
000904605 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714997458_12919
000904605 3367_ $$2BibTeX$$aARTICLE
000904605 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904605 3367_ $$00$$2EndNote$$aJournal Article
000904605 520__ $$aLeakage outside of the qubit computational subspace poses a threatening challenge to quantum error correction (QEC). We propose a scheme using two leakage-reduction units (LRUs) that mitigate these issues for a transmon-based surface code, without requiring an overhead in terms of hardware or QEC-cycle time as in previous proposals. For data qubits, we consider a microwave drive to transfer leakage to the readout resonator, where it quickly decays, ensuring that this negligibly disturbs the computational states for realistic system parameters. For ancilla qubits, we apply a |1⟩↔|2⟩π pulse conditioned on the measurement outcome. Using density-matrix simulations of the distance-3 surface code, we show that the average leakage lifetime is reduced to almost one QEC cycle, even when the LRUs are implemented with limited fidelity. Furthermore, we show that this leads to a significant reduction of the logical error rate. This LRU scheme opens the prospect for near-term scalable QEC demonstrations.
000904605 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000904605 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904605 7001_ $$00000-0001-7124-8933$$aVarbanov, B. M.$$b1
000904605 7001_ $$0P:(DE-Juel1)174062$$aTerhal, B. M.$$b2
000904605 773__ $$0PERI:(DE-600)3063626-7$$a10.1103/PRXQuantum.2.030314$$gVol. 2, no. 3, p. 030314$$n3$$p030314$$tPRX quantum$$v2$$x2691-3399$$y2021
000904605 8564_ $$uhttps://juser.fz-juelich.de/record/904605/files/PRXQuantum.2.030314.pdf$$yOpenAccess
000904605 909CO $$ooai:juser.fz-juelich.de:904605$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000904605 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174062$$aForschungszentrum Jülich$$b2$$kFZJ
000904605 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000904605 9141_ $$y2021
000904605 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904605 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904605 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPRX QUANTUM : 2022$$d2023-10-27
000904605 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000904605 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000904605 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-12-20T16:22:33Z
000904605 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-12-20T16:22:33Z
000904605 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-12-20T16:22:33Z
000904605 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-12-20T16:22:33Z
000904605 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000904605 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
000904605 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000904605 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
000904605 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
000904605 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPRX QUANTUM : 2022$$d2023-10-27
000904605 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
000904605 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
000904605 920__ $$lyes
000904605 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000904605 980__ $$ajournal
000904605 980__ $$aVDB
000904605 980__ $$aI:(DE-Juel1)PGI-11-20170113
000904605 980__ $$aUNRESTRICTED
000904605 9801_ $$aFullTexts