Home > Publications database > Hardware-Efficient Leakage-Reduction Scheme for Quantum Error Correction with Superconducting Transmon Qubits > print |
001 | 904605 | ||
005 | 20240506205521.0 | ||
024 | 7 | _ | |a 10.1103/PRXQuantum.2.030314 |2 doi |
024 | 7 | _ | |a 2128/30004 |2 Handle |
024 | 7 | _ | |a altmetric:110488417 |2 altmetric |
024 | 7 | _ | |a WOS:000680528300001 |2 WOS |
037 | _ | _ | |a FZJ-2021-06175 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Battistel, F. |0 0000-0003-4800-2518 |b 0 |e Corresponding author |
245 | _ | _ | |a Hardware-Efficient Leakage-Reduction Scheme for Quantum Error Correction with Superconducting Transmon Qubits |
260 | _ | _ | |a College Park, MD |c 2021 |b American Physical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1714997458_12919 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Leakage outside of the qubit computational subspace poses a threatening challenge to quantum error correction (QEC). We propose a scheme using two leakage-reduction units (LRUs) that mitigate these issues for a transmon-based surface code, without requiring an overhead in terms of hardware or QEC-cycle time as in previous proposals. For data qubits, we consider a microwave drive to transfer leakage to the readout resonator, where it quickly decays, ensuring that this negligibly disturbs the computational states for realistic system parameters. For ancilla qubits, we apply a |1⟩↔|2⟩π pulse conditioned on the measurement outcome. Using density-matrix simulations of the distance-3 surface code, we show that the average leakage lifetime is reduced to almost one QEC cycle, even when the LRUs are implemented with limited fidelity. Furthermore, we show that this leads to a significant reduction of the logical error rate. This LRU scheme opens the prospect for near-term scalable QEC demonstrations. |
536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Varbanov, B. M. |0 0000-0001-7124-8933 |b 1 |
700 | 1 | _ | |a Terhal, B. M. |0 P:(DE-Juel1)174062 |b 2 |
773 | _ | _ | |a 10.1103/PRXQuantum.2.030314 |g Vol. 2, no. 3, p. 030314 |0 PERI:(DE-600)3063626-7 |n 3 |p 030314 |t PRX quantum |v 2 |y 2021 |x 2691-3399 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/904605/files/PRXQuantum.2.030314.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:904605 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)174062 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PRX QUANTUM : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-12-20T16:22:33Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-12-20T16:22:33Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2021-12-20T16:22:33Z |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2021-12-20T16:22:33Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-27 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PRX QUANTUM : 2022 |d 2023-10-27 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-27 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-11-20170113 |k PGI-11 |l JARA Institut Quanteninformation |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-11-20170113 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|