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We investigate the interplay between gravity and the quantum coherence present in the state of a pulse of
light propagating in curved spacetime. We first introduce an operational way to distinguish between the
overall shift in the pulse wave packet and its genuine deformation after propagation. We then apply our
technique to quantum states of photons that are coherent in the frequency degree of freedom, as well as to
states of completely incoherent light. We focus on Gaussian profiles and frequency combs and find that the
quantum coherence initially present can enhance the deformation induced by propagation in a curved
background. These results further support the claim that genuine quantum features, such as quantum
coherence, can be used to probe the gravitational properties of physical systems. We specialize our
techniques to Earth-to-satellite communication setups, where the effects of gravity are weak but can be
tested with current satellite technologies.
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I. INTRODUCTION

Photons and pulses of light are physical systems that are
central to many areas of science. The ability to engineer,
transmit, detect, and manipulate light is key to successful
experimental, theoretical and technological endeavors
[1–3]. Modeling light can be done using classical electro-
dynamics alone, as well as quantum mechanics or quantum
electrodynamics. The latter avenue has given rise to the field
of quantum optics, which is now widely studied theoreti-
cally and employed experimentally [4]. Development of
quantum optics has led to the formation of the rapidly
growing area of quantum optical technologies, with appli-
cations such as quantum sensing [5–7], quantum computing
[8], and quantum communication with conventional [9–23]
and small satellites [24,25]. These applications have in
common the fact that, in order to surpass their classical
counterparts, a tremendous control over quantum states is
required. For quantum communication in particular, the
quantum states to be employed need to be transmitted over
large distances. A natural starting point is to use optical
fibres, which unfortunately limit achievable distances to
few-hundreds of kilometers [26,27]. The alternative to this is
tomove part of the infrastructure to space, where satellites in
orbit are used to generate, receive or relay signals [10–
25,28,29]. This latter approach brings into play novel
advantages, such as significantly larger achievable distances

[11], as well as novel difficulties. Regardless of the advances
within this avenue of research, the role of gravity on
quantum information protocols has been ignored mainly
because of the belief that its effects are negligible.
Nevertheless, since space-based science occurs in an envi-
ronment that is inherently within the remit of general
relativity, it is important to answer the question of how to
include gravity in these endeavors.
The question of the effects of gravity on wave packets of

the electromagnetic field has been recently addressed in the
context of quantum communications with satellite-based
platforms [30–32]. Wave packets of light were used to
model a photon or a pulse of light traveling between two
users located at different heights in the gravitational
potential of the Earth. It was found that the receiver would
detect a mismatch in the frequency distribution between the
received wave packet and the expected one, which encodes
important information about relevant parameters, such as
the distance between users, the mass of the Earth and its
rotation [30–32]. Extension to include the effects of gravity
on the polarization of the photons have also been per-
formed [33,34].
More recently, complementary work has quantified the

distortion of the wave packet in the degrees of freedom
perpendicular to the path of propagation [35]. Together, this
body of research provides a better understanding of the
effects incurred by photons that propagate in curved
spacetimes. The rapid advances in the study of satellite
based quantum communication [10–25,28,29] make it
necessary to obtain a comprehensive understanding of*david.edward.bruschi@posteo.net
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the effects of spacetime curvature on photons [36],
given their core role as information carriers in future
technologies.
In this work we use quantum field theory in (weakly)

curved spacetime to answer a fundamental question con-
cerning the effects of gravity on propagating light: is it
possible to separate and quantify the genuine distortion
experienced by a wave packet of light due to propagation
on a curved background from the rigid shift of the wave
packet as a whole? To answer this question we define an
operational way to quantify such genuine distortion, and
we compute it for simple, yet experimentally realizable,
wave packets. We find that, while bell-shaped (i.e.,
Gaussian) packets without any complex phase are resilient
to the deformation and witness small changes, as expected
for such functions [37], wave packets with complex phases
experience distortions that can be potentially large, and can
be detected with current technology. Our results also
highlight the difference inherent between initial states of
light that are pure compared to initial states of light that are
completely mixed. In particular, the coherence in the states,
which is encoded in a relative phase of the sharp-frequency
photonic states, can significantly enhance the genuine
distortion. This reinforces the intuition that quantum
coherence can influence gravitational properties of quan-
tum systems.
We believe that the theoretical results of our work

provide additional insight for the development of novel
tests of quantum field theory in curved spacetime, as well as
of advanced theories of Nature [6,21,38,39]. Finally, these
results will also provide new ways to exploit the informa-
tion encoded in the deformation of wave packets in the
development of novel technologies for sensing, positioning
[20], time-sharing [22] and communication [10,13,24,25].
This work is organized as follows. In Sec. II we

introduce the necessary tools. In Sec. III we provide our
main operational tool to distinguish between deformation
and translation of wave packets of light. In Sec. IV we
apply our main proposal to concrete wave packets. In
Sec. V we comment on the result of this work.

II. PROPAGATION OF PHOTONS IN
CURVED SPACETIME

The propagation of light (in curved spacetime) is an
important topic of research. An important aspect that is
crucial to our work is that of the nature and interpretation of
the effects of spacetime curvature on the defining quantities
of a photon: its frequency and momentum. There have been
many studies in this direction, which have come to “differ-
ent conclusions” [40,41]. While the formalism to quantify
the redshiftlike effects is not a topic of debate, the
interpretation of the results is at least twofold: on the
one hand, it has been suggested that energy and frequency
of the photon are conserved, and that the redshiftlike effects
are due to changes in the energy levels of local atoms at the

sender and receiver’s location [40]. On the other, locally
defined quantities along the null geodesic followed by a
photon are not considered as the correct ones to be used,
and a position-dependent frequency shift is obtained by
defining frequency using a local clock at the each user’s
end. Regardless of the point of view taken, we stress that
the overall physical conclusion is the same: experimentally
measured photons suffer from gravitational redshift [42].
The effects of the (weakly) curved spacetime surround-

ing the Earth on the frequency profile of photons propa-
gating between two users placed at different heights in the
gravitational potential have been considered recently in
order to provide realistic modelling of quantum commu-
nication setups [30–32]. More detailed analysis of propa-
gation in arbitrary curved backgrounds has also been
recently considered by computing including the distortion
effects of curvature on propagating pulses of light in the
dimensions orthogonal to the path of propagation [35].
Here we will employ the original approach [30–32] and
will assume that transversal deformations can be safely
ignored. We leave it to further work to establish a
complete quantitative estimation of the effects for concrete
3-dimensional setups.

A. Spacetime surrounding the Earth

Light propagating in curved spacetime can be modeled,
for simplicity, as scalar field φ̂ðxμÞ propagating through a
classical curved background with metric g and spherical
coordinates ðt; r; θ;ϕÞ. Such field is suitable to describe
qualitatively one polarization of the electromagnetic field
[43]. Distances in curved spacetime are obtained using the
infinitesimal line element ds2 ≔ gμνdxμdxν, which in turn
is determined by the components gμν of the metric. In the
case of the spacetime surrounding a (static) planet, such as
the Earth, we can employ the Schwarzschild metric

g ¼ diagð−fðrÞ; f−1ðrÞ; r2; r2 sin2 θÞ ð1Þ

with good approximation. Here we have defined fðrÞ ≔
1 − ð2M⊕Þ=r andM⊕ is the mass of the planet.1 The metric
(1) can be complemented with boundary conditions at
the Earth’s surface r ¼ rE, but we note that we will
focus on effects that do not depend on light impinging
on the planet’s surface and therefore ignore this issue.
Rotation can also be included by extending the metric (1) to
the Kerr metric [44], but the effects of rotation are
negligible [32] to lowest order and we leave to its inclusion
to future work.

1In this work we use units ℏ ¼ c ¼ G ¼ 1 unless explicitly
states. This means that wherever the mass of the Earth M⊕
appears it should be replaced by GNM⊕=c2. In these unites,
mass has dimension length. We employ Einstein’s summation
convention.
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The classical field φðxμÞ satisfies the Klein-Gordon
equation □φ ≔ ð−gÞ−1=2∂μðð−gÞ1=2gμν∂νÞφ ¼ 0, where g
is the determinant of the metric. The quantum field can then
be decomposed as φ̂ðxμÞ ¼ R

d3k½âkukðxμÞ þ â†ku
�
kðxμÞ�

when there is a natural timelike Killing vector ∂ξ (i.e., a
natural direction of time), and the modes ukðxμÞ satisfy
□ukðxμÞ ¼ 0, as well as the eigenvalue equation ∂ξuk ¼
−iωkuk for appropriate field frequencies ωk. The annihi-
lation and creation operators âk; â

†
k satisfy the canonical

commutation relations ½âk; â†k0 � ¼ δ3ðk − k0Þ, while all
other commutators vanish.
In weakly curved spacetime we can work within the

framework of linearized gravity, where gμν ¼ ημν þ ϵhμν,
η ¼ diagð−1; 1; 1; 1Þ is the Minkowski metric of flat
spacetime, and hμν is the perturbation to Minkowski metric
[44]. Here, ϵ ≪ 1 is a control parameter that we can assume
upper bounded by ϵ ≈ rS=rE ∼ 1.4 × 10−9, where rS ≔
2GNM⊕=c2 ∼ 9 mm is the Schwarzschild radius associated
to the Earth.2

B. Propagation of light

We assume that we can model a photon as a wave packet
of the solutions ukðxμÞ to the field equations □ukðxμÞ ¼ 0,
and that we can exclude all effects, such as dispersion and
diffraction, suffered by the photon during propagation [30].
We then assume that the photon is fundamentally confined
in the direction of propagation, and therefore we neglect to
first approximation the effects of the dimensions orthogo-
nal to the propagation (extra dimensions can be included if
necessary [35]). Other effects of propagation in curved
spacetimes can also be studied and included [36,45,46]. All
together, these assumptions allow us to approximate the
annihilation operator of a localized (in the propagation
dimension) photon as

âω0
ðtÞ ¼

Z þ∞

0

dωe−iωðhðrÞ−tÞFω0
ðωÞâω; ð2Þ

where hðrÞ is related to the coordinate distance r − r0
travelled by the photon from position r0 in flat spacetime
[44]. The function Fω0

ðωÞ defines the frequency profile of
the photon, is peaked around ω0 with width σ and is
normalized by

R
dωjFω0

ðωÞj2 ¼ 1.
The photon operator (2) is constructed in a way such that,

at time t ¼ 0, the photon is localized around height r ¼ r0,
while it is localized at the height r at time t ¼ hðrÞ. It is
important to emphasize that the operator (2) can be used to
describe the same photon in two different points in
spacetime only if spacetime is flat. If the spacetime is
curved, then one needs to find a way to account for the

effects of propagation. This has already been done [30], and
we report the result below.3

Let us assume that Alice and Bob are placed at the two
different heights rA and rB in the gravitational field of the
Earth respectively. Alice is given a photon source and a
detector, and prepares a photon which is defined by the
function Fω0

ðωÞ that is peaked around ω0 with width σ. Bob
is given a photon source and a detector identical to those in
Alice’s possession. Therefore, when Bob receives a photon
from Alice he expects to detect a wave packet characterized
by the function Fω0

ðωÞ as defined locally by his measuring
devices. Nevertheless, the photon that Bob receives is differ-
ent than the reference photonFω0

ðωÞ heexpects. Inparticular,
it was shown that hewill detect a photon characterized by the
frequency distribution F0

ω0
0
ðωÞ, which can be related to the

expected one Fω0
ðωÞ through the relation

F0
ω0
0
ðωÞ ¼ χðrA; rBÞFω0

ðχ2ðrA; rBÞωÞ: ð3Þ
Here, the function χðrA; rBÞ encodes the overall effect, and
we have ωðhðrÞ − tÞ → χ2ðrA; rBÞωðhðrÞ − χ−2ðrA; rBÞtÞ.
In the caseofAlice located on the surface of theEarth andBob
orbiting a nonrotating spherical planet, we have that χðrA; rBÞ
reads

χðrA; rBÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3

2
rS
rB

1 − rS
rA

4

vuut : ð4Þ

A pictorial representation can be found in Fig. 1.

FIG. 1. Alice sends photons to Bob. Photons are initially
prepared with a chosen frequency distribution Fω0

and are then
detected by Bob as characterized by a different one F0

ω0
0
. This

occurs due to gravitational redshift, and the relevant parameters,
such as distance and mass of the planet, are now encoded in the
received distribution F0

ω0
0
.

2A compact object that is contained completely within its
Schwarzschild radius will collapse to form a black hole.

3We are using different notation than the one used in the
literature [30–32] in order to reduce the burdenof themathematical
aspects in favor of clarity of the exposition of the concepts.
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The effects of rotation have already been evaluated [32],
and can be included to generalize the expression (4) of
χðrA; rBÞ. However, since we will focus on Earth-based
applications where the rotation gives negligible corrections,
we keep the given expression (4). An important observation
is that, in (4), the factor of 2 is used for observers on the
surface of the Earth, while the factor of 3 is used for
observers orbiting our planet. The expression (4) needs to
be changed accordingly if the users exchange roles, or
assume different states of motion.
Finally, we assume that the phase exp½−iωðhðrÞ − tÞ�

induced in (2) by the propagation through (weakly) curved
spacetime can be compensated by a precise phase reference
such as a narrow band reference laser or a radio frequency
link [47]. For this reason, we drop this phase throughout
our work.

III. DISTINGUISHING BETWEEN WAVE
PACKET TRANSLATION AND GENUINE

DISTORTION DUE TO GRAVITY

This section contains our main proposal. A full justifi-
cation will be presented in detail, while explicit calculations
can be found in the relevant appendix.

A. Gravity effects on quantum coherence

As described above there is a relation between the wave
packet Fω0

ðωÞ that Bob expects and the wave packet
F0
ω0
0
ðωÞ that he will receive from Alice. A crucial aspect

that we want to study is the potential difference of the
effects for coherent photons (i.e., photons characterized by
pure quantum states) and incoherent photons (those char-
acterized by completely mixed quantum states). The reason
is that, while pure states ρ̂p and mixed states ρ̂m may have
the same contribution for each frequency ω within the
frequency distribution Fω0

ðωÞ, i.e., the diagonal elements
of the states are the same, in the mixed state case the phase
relation between the different frequency components is not
fixed. Since the study of the effects of gravity on genuine
quantum features, such as quantum coherence, is a topic of
great interest, we will apply our methods to both classes of
states and compare the outcomes.
To simplify our analysis we introduce j1ωi ≔ â†ωj0i,

j1Fω0 i ≔ R
dωFω0

ðωÞj1ωi and ρ̂pð0Þ ≔ j1Fω0 ih1Fω0 j. We
note that purely diagonal mixed states of sharp continuous
frequencies are ill defined (see Appendix A). Therefore, we
introduce the “rectangular” single-photon states j1ðnÞðθÞi
with finite width σ� defined by

j1ðnÞðθÞi ≔
Z ðnþ1=2Þσ�

ðn−1=2Þσ�

dωffiffiffiffiffi
σ�

p eiθ
ω
σ� j1ωi: ð5Þ

Crucially, we assume that λ ≔ σ�=σ ≪ 1, that is, the width
of these rectangular states is much smaller than that of the
frequency distribution that defines our system (that is, that

defines the width of the wave packet). It is easy to check
that h1ðnÞðθÞj1ðmÞðθÞi ¼ δnm.
We introduce on the photon states

ρ̂mð0Þ ≔
X
n

λjFω0
ðχ2λnÞj2j1ðnÞð0Þih1ðnÞð0Þj

ρ̂pð0Þ ¼
Z

dωdω0Fω0
ðωÞF�

ω0
ðω0Þj1ωih1ω0 j; ð6Þ

which will underpin all of the following analysis.
The definitions (6) give states that are correctly

normalized as Trðρ̂mð0ÞÞ ¼ Trðρ̂pð0ÞÞ ¼ 1. Finally, as
mentioned above, we have that h1ðnÞð0Þjρ̂mð0Þj1ðnÞð0Þi ¼
h1ðnÞð0Þjρ̂pð0Þj1ðnÞð0Þi ≈ jFω0

ðχ2λnÞj2, which implies that
local measurements on the single rectangle photon state
j1ðnÞð0Þi cannot distinguish between the two states. This
emphasizes the role of the off-diagonal terms in the density
matrices, which describe for the quantum coherence
between Fock states.
The received states ρ̂mðχÞ and ρ̂pðχÞ by Bob read

ρ̂mðχÞ ¼ χ2
X
n

λjFω0
ðχ2λnÞj2j1ðnÞð0Þih1ðnÞð0Þj

ρ̂pðχÞ ¼ χ2
Z

dωdω0Fω0
ðχ2ωÞF�

ω0
ðχ2ω0Þj1ωih1ω0 j: ð7Þ

B. Change of quantum coherence due to gravity

We can now ask ourselves a preliminary question: does
the coherence of the state change due to gravity? To answer
this question we use the purity γ of a quantum state ρ̂
defined as γðρ̂Þ ≔ Tr½ρ̂2�, which is bounded by 0 ≤ γðρ̂Þ ≤
1 and is equal to unity only for pure states.4 Introducing
the purities γmðχÞ ≔ Tr½ρ̂2mðχÞ� and γpðχÞ ≔ Tr½ρ̂2pðχÞ�,
we show in Appendix A that γmð0Þ ≔ γðρ̂mð0ÞÞ ¼R
dωjFω0

ðωÞj4 and γpð0Þ ≔ γðρ̂pð0ÞÞ ¼ 1. Using the modi-
fied states (7) in Bob’s local frame we find that

γmðχÞ ¼ γmð0Þ
γpðχÞ ¼ γpð0Þ: ð8Þ

This means that, although the wave packets have been
affected, the mixedness of the quantum states does not
change and there is no interaction of the system with any
additional degrees of freedom (such as gravity). This is
consistent with the semiclassical approach provided by
quantum field theory in curved spacetime.

4Contrary to finite d-dimensional systems, for which
1
d ≤ γ ≤ 1.
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C. Quantifying genuine distortion due to gravity

We are now able to move on to the main proposal. The
key observation is that many protocols of interest to Bob
will depend on how well the naïvely expected state ρ̂ (or
wave packet Fω0

) and received state ρ̂0 (or wave packet
F0
ω0
0
) overlap. We are thus motivated to introduce the

overlap Δ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðρ̂0; ρ̂Þp

between the states (wave packets)
of the two systems using the quantum fidelity
F ðρ̂0; ρ̂Þ ≔ Trð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffî
ρ

p
ρ̂0

ffiffiffî
ρ

pp
Þ, following the results of the

original work in this direction [30]. It is then convenient to
write Fω0

ðωÞ ¼ fω0
ðωÞ exp½iψðωÞ�, where fω0

ðωÞ ≔
jFω0

ðωÞj is the modulus of the frequency distribution
and ψðωÞ is its phase. Using this decomposition, in
Appendix A we show that the single-photon overlap Δ
for the two choices of initial single-photon states reads

Δp ¼ χ

����
Z þ∞

−∞
dωfω0

ðχ2ωÞfω0
ðωÞeiðψðχ2ωÞ−ψðωÞÞ

����
Δm ¼ χ

Z þ∞

−∞
dωfω0

ðχ2ωÞfω0
ðωÞ ð9Þ

for the mixed and pure state scenarios respectively. Here we
have defined χ ≔ χðrA; rBÞ for convenience of presenta-
tion. Note that we have extended the lower limit of
integration −∞ for algebraic purposes, a modification that
requires us to assume that all peaked functions F consid-
ered, together with any transformed ones F0 obtained from
such functions, always remain far from the origin of the
frequency axis. Importantly, we know that 0 ≤ Δp ≤ Δm ≤
1 due to basic properties of integrals, which suggests
already that the phase ψðωÞ present in the pure state can
only increase the effects of gravity, that is, reduce the
overlap Δ. We emphasize that the quantities Δ fully
quantify the effects of gravity induced on the photons sent
by Alice and received by Bob [30].
We are interested at this point in separating two effects

that occur simultaneously: the rigid translation of the wave
packet and its genuine deformation. To define concretely
the two effects we first note that we expect any physical
system, to be used for realistic quantum information tasks,
to be localized in space and time. In practical terms, we can
model such a system through a peaked function fω0

ðωÞ that
depends functionally on ω as fω0

ðωÞ≡ 1=
ffiffiffi
σ

p
f̃ðω−ω0

σ Þ. This
allows us to introduce a dimensionless function f̃.
Furthermore, the phase ψðωÞ of the overall wave packet
is functionally dependent on ω through ψðω=σÞ, since ω is
a dimensionful quantity. Using the expression for single-
photon states, we have

Δp ¼ χ

����
Z þ∞

−∞
dωf̃

�
χ2ω − ω0

σ

�
f̃

�
ω − ω0

σ

�
eiδψðωÞ

����
Δm ¼ χ

Z þ∞

−∞
dωf̃

�
χ2ω − ω0

σ

�
f̃

�
ω − ω0

σ

�
ð10Þ

where δψðωÞ ≔ ψðχ2 ω
σÞ − ψðωσÞ here only for convenience

of presentation.
It is clear that, if we were to set χ ¼ 1 in the term

f̃ðχ2ω−ω0

σ Þ, the peaks of the two distributions would
coincide. Therefore, we first write

χ2ω−ω0¼ χ2ðω−ω0þω0Þ−ω0 ¼ χ2½ðω−ω0Þþ κω0�

with κ ≔ ðχ2 − 1Þ=χ2. We then view it natural to define the
quantity κω0 as the rigid shift or classical gravitational
redshift of the incoming wave packet, which Bob might
want to compensate for. At this point, the temptation would
be to define the genuine deformation by the quantities (10)
obtained as the overlap between the incoming corrected
wave packet and the expected wave packet. In other words,
by implementing the replacement ω → ω − κω0 in the first
function (and phase) of the overlaps (10). A pictorial
representation of this approach can be found in Fig. 2,
where we have introduced the corrected overlap Δ̃ (defined
properly below).
This correction procedure, however, is naïve since it could

in principle lead to underestimation of the true genuine
distortion. The reason is that, in general, the affected wave
packet will not be distorted in away to fit completely within,
or cover completely, the original one (i.e., as we have
depicted in panel (b) of Fig. 2) after the correction described
above has been applied. One part, e.g., on the right, might
fall under the original wave packet, while some area on the
left might be left outside, which leaves open the question of
how to optimize between these two areas. A more refined
correction procedure is therefore necessary.
To achieve this goal, we assume that Bob can indeed

rigidly shift the entire wave packet of the received photon

(a)

(b)

FIG. 2. Simple solution to the gravitationally-induced wave
packet separation. Panel (a) depicts the gravitational redshift,
while panel (b) illustrates a simple correction obtained by rigid
translation of the whole wave packet. In (a), the central frequency
is shifted from ω0 to ω0

0, and the shape distribution is distorted. In
(b), a correction is applied: The whole new wave packet (dotted)
is shifted back by the same amount that the central frequency ω0

has changed. Due to the distortion, the overlap to the initial wave
packet is reduced to the overlap Δ̃, emphasized in gray in the
figure.
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by a finite constant amount δω, thereby translating the
whole frequency spectrum in a chosen direction in the
frequency domain. Concretely, we assume that he is able to
perform the transformation ω → ωþ δω for all ω (once
more, if he performs the rigid shift δω ¼ −κω0 he will not
obtain, in general, the optimal overlap. See panel (b)
of Fig. 2).
However, and this is the key observation, instead

of choosing to shift the wave packet by the amount
δω ¼ −κω0 that we found above, Bob chooses to seek
the shift δωopt that results in the largest value Δopt of the
overlap (9). This will simultaneously achieve two goals:
(i) it will define the effective rigid shift of the wave packet,
and (ii) it will provide us with a value Δopt that quantifies
the genuine distortion of the wave packet due to gravity.
The optimization procedure is depicted in Fig. 3.
The above reasoning, therefore, motivates us to define

the new overlap quantities Δ̃ as

Δ̃p ¼
����
Z þ∞

−∞
dzf̃ðχzþ z̄Þf̃ðz=χÞeiδψðzÞ

����
Δ̃m ¼

Z þ∞

−∞
dzf̃ðχzþ z̄Þf̃ðz=χÞ; ð11Þ

which are corrected overlaps where we have introduced
the quantities z ≔ χ ω−ω0

σ , z0 ≔
ω0

σ , δz ≔ δω
σ and z̄ ≔

χ2½κz0 þ δz�. The variable z̄ is nothing more than the
conveniently rescaled and shifted δω. We have also
introduced δψðzÞ ≔ ψðχzþ z0 þ z̄Þ − ψðz=χ þ z0Þ here
only for convenience of presentation.
Finding the stationary points of the overlaps (11) with

respect to z̄ (the conveniently relabeled δω) and then
using the optimal value z̄opt to evaluate the maximum
Δ̃opt finally quantifies the genuine distortion due to gravity.
Furthermore, the value z̄opt also provides the value δωopt

that quantifies the effective rigid shift of the whole wave
packet. The comparison between the results for the pure
and mixed state case then quantitatively informs us on the
difference of the effects of gravity on the quantum
coherence of the photonic states. This is our main result.

D. Optimal overlap of wave packets with a
well-defined global peak

We have defined our main quantity (11) as an optimized
comparison between peaked photonic wave packets. We
note here that this might not be a well-defined operation for
all possible shapes of wave packet. For example, if f̃
contains two distinct and comparable peaks, it remains
unclear that the procedure outlined before would, in the
end, provide one optimal overlap. It is reasonable,
however, to expect that our optimization protocol will
provide a meaningful answer if the wave packet contains a
well-defined shape with a global maximum. By this we

mean, for example, that the function f̃ is obtained by a
product of two functions f̃env and f̃ps, where f̃env provides
a peaked envelope shape to the function, while the f̃ps
provides some particular structure to f̃. An example
is f̃ ¼ C exp½−ðz − z0Þ2� cos2½z�.
In this work we will focus on functions f̃ that have a

Gaussian envelope peaked around a given frequency ω0. As
we will see below when considering specific examples, the
overlaps Δ̃ will be optimized for effectively z̄ ¼ 0, which in
turn means that the optimal shift δωopt is (up to negligible
corrections in some cases) the rigid shift factor κω0.

E. Wave packets with multiple photons

Many photonic quantum information protocols, such as
quantum key distribution ones, are designed to employ
single photons [48,49]. However, many others employ
pulses of light instead [50]. A pulse of light is composed
of many photons and we therefore wish to extend our
single-photon result (11) to different states: Fock states,
coherent states and single-mode squeezed states.
To do so we observe the fact that the quantity Δ̃ in (9) has

been obtained as the overlap of two different single-
photons states: the expected one and the effectively
received one by Bob. We can therefore extend the concept
and define the quantity Δ̃ðNÞ that measures the genuine
distortion due to gravity of a wave packet composed of an
average of N photons. Importantly, we set the number N of
photons as the figure of merit that will allow us to compare
the scaling of the results. Since we have already defined
Δ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðρ̂0; ρ̂Þp

above, in cases such as those where we
want to make explicit the average number N of photons we
choose to emphasize that this number in the state as ρ̂ðNÞ,

and therefore write ΔðNÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðρ̂ðNÞ0 ; ρ̂ðNÞÞ

q
. We also to

introduce the useful quantity

FIG. 3. Quantification of the genuine distortion. After the
correction shown in Fig. 2, the corrected overlap Δ̃ of the wave
packets is not guaranteed to be optimal. Therefore, Bob chooses
instead to rigidly shift the whole incoming wave packet by the
freely adjustable amount δω. This provides an overlap Δ̃ as a
function of δωwhich can be maximized. The lower panel shows a
plot of Δ̃ versus δω with the optimal overlap δωopt marked.
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Λ̃p ¼
Z þ∞

−∞
dzf̃ðχzþ z̄Þf̃ðz=χÞeiδψðzÞ ð12Þ

and note that Δ̃ð1Þ
p ≡ jΛ̃pj.

1. N-photon Fock state

We start with the initial N-photon Fock state

ρ̂ðNÞ
p ð0Þ ≔ jNω0

ihNω0
j, which is the generalization to N

photons of the state ρ̂pð0Þ in (6). In this case, we can
compute the overlap Δ̃ðNÞ, and find Δ̃ðNÞ ¼ Δ̃N , which
implies that the fidelity of the N-photon Fock state is
polynomial in the number of photons. Note that, in this
case, we do not have a mixed-state counterpart to the
(N-photon) Fock state.

2. Coherent states

We now focus on two different populated states
for our system: a coherent state ρ̂ðNÞ

p ð0Þ ≔ jαihαj, defined
through jαi ≔ exp½αâ†ω0

− α�âω0
�j0i with average number

N ¼ jαj2 of photons, and its “mixed counterpart”
ρ̂m;Nð0Þ ≔ exp½−jαj2�P∞

n¼0 jαj2n=n!jnihnj, obtained by
adding a phase eiθ to α and integrating over θ (see
[51,52]). We know that a coherent state can be used, for
example, to model the state of the light emitted by a laser
[51,52], which is paramount in many applications of
continuous variables quantum information processing [50].
Simple algebra allows us to obtain

Δ̃ðNÞ
p ¼ e−ð1−ℜΛ̃pÞN

Δ̃ðNÞ
m ¼ Δ̃ð1Þ

m : ð13Þ

This result shows that the coherent state, which by
definition contains quantum coherence of different Fock
states of the photonic Hilbert space, enjoys an enhanced
effect (i.e., smaller overlap) as compared to the mixed
counterpart. In particular, if it is true that there is an effect
for one photon, and therefore ℜΛ̃p < 1, this implies that
there is an exponential gain by considering such coherent
states. In those scenarios, as in our cases considered below,
one has ℜΛ̃p ≈ 1 − δ1, with δ1 ≪ 1, and therefore we have
that ℜΛ̃p ≈ e−δ1N ≈ ð1 − δ1NÞ. This can be of aid when
designing concrete experimental applications that employ
the predictions of this work.

3. Single-mode squeezed states

We finally focus on single-mode squeezed states. Single-
mode squeezed states are nonclassical states [53] that can
be produced, for example, using stimulate emission via
nonlinear crystals, a process known as degenerate para-
metric down-conversion [54,55]. In this case, we study the
single-mode squeezed state ρ̂ðNÞ

p ð0Þ ≔ jsihsj defined
through jsi ≔ Pþ∞

n¼0 tanh
nðsÞ= coshðsÞj2ni with average

number N ¼ 2 sinh2ðsÞ of photons, and its “mixed counter-
part” ρ̂m;Nð0Þ ≔

Pþ∞
n¼0 tanh

2nðsÞ= cosh2ðsÞj2nih2nj. Here s
is called the squeezing parameter.
The same algebra used above gives us

Δ̃ðNÞ
p ¼

��
1þ 1

2
ð1 −ℜΛ̃pÞN

�
2

þ 1

4
ðℑΛ̃pÞ2N2

�
−1=2

Δ̃ðNÞ
m ¼ Δ̃ð1Þ

m : ð14Þ

Note that if Λ̃p ∈ R, then we have the simplified expression

Δ̃ðNÞ
p ¼ ð1þ ð1 − Δ̃ð1Þ

p ÞN=2Þ−1. Finally, for NΔ̃ð1Þ
p ≫ 1 we

have Δ̃ðNÞ
p ≈ 2=ðNΔ̃ð1Þ

p Þ.

F. Extension to wave packets with multiple peaks

We note that not all wave packets will have the simple
property fω0

ðωÞ ∝ f̃ðω−ω0

σ Þ, where ω0 identifies the only
peak of the distribution. Here we consider the more general
case of frequency distributions with a clear global maxi-
mum, but also other local maxima. This will prove
especially useful when considering specific applications,
where multiple peaks are present.
Let the function fω0

ðωÞ have the expression

fω0
ðωÞ≡ eiψðωÞffiffiffi

σ
p f̃

�
ω − ω0

σ

�X
n

G̃n

�
ω − ω0;n

μn

�
; ð15Þ

where the functions G̃n are positive and are peaked around
ω0;n with width μn. Here, the index n runs over (a subset of)
the integer numbers Z. Recall that the original functions
fω0

ðωÞ are normalized such that
R
∞
0 dωjfω0

ðωÞj2 ¼ 1.
Then, we repeat the analysis above and obtain the gener-
alized version of (11), which reads

Δ̃p ¼
����X
n;m

Z þ∞

−∞
dzf̃ðχzþ z̄Þf̃ðz=χÞeiδψðzÞ

× G̃n

�
σ

μn
ðχzþ z0 þ z̄ − ω0;n=σÞ

�

× G̃m

�
σ

μm
ðz=χ þ z0 − ω0;n=σÞ

����� ð16Þ

in the pure case, and

Δ̃m ¼
X
n

Z þ∞

−∞
dzf̃ðχzþ z̄Þf̃ðz=χÞ

× G̃n

�
σ

μn
ðχzþ z0 þ z̄ − ω0;n=σÞ

�

× G̃m

�
σ

μn
ðz=χ þ z0 − ω0;n=σÞ

�
ð17Þ

in the mixed one. Here we have introduced δψðzÞ≔ψðχzþ
z0þ z̄Þ−ψðz=χþ z0Þ for this case. This expression reduces
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to (11) in different cases, such as when
P

n G̃n ¼ 1. We can
also include the complex part of the G-functions, but this is
an unnecessary complication at this point and we leave it to
future work.

IV. APPLICATIONS

In this section we discuss applications of our results. As
explained above, we will focus on frequency profiles that
have a clearly identifiable global peak. Note that all
functions FðzÞ are normalized such that

R
dzjFðzÞj2 ¼R

dzf2ðzÞ ¼ 1. This is equivalent to say that the quantum
states of the electromagnetic field have unit norm.

A. Near-Earth protocols

Our scheme can be applied, in principle, to arbitrary
spacetimes where a notion of gravitational redshift can be
meaningfully introduced. Here, however, we focus our
methods to the spacetime surrounding the Earth, which can
be modelled as described above. In the near-Earth regime
we have rS=rA ≪ 1 and rS=rB ≪ 1, and all the perturbative
analysis performed in the following is governed by param-
eters which are of the order of ∼10−9, or smaller. Therefore,
we introduce the parameter δ ¼ δ1 þ δ2 ≪ 1 through

χ ¼ 1þ δ ¼ 1þ δ1 þ δ2; ð18Þ

where δ1 and δ2 ∼ δ21 ≪ δ1 collect the first and second order
corrections of δ respectively, as we explain below. Note that
δ1 ≫ δ2 as long as rB is far away from 3=2rA (given the
particular choice of the expression χ). We obtain

δ ≈
1

4

rS
rA

−
3

8

rS
rB|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

δ1

þ 5

32

r2S
r2A

−
3

32

r2S
rArB

−
27

128

r2S
r2B|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

δ2

: ð19Þ

In case the location of Bob is far enough from Alice
(and, therefore, the Earth), it follows that his own con-
tributions to (19) are negligible. This implies that (19)

reads δ ≈ 1
2
rS
rA
þ 5

32

r2S
r2A
.

Finally, assuming that Bob is located at a higher altitude
than Alice, and that the distance L ≔ rB − rA between the
two is (much) smaller than rA, i.e., if L=rA ≪ 1, then (19)
reduces to

δ ≈ −
1

8

rS
rA|fflffl{zfflffl}

δ1

þ 3

8

rSL
r2A

−
19

128

r2S
r2A|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

δ2

: ð20Þ

These expressions, in particular (19), will be used below to
simplify the overlaps that we have computed before,
considering realistic space-based scenarios.

B. Application to bell-shaped wave packets

We now proceed by considering two different wave
packets with an overall Gaussian envelope: (i) a simple
Gaussian wave packet and (ii) a frequency-comb wave
packet modulated by a Gaussian. We have chosen these
wave packets, since Gaussian frequency distributions can
be seen as a crude approximation to what is usually
employed for pulse generation or filtering. These realistic
profiles include those obtained as the impulse response of a
root-raised-cosine filter, and are related to sinclike func-
tions [56]. A more realistic modeling, which might require
numerical analysis, is beyond the scope of this work. Recall
that, in the following, we give the functions in terms of the
normalized and rescaled variable z ≔ χ ω−ω0

σ . Furthermore,
we only consider overlap functions for single photon wave
packets. Note that the phases ϕ used below have nothing to
do with the angular coordinate in the metric. Extensions to
multiple photons have been discussed above. Finally, all
explicit computations can be found in Appendix B.

1. Gaussian wave packets

We start by considering a Gaussian frequency profile. It is
known that Gaussian distributions are resilient to modifi-
cations of the type discussed in this work [37]. For this
reason, we can already anticipate that the choice of such
functions without any complex phase will result into small
deformations.Wewill consider twoGaussianswith different
phase factors, that is, two different functions ψðωÞ. We will
show that the choice of functional dependence of the phase
ψðωÞ on the frequency ω dramatically changes the results.

Linear phase.—The first choice of wave packet is the
normalized Gaussian FðzÞ ¼ 1=

ffiffiffiffiffiffi
2π4

p
exp½−z2=4 − iϕ̃z�. In

this case, the phase ψðωÞ is linear in the frequency and
reads ψðωÞ ¼ ϕω, where ϕ ≔ ϕ̃=σ is a constant. This
allows us to easily compute the overlaps Δ̃Ga as

Δ̃Ga
p ¼

ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ4
p e

−ðχ2−1Þ2
χ4þ1

ϕ̃2

e
− z̄
χ4þ1

Δ̃Ga
m ¼

ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ4
p e

− z̄
χ4þ1: ð21Þ

As argued above, we now need to maximize the expres-
sions (21) with respect to z̄. It is immediate to see that the
maximum occurs for z ¼ z̄opt ¼ 0, which implies that the
redshift is indeed quantified by δω ¼ −κω0 and the optimal
overlaps are

Δ̃Ga
p;opt ¼

ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ4
p e

−ðχ2−1Þ2
χ4þ1

ϕ̃2

Δ̃Ga
m;opt ¼

ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ4
p : ð22Þ
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When we consider the near-Earth regime, we then have

Δ̃Ga
p;opt ≈ 1 − ð1þ 2ϕ̃2Þδ21

Δ̃Ga
m;opt ≈ 1 − δ21; ð23Þ

and we must have ϕ̃δ1 ≪ 1 for the perturbative approach to
be valid. In this case, δω ≈ −ð1 − 2δ1Þω0.

Quadratic phase.—We can choose a different
phase profile ψðωÞ for our Gaussian, such as a
quadratic one ψðωÞ ¼ ϕ2ω2, with ϕ ≔ ϕ̃=σ a constant.
Therefore, we employ the normalized Gaussian FðzÞ¼
1=

ffiffiffiffiffiffi
2π4

p
exp½−z2=4−iϕ̃2z2� with our chosen phase profile,

and we find

Δ̃Ga
p ¼

ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ4
p e

−4ðχ
2−1Þ2
χ4þ1

ϕ̃4

ξðϕ̃Þz
2
0ffiffiffiffiffiffiffiffiffi

ξðϕ̃Þ
q e−16a1ðϕ̃

2Þz̄−1
4
a2ðϕ̃2Þz̄2

Δ̃Ga
m ¼

ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ4
p e−

1
4
a2ð0Þz̄2 ; ð24Þ

where we have introduced ξðϕ̃Þ ≔ 1þ 16ϕ̃4 ðχ4−1Þ2
ðχ4þ1Þ2,

a1ðϕ̃Þ ¼ χ2 ðχ2−1Þ2
ðχ4þ1Þ2

ϕ̃2

ξ z0 and a2ðϕ̃Þ ≔ 1þ16ϕ̃4

χ4þ1
1
ξ as ϕ̃-depen-

dent functions. Optimizing the expressions (24) over z̄
clearly gives us z̄opt ¼ −32a1ðϕ̃Þ=a2ðϕ̃Þ for Δ̃Ga

p , z̄opt ¼ 0

for Δ̃Ga
m , and therefore

Δ̃Ga
p;opt ¼

ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ4
p e

−4ðχ
2−1Þ2
χ4þ1

ϕ̃4

ξðϕ̃Þz
2
0ffiffiffiffiffiffiffiffiffi

ξðϕ̃Þ
q e

256
a2
1
ðϕ̃Þ

a2ðϕ̃Þ

Δ̃Ga
m;opt ¼

ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ4
p : ð25Þ

Finally, considering again the near-Earth regime, we have

Δ̃Ga
p;opt ≈ 1 − ð1þ 32ϕ̃4 þ 8ϕ̃4z20Þδ21 þ 29

ϕ̃4z20δ
4
1

1þ 16ϕ̃4

Δ̃Ga
m;opt ≈ 1 − δ21: ð26Þ

These results lead us to conclude that, given a choice of
quadratic phase, there is an error in making the naïve choice
of redshift given by z̄ ¼ 0, since z̄opt ¼ −32a1ðϕ̃Þ=a2ðϕ̃Þ
here. This illustrates why we chose our specific method for
identifying the genuine distortion due to gravity.
In this specific case, however, we are working in the

near-Earth regime. It is easy to see that z̄opt ≈ −64 ϕ̃2z2
0

1þ16ϕ̃4 δ21
and that jz̄optj ≤ 8z20δ

2
1. Furthermore, we note that the last

term in (26) is bounded by 512 ϕ̃4z2
0
δ4
1

1þ16ϕ̃4 ≤ 32z20δ
4
1 ≪ δ21, since

z20δ
2
1 ≪ 1 for the perturbative regime to be valid. This

means that the last term that appears in Δ̃Ga
p;opt in the result

(26) can be dropped at the order that we are working here. It

is also interesting to note that neither this term nor the shift
z̄opt can be increased (potentially unboundedly) with the
phase ϕ̃. Even more interestingly, there is a optimal phase
parameter ϕ̃ that maximizes the rigid shift (with respect to
the functional dependence on ϕ̃ itself): namely ϕ̃ ¼ 1=2.
Nevertheless, in this case the optimal redshift factor z̄opt is
large, which means that the discrepancy between δωopt and
the naïve value κω0 is also large.

2. Frequency comb wave packets

As a second profile we choose a (modulated) frequency
comb. A genuine frequency comb is a profile constituted by
(infinitely) many peaks separated by a constant spacing
[57]. In realistic situations, an envelope function will
provide a cutoff to such an ideal train of peaks, and a
different weight to each one of them.

Linear phase.—In this scenario, a simple normalizeable
frequency comb profile reads

FðzÞ ≈
ffiffiffi
4

p 1þ σ̃2

2π

X
n

e−
z2
4 e−

σ̃2

4
ðz−nd̃Þ2e−iϕ̃ðzþz0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϑ3
�
0; e−

1
2

σ̃2

1þσ̃2
d̃2
�r ; ð27Þ

where we have introduced the parameter μ that dictates the
width of the combs, the distance d between the comb-peaks,
the normalized overall width σ̃ ≔ σ=μ, the normalized
distance d̃ ≔ d=σ, and finally the Jacobi theta function
ϑ3ðz; τÞ ≔

P
n∈Z exp½πin2τ� exp½2πinz�. To achieve the

explicit normalization for (27) we have assumed that the
peaks of the comb are separated enough such that their
overlap is negligible. This requires setting d̃ σ̃ ≫ 1.
Furthermore, we expect that σ̃ ≫ 1 since the Gaussian
envelope profile must have a (much) larger size than the
individual peak. Extremely high values of σ̃ can be achieved
with current technology [58].
Lengthy algebraic calculations finally lead us to the

expressions for the overlaps of interest, but the analytical
expressions are not illuminating and thus we leave them in
the appendices, and they can be found in (B17). Exact
optimization of such expressions is not possible due to the
infinite sums involved. However, we were able to find the
optimal values in the near-Earth regime, which read

Δ̃Co
p;opt ≈

�
1 − δ21 −

σ̃2

2
δ21

�
e−

2δ2
1

σ̃2
ϕ̃2

Δ̃Co
m;opt ≈

�
1 − δ21 −

σ̃2

2
δ21

�
; ð28Þ

for an optimal frequency shift z̄opt with value z̄opt ≈ 0.

Quadratic phase.—In this last scenario, we employ a
normalizable frequency comb profile of the form
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FðzÞ ≈
ffiffiffi
4

p 1þ σ̃2

2π

X
n

e−
z2
4 e−

σ̃2

4
ðz−nd̃Þ2e−iϕ̃

2ðzþz0Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑ3
�
0; e−

1
2

σ̃2

1þσ̃2
d̃2
�r ; ð29Þ

where we assume the same conventions introduced above.
Notice that the only difference with (27) is in the phase
term, which is now quadratic.
This situation is more complex, and gives rise to

a richer space of results. We start by noting that with
the choice of phase above, the phase ψðzÞ≡ −ϕ̃2ðzþ z0Þ2
is a parabola centered around the origin. Since ω0 ≫ 1, we
anticipate that we will find an artificial dependence on the
final results on a large z0. To compensate for this, we
assume that the parabola ϕ̃2ðzþ z0Þ2 that defines the phase
is centered at or around the peak ω0 of the Gaussian
envelope instead. This, effectively, means that we redefine
ϕ̃2ðzþ z0Þ2 → ϕ̃2ðzþ δz0Þ2, where now jδz0j ∼Oð1Þ or,
in other words, it is at most a small real number.
Importantly, when δz0 < 0 the parabola is centered toward
the tail of the wave packet, when δz0 > 0 it is centered
toward the front, and when δz0 ¼ 0 it is centered exactly at
ω0 (or, equivalently, z ¼ 0).
Optimization of the expressions over z̄ is also cumber-

some. We leave all computations to the appendix. We note
that we have to introduce a constant ζ that includes the
exact numerical values of the expressions and which was
not obtained analytically. We estimate it to be of a few
orders of magnitude, and leave its exact (or numerical)
estimates to future work. Therefore, since we have that
ζd̃2σ̃2 ≫ 1 ≫ δ21, we were able to obtain

z̄opt ¼ 8ϕ̃2 δz0 − 4δ21
1þ Σ

δ1; ð30Þ

where Σ ≔ σ̃2=ð16ζd̃2ϕ̃2Þ.
We can study the two opposite cases of interest: (i) where

ϕ̃ ∼Oð1Þ, and (ii) where ϕ̃ ≫ 1:
(i) In the first case we have ϕ̃ ∼Oð1Þ. We obtain

Δ̃Co
p;opt ≈ 1 − δ21 −

1

2
σ̃2δ21

Δ̃Co
m;opt ≈ 1 − δ21 −

1

2
σ̃2δ21: ð31Þ

Note that the result here is independent on δz0, and
that it matches the results obtained previously.

(ii) In the second case, i.e., where ϕ̃ ≫ 1, we have two
possibilities.
(ii.i) When δz0 ∼ νδ21, with ν a constant that is not

large, we then have z̄opt ≈ νδ31 ≈ 0. Therefore, we
find the optimal overlap

Δ̃Co
p;opt ≈ 1 − δ21 −

1

2
σ̃2δ21 þ 16

ϕ̃4

σ̃2
δ21

Δ̃Co
m;opt ≈ 1 − δ21 −

1

2
σ̃2δ21: ð32Þ

(ii.ii) We can also have δz0 ≥ 1, that is δz0 is finite
and not extremely small. Therefore z̄opt ¼ 8ϕ̃2 δz0

1þΣ,
which finally allows us to find, with lengthy algebra,
the overlap

Δ̃Co
p;opt≈1−δ21−

1

2
σ̃2δ21þ16

ϕ̃4

σ̃2
δ21

−8
d̃2ϕ̃2

ð1þΣÞ
	
8þ ϕ̃2ð1þΣÞþζd̃2σ̃2ð1þΣÞ

þ σ̃4ϕ̃2

1þΣ
þ256

d̃2σ̃2ϕ̃2

1þΣ
−16ζd̃2σ̃2ϕ̃4



δz20δ

2
1

Δ̃Co
m;opt≈1−δ21−

1

2
σ̃2δ21: ð33Þ

It is clear that, when δz0 ∼ νδ21 (i.e., we want to move
back to the case (ii.i)), we can effectively set the
terms proportional to δz0 in (33) to zero and, as
expected, the result (33) reduces to (32).

C. Comparison of the results

We can now compare our main results. In both cases, we
note that for the Gaussian and frequency-comb pure-state
overlaps, there is a common term that is equal to Δ̃Ga

m;opt

and Δ̃Co
m;opt respectively. Therefore, these two quantities can

be used as benchmark for the respective pulse shapes. The
deviations form this cases give us a way to compare the
magnitude of the effects, i.e., the dependence of the optimal
overlap on the phase. Therefore, let us introduce ηGaq;opt ≔
Δ̃Ga

q;opt=Δ̃Ga
m;opt − 1 and ηCoq;opt ≔ Δ̃Co

q;opt=Δ̃Ga
m;opt − 1 as the rela-

tive change for both the mixed and pure state cases, for
which q ¼ m, p respectively. The definitions imply
ηGam;opt ¼ ηCom;opt ¼ 0. This means that we look only at the
relative changes for pure states compared to the mixed state
scenario.

1. Linear phase scenario

In the linear phase scenario we find that the relative
changes read

ηGap;opt ≈ −2ϕ̃2δ21

ηCop;opt ≈ −
2ϕ̃2

σ̃2
δ21: ð34Þ
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2. Quadratic phase scenario

In the linear phase scenario, the relative changes read

ηGap;opt ≈ −8
�
ð4þ z20Þ − 64

z20
1þ 16ϕ̃2

δ41

�
ϕ̃4δ21

ηCop;opt ≈ 8

�
2ϕ̃2 −

8d̃2σ̃2δz20
ð1þ ΣÞ − d̃2σ̃2δz20

	
ϕ̃2 þ ζd̃2σ̃2

þ σ̃4ϕ̃2

ð1þ ΣÞ2 þ 256
d̃2σ̃2ϕ̃2

ð1þ ΣÞ2 − 16
ζd̃2σ̃2ϕ̃4

1þ Σ


�
ϕ̃2δ21
σ̃2

:

ð35Þ

The expressions (34) and (35) inform us on the difference
between the pure state and mixed state scenarios. Therefore,
they meet the goal of quantifying how a pure state with a
complex relative phase in its Fock-state components can be
sensitive to the curvature of spacetime. Note that one cannot
take the limit ϕ̃ → ∞, and this is true also for any of the
parameters that appear in the numerator of the fractions. In
fact, recall that we have employed perturbative tools, and
therefore these expressions are correct as long as all
coefficients of the perturbative parameters give rise to
contributions that are smaller than one.
The expressions above also inform us on the differences

between a purely Gaussian profile, and a frequency comb
with the same Gaussian envelope. From our results it is
clear that the relative advantage of the pure state with
respect to the mixed state scenario is enhanced in the
Gaussian profile when compared to the frequency comb
profile. We note, however, that this behavior will change if
different profiles or phases are chosen. For these reasons,
we avoid providing specific plots of the results here, which
we leave to future work aimed at optimizing over initial
states and phase shapes.

V. DISCUSSION AND OUTLOOK

The results obtained in this work can shed light on the
interplay of quantum coherence and gravity. Below, we
conclude our work with some considerations regarding our
results, as well as comment on potential applications and on
outlook of this research direction.

A. Considerations

We have found that quantum states are deformed differ-
ently depending on their initial quantum coherence. This is
not only of practical interest for potential applications to
space-based protocols such as quantum communication in
curved spacetime [27], but also for studies that focus on
understanding the interplay of quantum mechanics and
general relativity [39,46,59,59–63]. There has been a recent
surge of proposals to use genuine quantum features such as
coherence and entanglement to test the nature of gravitating
quantum systems [39,60,64,65], and the present work can
provide yet additional insight in this fascinating topic. In

particular, wewere able to quantify the difference in genuine
deformation due to background curvature of the frequency
spectrum that defines photonic states. In order to univocally
identify the gravitational effects on the quantum coherence
present in the state, we introduced a phase parameter that
dictates the unavoidable relative phase contribution to the
quantum coherence of each component in the superposition
that defines the state. Our results (34) and (35) explicitly
show that such phase parameter governs the deviation of the
pure-state case with respect to the mixed state case. When
the parameter vanishes, the pure state and mixed state
scenarios give the same result. This is the first strong
evidence in our work that gravity affects differently mixed
states and pure states with quantum coherence.
The expressions that constitute our final results for

the purely Gaussian frequency profile can be obtained
analytically for all redshifts. Nevertheless, we focused
all computations to the near-Earth scenario, where the
redshift parameter χ has the perturbative expression
χ ¼ 1þ δ1 þ δ2, and δ1 and δ2 collect the first-order and
second-order corrections respectively. All results obtained
in this work are proportional to lowest order to δ21. Note that
this is not an approximation per se, but we find that all
contributions proportional to δ2 vanish identically. This
leads us to comment on this intriguing aspect. We first recall
that the δ1 contributions are Newtonian in character, while
the δ2 contributions depend genuinely on the curvature
gradients [44]. We know that the redshift χ, by definition,
depends on δ1 to lowest order. Since we have corrected for
such contribution, and we have sought for the genuine
distortion effects, we can conclude that we have de facto
computed the genuine area overlap of the original wave
packet with the deformed one. The area can be therefore
expected to depend to lowest order on the square of a
defining parameter of the system, which turns out to be δ1.
This observation can be used to understand why, at lowest
order, δ2 does not appear. Note that if we were to look at
higher orders, the curvature corrections would be expected
to appear through terms proportional, for example, to δ1δ2.
We end these considerations by emphasizing the fact that

the classical gravitational redshift for light has already been
demonstrated in experiments more than half a century ago
[42], and is indeed very well studied [66]. However, we
also note that the genuine wave packet deformation has
been so far lacked thorough investigation, a gap that we
have therefore contributed to fill here.

B. Applications and outlook

We now proceed with discussing potential applications
and outlook.
Deformations of wave packets of light are important for

applications, such as quantum communication, that rely on
the quantum properties of light for their functioning. For
example, in Space-based quantum repeater schemes, which
have been developed in order to extend the distances at
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which entanglement can be established between two users
or nodes [67], photons need to be stored in quantum
memories after travelling through empty space [68]. Given
our results, the efficiency of these memories will depend on
the overlap Δ even after compensation of the redshift, e.g.,
by shifting the frequency of the photons according to
Eqs. (11) and (16). More in general, quantum protocols that
require entanglement sharing over long distances will be
affected by issues of the type just mentioned. Any effect
that occurs therefore needs to be quantified and understood
in order for its mitigation [30] or for its employment
[31,32]. The results presented here can therefore lay the
basis for measurement schemes using wave packet genuine
deformation, as well proposals for tests of gravitational
effects of quantum coherence.
Another consequence of the wave packet deformation is

that it poses an additional restriction to the rate at which
photonic-based quantum communication link can operate.
In fact, after a user prepares and sends a train of pulses, this
will propagate and therefore will be distorted once received.
Increasing distortion is expected to increase the temporal
envelope of each pulse, which means that in order to
achieve the same fidelity, more time needs to be introduced
between two pulses compared to the hypothetical non-
deformed case. This effectively reduces the time-bandwidth
product due to gravitational effects. We plan to investigate
these consequences in more detail in further studies.
Furthermore, this wave packet distortion might open a
new attack scheme on quantum communication protocols
based on single photons [69], entangled photons [70,71],
mixed bases [72], and continuous variables [73].
In order to employ the rescaled overlap defined in this

work, we have applied it to simple pulse-shapes. We found
that there are differences between the choices, namely a
Gaussian and a frequency-combwithGaussian envelope, and
that such differences can lead to a detectable difference.
However, when considering realistic implementations, it is
necessary to seek the optimal input frequency profiles,
focussing in particular on the complex phase. Therefore,
futureworkwill need to address the interplay between choices
of profiles that maximize the effect (i.e., minimize the
overlap) and requirements due to realistic implementations.
Modelling of realistic scenarios will additionally require

the extension of our work to 3þ 1 dimensions, which has
been preliminary investigated already [35]. This can be done
and analytical results can be sought, however, it is known
that solving the field equations in 3þ 1 curved spacetime
ultimately requires numerical approaches. Since here we
were interested in defining an operational way to quantify
the genuine wave packet distortion and a proof-of-principle
demonstration, we leave such extensions to future studies.

VI. CONCLUSIONS

We have studied the effects of spacetime curvature on a
wave packet of propagating light. We have introduced an

operational way to distinguish between two concurrent
effects induced by gravity on propagating wave packets of
light: the rigid shift of the whole wave packet, and the
genuine wave packet deformation. Given that a pulse
initially prepared by a sender, who is located at a different
point in spacetime, will not match the one expected by the
receiver, we define an overlap of the expected and received
wave packets that is optimized over all possible rigid shifts
of the incoming spectrum. This guarantees that the con-
tributions due to the rigid shift are compensated for, and
that we are left with the quantification of the genuine
distortion of the wave packet due to propagation in a curved
background. As wave packet deformations will reduce the
overlap between the expected and received pulses, a direct
measurement of the deformation can be performed using
this scheme within Hong-Ou-Mandel type experiments
[74,75], which have also been combined with changing
phase profiles of the incoming photons [76].
We have used our scheme for detecting changes

in the shape of the wave packet to study the interplay
between the initial quantum coherence present in the state
of the photon and gravity. We have therefore computed the
genuine distortion for two different initial states, a pure
state and a completely mixed state, which have the same
diagonal elements (i.e., the same probability of detecting
the frequency component ω of the wave packet).
Comparison between the overlaps obtained this way shows
that the initial phase in the pure state enhances the effects.
In other words, it increases the distinguishability of the
incoming and expected frequency profiles. We conclude
that this is another evidence of the influence that gravity
can play on quantum properties of physical systems.
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APPENDIX A: DERIVATION OF THE MAIN
FORMULA

Here we compute our main result. The wave
packet is determined by the (peaked) function Fω0

ðωÞ ¼
fω0

ðωÞe−iψðωÞ ¼ 1=
ffiffiffi
σ

p
f̃ω0

ðωÞe−iψðωÞ, where we conven-
iently separate the modulus and the phase of Fω0

ðωÞ. We
start with the wave packet overlaps

BRUSCHI, CHATZINOTAS, WILHELM, and SCHELL PHYS. REV. D 104, 085015 (2021)

085015-12



Δp ¼
����
Z þ∞

−∞
dωf0ω0

0
ðωÞfω0

ðωÞeiðψ 0ðωÞ−ψðωÞÞ
����

Δm ¼
Z þ∞

−∞
dωf0ω0

0
ðωÞfω0

ðωÞ: ðA1Þ

These two overlaps are motivated in the main text and
are defined in terms of the local quantities, such as
frequencies, under control of the receiver. Here, we haveRþ∞
−∞ jFω0

ðωÞj2 ¼ 1 for normalization. We have implicitly
assumed that σ=ω0 ≪ 1 and thatFω0

ðωÞ ¼ 0 effectively for
all ω=σ ≪ ω0=σ. That is, we assume that the function has
effectively non-zero support in the neighborhood of the
peak, and is zero at the origin, which allows us to extend the
integral in the negative frequency domain. Throughout this
work we need to make sure that any transformation on the
function Fω0

ðωÞ gives as a result another function that has
the same property. The phase ψðωÞ of the wave packet will
play a crucial role in this work. The steps to be undertaken
are described in the following.

1. Deformation due to propagation in curved spacetime

Thewave packet that is received is deformed in a specific
way as determined by general relativity. It is possible to
show that

F0
ω0
0
ðωÞ ¼ χðrA; rBÞFω0

ðχ2ðrA; rBÞωÞ; ðA2Þ

where the function χðrA; rBÞ encodes the overall effect, and
we have ωðhðrÞ − tÞ → χ2ðrA; rBÞωðhðrÞ − χ−2ðrA; rBÞtÞ.
In the case of Bob orbiting a nonrotating spherical planet,
χðrA; rBÞ reads

χðrA; rBÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M

rB

1 − 2M
rA

4

vuut : ðA3Þ

The gravitational redshift can be obtained for more general
spacetimes following a known recipe [32,44].

2. State normalization

In this work we consider two types of states: pure states
and their “completely mixed counterpart.” Let us look at the
case of a Hilbert space with a discrete energy basis jnωk

i for
each frequency ωk. In this case, it is possible to define,
given a one-particle pure state ρ̂p, its completely mixed
counterpart ρ̂m as the diagonal state defined by the relation
h1ωk

jρ̂mj1ωk0 i≡ δkk0 h1ωk
jρ̂pj1ωk

i for its elements. In the
present situation, however, we need to generalize this
relation to a continuous set of frequencies, which results
problematic.
To see that this is the case let us repeat the proce-

dure above. We start with the pure state ρ̂p and naïvely
define its completely mixed counterpart ρ̂m through

h1ωjρ̂mj1ω0 i ¼ δðω − ω0Þh1ωjρ̂pj10ωi. It is immediate to
verify that this is not a trace-class state. In fact, writing
ρ̂p ¼

R
dωdω0ρpðω;ω0Þj1ωih1ω0 j, we have that ρ̂m ¼R

dωρmðωÞj1ωih1ωj, and therefore

Trðρ̂mÞ ≔
Z

dωh1ωj
�Z

dω0ρmðω0Þj1ω0 ih1ω0 j
�
j1ωi

¼
Z

dω
Z

dω0ρmðω0Þh1ωj1ω0 ih1ω0 j1ωi

¼
Z

dω
Z

dω0ρmðω0Þδ2ðω − ω0Þ; ðA4Þ

which is ill defined since there is no proper definition for
the application of squares of Dirac-delta to well-behaved
functions.
Regardless of the problem presented here, we wish to

have a mixed state counterpart to the proposed pure state

ρ̂pðχÞ ¼ χ2
Z

dωdω0Fω0
ðχ2ωÞF�

ω0
ðχ2ω0Þj1ωih1ω0 j; ðA5Þ

which is a trace-class state, with trace Trðρ̂pðχÞÞ ¼
χ2

R
dωjFω0

ðχ2ωÞj2 ¼ 1.
To define its mixed counterpart we note that, in practice,

no realistic implementation of a detector can project exactly
the state (A5) on its diagonal components defined by a
sharp frequency. Therefore, let us introduce the “window
projector” Π̂ðnÞ ≔ j1ðnÞðθÞih1ðnÞðθÞj, with

j1ðnÞðθÞi ≔
Z ðnþ1=2Þσ�

ðn−1=2Þσ�

dωffiffiffiffiffi
σ�

p eiθ
ω
σ� j1ωi: ðA6Þ

It is easy to check that Π̂ðnÞ2 ¼ Π̂ðnÞ and that
h1ðnÞðθÞj1ðmÞðθÞi ¼ δnm.
The parameter σ� is crucial here. It has dimension of

frequency and we assume that λ ≔ σ�=σ ≪ 1. This means
that the projector always selects very “thin slices” of the
profile functions Fω0

, characterized by a width that is
much smaller than the characteristic width of the peaked
function Fω0

.
We now wish to compute the quantity ρ̃nmðθÞ ≔

h1ðnÞðθÞjρ̂pðχÞj1ðmÞðθÞi. We have

ρ̃nmðθÞ ¼ χ2λ

Z
nþ1=2

n−1=2
dw

Z
mþ1=2

m−1=2
dw0f̃ω0

ðχ2λwÞf̃ω0
ðχ2λw0Þ

× eiðψðλw0Þ−ψðλwÞÞeiθðw0−wÞ: ðA7Þ

We now ask ourselves what happens if we integrate out
the angle θ from (A7). We can do this by introducing
ρ̃nm ≔ 1=

ffiffiffiffiffiffi
2π

p R∞
−∞ dθρ̃nmðθÞ. We find
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ρ̃nm ≔
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dθρ̃nmðθÞ

¼ χ2λffiffiffiffiffiffi
2π

p
Z

∞

−∞
dθ

Z
nþ1=2

n−1=2
dw

Z
mþ1=2

m−1=2
dw0f̃ω0

ðχ2λwÞf̃ω0
ðχ2λw0Þeiðψðλw0Þ−ψðλwÞÞeiθðw0−wÞ

¼ χ2λ

Z
nþ1=2

n−1=2
dw

Z
mþ1=2

m−1=2
dw0f̃ω0

ðχ2λwÞf̃ω0
ðχ2λw0Þeiðψðλw0Þ−ψðλwÞÞδðw0 − wÞ; ðA8Þ

which gives us

ρ̃nm ¼
�
χ2λ

R nþ1=2
n−1=2 f̃2ω0

ðχ2λwÞ for n ¼ m

0 otherwise
ðA9Þ

Therefore, focusing only on the diagonal elements we find

ρ̃nn ¼ χ2λ

Z
nþ1=2

n−1=2
f̃2ω0

ðχ2λwÞ

≃ χ2λ

Z
1=2

−1=2
dw½f̃ω0

ðχ2λnÞ�2 þOðχ4λ2Þ

≃ χ2λf̃2ω0
ðχ2λnÞ þOðχ4λ2Þ: ðA10Þ

To obtain (A8) we have used the perturbative expansion of the fω0
functions and the fact that λ ≪ 1. Therefore, we have that

ρ̃nm ≃ δnmχ
2λf̃2ω0

ðχ2λnÞ þOðχ4λ2Þ: ðA11Þ

Therefore, we introduce the states ρ̂mðχÞ and ρ̂pðχÞ by the expressions

ρ̂mðχÞ ≔ χ2
X
n

λf̃2ω0
ðχ2λnÞj1ðnÞð0Þih1ðnÞð0Þj

ρ̂pðχÞ ¼ χ2
Z

dωdω0Fω0
ðχ2ωÞF�

ω0
ðχ2ω0Þj1ωih1ω0 j; ðA12Þ

which represent the mixed and pure states received by Bob. The states that are sent can be obtained, instead, by simply
setting χ ¼ 1. Note that normalization of the states (A12) is now free from the mathematical issues mentioned above. It is
easy, in fact, to check that

Trðρ̂pðχÞÞ ¼ 1

Trðρ̂mðχÞÞ ¼
Z

dωχ2
X
n

λf̃2ω0
ðχ2λnÞh1ωj1ðnÞð0Þih1ðnÞð0Þj1ωi ¼ χ2

X
n

λf̃2ω0
ðχ2λnÞ ¼

Z
dxf̃2ω0

ðxÞ ¼ 1 ðA13Þ

by noting that, in the continuum limit χ2λ → 0, we have
χ2λ ∼ dx and χ2λn ∼ x.
This means that, for all purposes, the mixed state ρ̂mðχÞ

introduced in (A12) achieves our goal of providing a good
prescription to obtain a well-defined mixed state counter-
part to the pure state ρ̂pðχÞ.
We can ask ourselves the following question: does the

coherence of the state change due to gravity? Intuitively,
since the frequency distribution is altered, but there is no
loss of information to additional degrees of freedom, we
expect the mixedness of the state not to change. To answer

the question we use the purity γ of a quantum state
ρ̂ defined as γðρ̂Þ ≔ Tr½ρ̂2�, which is bounded by 0 ≤
γðρ̂Þ ≤ 1 and is equal to unity only for pure states.
Introducing the purities γmðχÞ ≔ Tr½ρ̂2mðχÞ� and γpðχÞ ≔
Tr½ρ̂2pðχÞ� crucially defined in Bob’s local frame, we to
see that γpð0Þ ≔ γðρ̂pð0ÞÞ ¼ 1. It is immediate to see
that γpðχÞ ¼ γpð0Þ.
In order to compute the unmodified γmð0Þ ≔ γðρ̂mð0ÞÞ

and modified γmðχÞ purities of the mixed state instead, we
use the modified mixed state (A12). We find that

BRUSCHI, CHATZINOTAS, WILHELM, and SCHELL PHYS. REV. D 104, 085015 (2021)

085015-14



γmðχÞ ¼ Tr

	�
χ2
X

n
λf̃2ω0

ðχ2λnÞj1ðnÞð0Þih1ðnÞð0Þj
�

2



¼ Tr

	
χ4
X
n;m

λ2f̃2ω0
ðχ2λnÞf̃2ω0

ðχ2λmÞh1ðnÞð0Þj1ðmÞð0Þij1ðnÞð0Þih1ðmÞð0Þj



¼
Z

dx
Z

dx0f̃2ω0
ðxÞf̃2ω0

ðx0Þh1ðx=ðχ2λÞÞð0Þj1ðx0=ðχ2λÞÞð0ÞiTr½j1ðx=ðχ2λÞÞð0Þih1ðx0=ðχ2λÞÞð0Þj�

¼
Z

dxf̃4ω0
ðxÞTr½j1ðx=ðχ2λÞÞð0Þih1ðx=ðχ2λÞÞð0Þj� ¼

Z
dxf̃4ω0

ðxÞ ðA14Þ

and, defining γmð0Þ ≔
R
dxf̃4ω0

ðxÞ, we also have that γmðχÞ ¼ γmð0Þ. To obtain this we have used the continuum limit
χ2λn ¼ x, as well as χ2λ ¼ dx. Explicitly,

¼
Z

dxf̃4ω0
ðxÞTr½j1ðx=ðχ2λÞÞð0Þih1ðx=ðχ2λÞÞð0Þj�

¼
Z

dx
Z

dω
Z ðn=ðχ2λÞþ1=2Þσ�

ðn=ðχ2λÞ−1=2Þσ�

dω0dω00

σ�
f̃4ω0

ðxÞh1ωj1ω0 ih1ω00 j1ωi

¼
Z

dx
Z ðn=ðχ2λÞþ1=2Þσ�

ðn=ðχ2λÞ−1=2Þσ�

dω
σ�

f̃4ω0
ðxÞ ¼

Z
dxf̃4ω0

ðxÞ: ðA15Þ

3. Overlap of the states

In this work we require to compute the overlap Δ ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðρ̂0; ρ̂Þp

between the states (wave packets) of the
two systems using the quantum fidelity F ðρ̂0;ρ̂Þ≔
Trð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffî
ρ

p
ρ̂0

ffiffiffî
ρ

pp
Þ. It is convenient to write Fω0

ðωÞ ¼ fω0
ðωÞ

exp½iψðωÞ�, where fω0
ðωÞ ≔ jFω0

ðωÞj is the modulus of the
frequency distribution and ψðωÞ is its phase. Using this
decomposition it is immediate to compute the overlap Δp for
the pure state case, which reads

Δp ¼ χ

����
Z þ∞

−∞
dωfω0

ðχ2ωÞfω0
ðωÞeiðψðχ2ωÞ−ψðωÞÞ

����: ðA16Þ

Let us quickly show how we can compute that
of the mixed state case. We need to compute

Δp ≔ Trð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂mð0Þ

p
ρ̂mðχÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂mð0Þ

pq
Þ. Since we have that

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂mð0Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

λjFω0
ðλnÞj2j1ðnÞð0Þih1ðnÞð0Þj

r
¼

X
n

ffiffiffi
λ

p
jFω0

ðλnÞjj1ðnÞð0Þih1ðnÞð0Þj; ðA17Þ

and analogously for all square-roots of diagonal states, it is not
difficult to see that

Δm ¼ χλ
X
n

jF�
ω0
ðχ2λnÞFω0

ðλnÞj

¼ χ

Z
dωjF�

ω0
ðχ2ωÞFω0

ðωÞj; ðA18Þ

using the continuum limit σλn ¼ ω and σλ ¼ dω.

4. Compensation for the “rigid” shift

Physical quantum systems that are employed for con-
crete tasks are always localized. Therefore, the (modulus of
the) functions Fω0

ðωÞ are assumed to be peaked and to have
the functional from fω0

ðωÞ≡ 1=
ffiffiffi
σ

p
f̃ðω−ω0

σ Þ. Here f̃ are
conveniently normalized functions as it will become clear
later. We now use the relation (A2) and the function
dependence of the wave packet on the peak to obtain

Δp¼ χ

����
Z þ∞

−∞

dω
σ
f̃

�
χ2ω−ω0

σ

�
f̃

�
ω−ω0

σ

�
eiðψðχ2ωÞ−ψðωÞÞ

����
Δm¼ χ

Z þ∞

−∞

dω
σ
f̃

�
χ2ω−ω0

σ

�
f̃

�
ω−ω0

σ

�
: ðA19Þ

The instinct is to try to identify a translation of the
frequencies as a means to compensate for the mismatch
between the received packet and the expected packet. For
this reason, we assume that the receiver:

(i) can perform an arbitrary and rigid shift of the whole
spectrum, implemented by setting ω → ωþ δω for
an arbitrary δω;

(ii) will apply such transformation to the incoming wave
packet only.
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With this in mind we obtain the new overlaps

Δp ¼ χ

����
Z þ∞

−∞

dω
σ

f̃

�
χ2ωþ χ2δω − ω0

σ

�
f̃

�
ω − ω0

σ

�
eiðψðχ2ωþχ2δωÞ−ψðωÞÞ

����
Δm ¼ χ

Z þ∞

−∞

dω
σ

f̃

�
χ2ω − ω0

σ

�
f̃

�
ω − ω0

σ

�
: ðA20Þ

From a formal perspective we can introduce the rescaled variable ω0 ≔ ωþ ω0, which would center both peaked functions
around ω ¼ 0 if one was not affected by propagation in a curved background. We therefore have

Δp ¼ χ

����
Z þ∞

−∞

dω0

σ
f̃

�
χ2ω0 þ χ2δωþ ðχ2 − 1Þω0

σ

�
f̃

�
ω0

σ

�
eiðψðχ2ω0þχ2δωþχ2ω0Þ−ψðω0þω0ÞÞ

����
Δm ¼ χ

Z þ∞

−∞

dω0

σ
f̃

�
χ2ω0 þ χ2δωþ ðχ2 − 1Þω0

σ

�
f̃

�
ω0

σ

�
: ðA21Þ

Finally, first rescaling ω0 → χω0 and then introducing the new dimensionless variable z ≔ ω0=σ, with the corresponding
quantities δz ≔ δω=σ and z0 ≔ ω0=σ, we have

Δ̃p ¼
����
Z þ∞

−∞
dzf̃ðχzþ z̄Þf̃ðz=χÞeiðψðσðχzþz̄þz0ÞÞ−ψðσðz=χþz0ÞÞ

����
Δ̃m ¼

Z þ∞

−∞
dzf̃ðχzþ z̄Þf̃ðz=χÞ: ðA22Þ

Here we have introduced the important quantity
z̄ ≔ χ2δzþ ðχ2 − 1Þz0, which is directly related to the shift
δω introduced by the receiver. Note that we have changed
the notation from Δ to Δ̃ to highlight the change to
dimensionless, shifted quantities within the integrals. Of
course, the value of the integrals is independent of such
change of definitions.

5. Optimization over the rigid shift

We describe our last operation. We note that the overlaps
(A22) quantify how faithful the incoming photon is to the
expected one, modulo an arbitrary rigid shift of the whole
incoming wave packet. The final step, therefore, is to
optimize the expressions (A22) over the shift z̄ (which
effectively means over the frequency shift δω). Given the
value z̄opt that achieves this goal, we therefore say that

(i) The optimal dimensionless shift z̄opt provides us the
classical redshift δωrs of the photon through

δωrs ≔
σ

χ2
ðz̄opt − ðχ2 − 1Þz0Þ: ðA23Þ

(ii) The genuine distortion Δ̃m;opt and Δ̃p;opt of the wave
packet due to gravity, defined by

Δ̃p;opt ≔ Δ̃pjz̄¼z̄opt

Δ̃m;opt ≔ Δ̃mjz̄¼z̄opt : ðA24Þ

This is our main result.

APPENDIX B: DEFORMATION EFFECTS ON
DIFFERENT WAVE PACKETS

Here we explicitly compute the expressions for the main
quantity Δ̃ in the case of: (i) a Gaussian profile; (ii) a
frequency-comb with Gaussian envelope. Note that, in the
following, F̃ ≔ f̃ exp½iψ �.

1. Preliminary tool

In the following we will make use of the preliminary
expression

Z þ∞

−∞
dze−

1
4
a2z2e−

1
2
a1ze−

1
4
c0e−iκz¼

ffiffiffiffiffiffi
4π

a2

s
e−

1
4
c0e−

1
4

a0a2−a
2
1

a2 e−
κ2

a2eiκ
a1
a2 :

ðB1Þ

This will allow us to compute the Δ̃ quantities for all of our
cases. In particular, it will allow us to do so for the case
where the phase ψðzÞ is present, i.e., the pure-state case,
which can be immediately adapted to the mixed-state case
by setting ψ ¼ 0.

2. Gaussian wave packets

We start by considering Gaussian wave packets of light.
It has been argued that Gaussian distributions are resilient
to modifications of the type discussed in this work [37]. For
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this reason, we can already anticipate that the choice of
such functions will result into small deformations. We will
consider wave packets with two different frequency-
dependent phases.

a. Gaussian wave packets: Linear phase

The first wave packet is defined through the
normalized Gaussian with a phase that is linear in the
frequency. In our normalized variable z this reads
F̃ðzÞ ¼ 1=

ffiffiffiffiffiffi
2π4

p
exp½−z2=4 − iϕ̃ðzþ z0Þ�, which allows us

to easily compute the overlaps Δ̃Ga as

Δ̃Ga
p ¼

ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ4
p e

− z̄
χ4þ1e

−ðχ2−1Þ2
χ4þ1

ϕ̃2

Δ̃Ga
m ¼

ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ4
p e

− z̄
χ4þ1: ðB2Þ

Note that the results above are independent of z0. This
occurs because it induces a global phase contribution for
the mode of the photon. Instead, the overlaps depend on the
arbitrary rescaled shift z̄.
Optimization over z̄ clearly gives z̄opt ¼ 0, which means

that the optimal Δ̃Ga quantities read

Δ̃Ga
p;opt ¼

ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ4
p e

−ðχ2−1Þ2
χ4þ1

ϕ̃2

Δ̃Ga
m;opt ¼

ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ4
p : ðB3Þ

When we consider the near-Earth regime, we then have

Δ̃Ga
p ≈ 1 − ð1þ 2ϕ̃2Þδ21

Δ̃Ga
m ≈ 1 − δ21: ðB4Þ

b. Gaussian wave packets: Quadratic phase

We can choose a different phase profile for our
Gaussian and therefore employ the Gaussian F̃ðzÞ ¼
1=

ffiffiffiffiffiffi
2π4

p
exp½−z2=4 − iϕ̃ðzþ z0Þ2� in normalized and

shifted coordinates. Then, we find

Δ̃Ga
p ¼

ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ4
p e

−4ðχ
2−1Þ2
χ4þ1

ϕ̃2

ξðϕ̃Þz
2
0ffiffiffiffiffiffiffiffiffi

ξðϕ̃Þ
q e−16a1ðϕ̃Þz̄−1

4
a2ðϕ̃Þz̄2

Δ̃Ga
m ¼

ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ4
p e−

1
4
a2ð0Þz̄2 ; ðB5Þ

where we have introduced

ξðϕ̃Þ ≔ 1þ 16ϕ̃2 ðχ4 − 1Þ2
ðχ4 þ 1Þ2

a1ðϕ̃Þ ≔ χ2
ðχ2 − 1Þ2
ðχ4 þ 1Þ2

ϕ̃

ξ
z0

a2ðϕ̃Þ ≔
1þ 16ϕ̃2

χ4 þ 1

1

ξ
ðB6Þ

as ϕ̃-dependent functions. Optimizing over z̄ gives us

Δ̃Ga
p;opt ¼

ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ4
p e

−4ðχ
2−1Þ2
χ4þ1

ϕ̃2

ξðϕ̃Þz
2
0ffiffiffiffiffiffiffiffiffi

ξðϕ̃Þ
q e

256
a2
1
ðϕ̃Þ

a2ðϕ̃Þ

Δ̃Ga
m;opt ¼

ffiffiffi
2

p
χffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ4
p ; ðB7Þ

with the optimal value z̄opt ¼ −32 a2
1
ðϕ̃Þ

a2ðϕ̃Þ.
Finally, considering again the near-Earth regime, we

have

Δ̃Ga
p;opt ≈ 1 − ð1þ 32ϕ̃2 þ 8ϕ̃2z20Þδ21 þ

512ϕ̃2

1þ 16ϕ̃2
z20δ

4
1

Δ̃Ga
m;opt ≈ 1 − δ21; ðB8Þ

to be supplemented with the expression z̄opt¼− 64ϕ̃2

1þ16ϕ̃2 z20δ
2
1.

3. Frequency comb wave packets

Here we consider a frequency comb, which is a profile
constituted by many peaks separated by a constant spacing
[57]. The normalizeable frequency comb profile as a
function of the shifted dimensionless frequency z reads

F̃ðzÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ̃2

8π

4

r X
n

e−
z2
4 e−

σ̃2

4
ðz−nd̃Þ2e−iϕ̃ðzþz0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϑ3ð0; e−
1
2

σ̃2

1þσ̃2
d̃2Þ

q ; ðB9Þ

where d determines the distance between the comb-peaks,
μ is the width of the combs, and ϑ3ðz; τÞ is the Jacobi theta
function. We have also defined σ̃ ≔ σ=μ and d̃ ≔ d=σ for
convenience of presentation.
To achieve this explicit normalization we have assumed

that the combs are separated enough such that their overlap
is negligible. This requires setting d̃ σ̃ ≫ 1. Furthermore,
we expect that σ̃ ≫ 1 since the Gaussian envelope profile
has a (much) larger size than the individual comb.
Extremely high values of σ̃ can be achieved with current
technology [58]. Therefore, we started from the general
function

F̃ðzÞ ¼ C
X
n

e−
z2
4 e−

σ̃2

4
ðzþz0−nd̃Þ2e−iψðzþz0Þ; ðB10Þ
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to compute the constant C such that
Rþ∞
−∞ jF̃ðzÞj2 ¼ 1. Here ψðzÞ is an arbitrary z-dependent phase. We have

1 ¼
Z þ∞

−∞
dzjF̃ðzÞj2 ¼ C2

X
n;m∈Z

e−
1
8

σ̃2

1þσ̃2
d̃2½2ð1þσ̃2Þðn2þm2Þ−σ̃2ðnþmÞ2�

Z þ∞

−∞
dze−

1þσ̃2

2
ðz−1

2
ðnþmÞ σ̃2

1þσ̃2
d̃2Þ2

¼ C2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

1þ σ̃2

r X
n;m∈Z

e−
1
8

σ̃2

1þσ̃2
d̃2½2ðn2þm2Þþσ̃2ðn−mÞ2�

¼ C2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

1þ σ̃2

r 	
1þ 2

Xþ∞

n;m¼1

e−
1
4
ðn2þm2Þ σ̃2

1þσ̃2
d̃2 ½e−1

8
ðnþmÞ2 σ̃4

1þσ̃2
d̃2 þ e−

1
8
ðn−mÞ2 σ̃4

1þσ̃2
d̃2 �



¼ 2C2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

1þ σ̃2

r 	
1þ 2

X
n∈N

e−
1
2
n2 σ̃2

1þσ̃2
d̃2 þ 4

X
n¼0;k¼1

…




≈ 2C2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

1þ σ̃2

r
ϑ3ð0; e−

1
2

σ̃2

1þσ̃2
d̃2Þ; ðB11Þ

where all other contributions can be neglected (and included if necessary). To obtain the above we assumed that there is a
particular value n� such that n�d̃ ¼ z0, that is, that the n�th peak is aligned with the peak z0. This is not crucial but
convenient, and this condition can be relaxed if necessary. Furthermore, this condition allowed us to shift the sum such that
n ¼ 0 → n ¼ n�. In turn, this allows us to find the normalization constant C as

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ̃2

8π

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϑ3ð0; e−
1
2

σ̃2

1þσ̃2
d̃2Þ

q ; ðB12Þ

which justifies the choice of function (B9).

a. Frequency comb wave packets: Linear phase

As done for the pure Gaussian profile, we here start with the linear phase case ψðzÞ ¼ ϕ̃ðzþ z0Þ. We have

Δ̃p ¼
����
Z þ∞

−∞
dzf̃�ðχzþ z̄Þf̃ðz=χÞeiϕ̃ðχzþz̄þz0Þe−iϕ̃ðz=χþz0Þ

����
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ̃2

8π

r
1

ϑ3ð0; exp½− 1
2

σ̃2

1þσ̃2
d̃2�Þ

���� X
n;m∈Z

Z þ∞

−∞
dze−

ðχzþz̄Þ2
4 e−

ðz=χÞ2
4 e−

σ̃2

4
ðχzþz̄þz0−nd̃Þ2e−σ̃2

4
ðz=χþz0−md̃Þ2eiϕ̃ðχzþz̄þz0Þe−iϕ̃ðz=χþz0Þ

����
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2χ2

1þ χ4

s
1

ϑ3ð0; exp½− 1
2

σ̃2

1þσ̃2
d̃2�Þ

���� X
n;m∈Z

e−
1
4

a0a2−a
2
1

a2 e−
κ2

a2eiκ
a1
a2

����; ðB13Þ

where we need to introduce the (n- and m-dependent) coefficients for this case

a2 ≔ ð1þ σ̃2Þ χ
4 þ 1

χ2

a1 ≔ χz̄þ χσ̃2ðz̄ − nd̃Þ − 1

χ
σ̃2md̃

a0 ≔ z̄2 þ σ̃2ðz̄ − nd̃Þ2 þ σ̃2m2d̃2

κ ≔
χ2 − 1

χ
ϕ̃: ðB14Þ

Note that we have again used the fact that we assume that there exists an n� such that n�d̃ ¼ z0, and we shift the
summation—therefore effectively setting z0 ¼ 0.
Rearranging and manipulating terms, lengthy algebra gives
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Δ̃p ¼ Γ
���� X
n;m∈Z

½e−1
4
σ̃2ðn2þm2Þd̃2e

1
4

χ2

χ4þ1

σ̃4

1þσ̃2
ðχnþm=χÞ2d̃2

e
1
2
σ̃2nd̃ z̄e

−1
2

χ3

χ4þ1
σ̃2ðχnþm=χÞd̃ z̄

e
−i σ̃2

1þσ̃2
χðχ2−1Þ
χ4þ1

ðχnþm=χÞd̃ ϕ̃�
����; ðB15Þ

where the proportionality constant is

Γ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2χ2

1þ χ4

s
e
−1þσ̃2

4
z̄2

χ4þ1e
−ðχ2−1Þ2

χ4þ1

ϕ̃2

1þσ̃2

ϑ3ð0; exp½− 1
2

σ̃2

1þσ̃2
d̃2�Þ : ðB16Þ

As already done when working to obtain the normalization
constant, we see that the major contributions occur for
n ¼ m. Therefore, we can now approximate (B15) as

Δ̃p ≈ Γ
����X
n∈Z

e
−1
2

σ̃2

1þσ̃2
ð1þσ̃2

2

ðχ2−1Þ2
χ4þ1

Þd̃2n2
e
−1
2

σ̃2

1þσ̃2
χ2−1
χ4þ1

ðz̄þ2iχ
2þ1

χ2
ϕ̃Þd̃n

����:
ðB17Þ

Note that it is immediate to check that, for χ ¼ 1, z̄ ¼ z0 ¼
ϕ̃ ¼ 0 we recover Δ̃Ga

p as expected.
We now want to optimize the expression (B17) with

respect to z̄. It is very difficult to do so analytically using
the general expression (B17). Therefore, we resort to use
the approximation χ ≈ 1þ δ1, and obtain

Δ̃p ≈ ð1 − δ21Þ
e−

1þσ̃2

8
ð1−2δ1Þz̄2e−

2δ2
1

1þσ̃2
ϕ̃2

ϑ3ð0; exp½− 1
2

σ̃2

1þσ̃2
d̃2�Þ

×

����X
n∈Z

e−
1
2

σ̃2

1þσ̃2
ð1þσ̃2δ2

1
Þd̃2n2e−

1
2

σ̃2

1þσ̃2
δ2
1
ðz̄þ4iϕ̃Þd̃n

����: ðB18Þ

We now further apply the property σ̃ ≫ 1 to obtain

Δ̃p ≈ ð1 − δ21Þ
e−

σ̃2

8
ð1þ1=σ̃2−2δ1Þz̄2e−

2δ2
1

σ̃2
ϕ̃2

ϑ3ð0; exp½− 1
2
ð1þ 1=σ̃2Þd̃2�Þ

×

����X
n∈Z

e−
1
2
ð1þ1=σ̃2þσ̃2δ2

1
Þd̃2n2e−

1
2
δ2
1
ðz̄þ4iϕ̃Þd̃n

����: ðB19Þ

Note that δ21 ≪ 1 and, therefore, the last term in (B18) will
always be negligible. In fact, within the modulus operation
this term will give a correction of order δ41 which we can
completely ignore. Even if ϕ̃ and z̄ are large, we have that
δ21ϕ̃ ≪ 1 and δ21z̄ ≪ 1 for the perturbative regime to bevalid.
This implies that the terms exp½− σ̃2

8
z̄2� and exp½− 1

2
d̃2n2�

will be exponentially small, effectively cancelling any
contribution from such last term. Therefore, we have

Δ̃p ≈ ð1 − δ21Þ
ϑ3ð0; exp½− 1

2
ð1þ 1=σ̃2 þ σ̃2δ21Þd̃2�Þ

ϑ3ð0; exp½− 1
2
ð1þ 1=σ̃2Þd̃2�Þ

× e−
σ̃2

8
ð1þ1=σ̃2−2δ1Þz̄2e−

2δ2
1

σ̃2
ϕ̃2 ðB20Þ

We now wish to optimize the expression (B20) with respect
to z̄, which trivially gives z̄opt: ¼ 0. Finally, using the
expansion ϑð0; exp½−x�Þ for x ≪ 1 of the Jacobi theta
function [77] since d̃ ≪ 1, we can write

Δ̃Co
m;opt ≈

�
1 −

σ̃2

2
δ21

�

Δ̃Co
p;opt ≈

�
1 −

σ̃2

2
δ21

�
e−

2δ2
1

σ̃2
ϕ̃2

: ðB21Þ

b. Frequency comb wave packets: Quadratic phase

We proceed to consider a quadratic phase for our
frequency comb scenario. In this case we have
ψðzÞ ¼ ϕ̃2ðzþ z0Þ2, and therefore

Δ̃p¼
����
Z þ∞

−∞
dzf̃�ðχzþ z̄Þf̃ðz=χÞeiϕ̃2ðχzþz̄þz0Þ2e−iϕ̃

2ðz=χþz0Þ2
����

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ̃2

8π

r
1

ϑ3ð0;exp½−1
2

σ̃2

1þσ̃2
d̃2�Þ

×

���� X
n;m∈Z

Z þ∞

−∞
dze−

ðχzþz̄Þ2
4 e−

ðz=χÞ2
4 e−

σ̃2

4
ðχzþz̄þz0−nd̃Þ2

×e−
σ̃2

4
ðz=χþz0−md̃Þ2 ×e

χ4−1
χ2

iϕ̃2z2
e2ðχz̄þ

χ2−1
χ z0Þiϕ̃2z

����
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2χ2

1þχ4

s
1

ϑ3ð0;exp½−1
2

σ̃2

1þσ̃2
d̃2�Þ

���� X
n;m∈Z

e−
1
4

a0a2−a
2
1

a2 e−
κ2

a2eiκ
a1
a2

����:
ðB22Þ

Here, we introduce the (n- and m-dependent) coefficients
that read

a2 ≔ ð1þ σ̃2Þ χ
4 þ 1

χ2
ξðϕ̃Þ

a1 ≔ χz̄þ χσ̃2ðz̄ − nd̃Þ − 1

χ
σ̃2md̃

a0 ≔ z̄2 þ σ̃2ðz̄ − nd̃Þ2 þ σ̃2m2d̃2

κ ≔ 2

�
χz̄þ χ2 − 1

χ
z0

�
ϕ̃2

ξðϕ̃Þ ≔ 1 − 4
χ4 − 1

χ4 þ 1

ϕ̃2

1þ σ̃2
i

jξðϕ̃Þj2 ¼ 1þ 16
ðχ4 − 1Þ2
ðχ4 þ 1Þ2

ϕ̃4

ð1þ σ̃2Þ2 : ðB23Þ
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Note that we have again used the fact that we assume that there exists an n� such that n�d̃ ¼ z0 and we shift the
summation—therefore effectively setting z0 ¼ 0.
Rearranging as done before, lengthy algebra allows us to obtain

Δ̃p ¼ Γ
���� X
n;m∈Z

½e−1
4
σ̃2ðn2þm2Þd̃2e

1
4

χ2

χ4þ1

σ̃4

1þσ̃2
ðχnþm=χÞ2 ξðϕ̃Þ�

jξðϕ̃Þj2d̃
2

e
1
2
σ̃2nd̃ z̄e

−1
2

χ3

χ4þ1
σ̃2ðχnþm=χÞ ξðϕ̃Þ�

jξðϕ̃Þj2d̃ z̄e
−2i σ̃2

1þσ̃2
χ2

χ4þ1
ðχz̄þχ2−1

χ z0Þðχnþm=χÞ ξðϕ̃Þ�jξðϕ̃Þj2d̃ϕ̃
2

�
����; ðB24Þ

where the proportionality constant is

Γ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2χ2

1þ χ4

s
e
−1
4
1þσ̃2

χ4þ1
ð1þ16

ϕ̃4

ð1þσ̃2Þ2Þ
z̄2

jξðϕ̃Þj2e
−16χ

2ðχ2−1Þ
ðχ4þ1Þ2

ϕ̃4

ð1þσ̃2Þjξðϕ̃Þj2z0 z̄e
−4ðχ

2−1Þ2
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It is easy to check that, for χ ¼ 1, z̄ ¼ z0 ¼ ϕ̃ ¼ 0 we recover Δ̃Ga
p as expected.

Once more, as done in the case of obtaining the normalization constant, we see that the major contributions occur for
n ¼ m. Therefore, we can now approximate (B24) as

Δ̃p ≈ Γ
����X
n∈Z

½e−
1
2
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We now want to optimize the expression (B26) with respect to z̄. It is even more difficult to do so analytically in this case.
Therefore, we resort to use the approximation χ ≈ 1þ δ1, and obtain

Δ̃p ≈ ð1− δ21Þ
e
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ðB27Þ

At this point we observe that we have obtained our results for a quadratic phase ψðωÞ which has its minimum at ω ¼ 0. In
the dimensionless coordinates such minimum has been shifted to z ¼ −z0. Due to this (artificial) initial choice, we have the
appearance of z0 in the exponentials in (B27).
In the following, we choose to rescale such choice of minimum to ω ¼ ω0 (or, equivalently, z ¼ z0) and to study how

deviations from this point affect the result (B27). This means that we can effectively replace z0 with δz0, assuming therefore
that δz0 ¼ 0 represents the—now reference—case of the quadratic phase centered around ω ¼ ω0.
Therefore, we can rewrite (B27) as

Δ̃p≈ð1−δ21Þ
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����:

ðB28Þ

Then, we also consider only the cases where jδz0j ∼Oð1Þ. Clearly, when δz0 < 0 the parabola is centered toward the end of
the wave packet, while when δz0 > 0 the parabola is centered toward the front of the wave packet. With this in mind, we
note that when δ1 ¼ 0, optimization of (B28) would trivially give z̄opt ≈ 0. Therefore, we expect that z̄opt ≈ μδ1 for an
appropriate coefficient μ that depends on all of the other parameters as such that μδ1 ≪ 1.
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Δ̃p≈ ð1−δ21Þ
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ðB29Þ

We see that all of the coefficients in the exponentials that contain the linear nd̃ are small. If we write the expansion of each
exponential explicitly, all terms that are proportional to ðnd̃Þ2kþ1 vanish identically due to the sum running over all integers.
Therefore, the expansion of such exponentials will leave only terms that are proportional to ðnd̃Þ2k. Assuming that it is
appropriate to retain only such terms, we can therefore expand to second order all exponentials that are linear nd̃, and
eliminate coefficients that are of higher order in each term of the perturbative expansions, which leaves us with the
expression

Δ̃p ≈ ð1 − δ21Þe−
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Here we have introduced the quantity Θ defined as

Θ ≈ μ2σ̃4δ21 þ
	
1024

1

σ̃2
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ϕ̃2 ðB31Þ

and we have used the following properties of the Jacobi theta function:

d2
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ϑ3ðz; qÞjz¼0 ¼ −8
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ϑ3ð0; qÞ: ðB32Þ

Using again the expansion of ϑ3ð0; exp½−x�Þ for x ≪ 1, we can finally obtain
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: ðB33Þ

It is still difficult to optimize the expression (B33) with respect to μ. At this point, we can also use the rough estimatePþ∞
n¼1 cosh

−2ðnxÞ ≈ ζ=x for x ≪ 1, with ζ a numerical constant that can be determined numerically if necessary, or
explicitly if known properties of sums of inverse hyperbolic functions can be exploited. This rough estimate can be justified
by saying that as long as nx ≤ 1, then cosh−2ðnxÞ ≈ 1. As soon as nx > 1, we have that cosh−2ðnxÞ decreases exponentially.
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This, we say that coshðnxÞ ∼ 1 for n ≤ x, and ζ corrects for the error in this assumption and the tail of contributions that
come from the exponential decay. We expect that ζ will not have values that impact significantly the claims below and, in
any case, that ζ ≥ 1 since we are overestimating the contributions to the sum for n < x and underestimating them in the
exponentially decaying tail of n > x.
Therefore, since d̃2δ21Θ ≪ 1, we have

Δ̃p ≈ ð1 − δ21Þe−
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Optimization of (B34) over μ gives us the optimal value μopt
with expression

μopt ¼ 32
ð4ζd̃2σ̃2 − 1Þδz0 − 16ζd̃2σ̃2δ21
σ̃2 − 32ζd̃2σ̃4δ21 þ 16ζd̃2ϕ̃2

ϕ̃4

σ̃2
: ðB35Þ

This can be further simplified by noting that we expect
ζd̃2σ̃2 ≫ 1 ≫ δ21, and by noting that σ̃2 ≫ 1 ≫ d̃2σ̃4δ21,
since d̃2σ̃4δ21 ≪ 1 in order for the perturbation theory to
apply. Therefore, we have

μopt ¼ 128ζd̃2ϕ̃4 δz0 − 4δ21
σ̃2 þ 16ζd̃2ϕ̃2

: ðB36Þ

Note that 128ζd̃2ϕ̃4δ21 ≪ 1, which can be seen during the
derivation of (B35).
We can study the two opposite cases of interest: (i) where

ϕ̃ ∼Oð1Þ, and (ii) where ϕ̃ ≫ 1:
(i) In the first case, when ϕ̃ ∼Oð1Þ, we always have

that

Δ̃Co
p;opt ≈ 1 − δ21 −

1

2
σ̃2δ21: ðB37Þ

Note that the result here is independent on δz0.
(ii) In the second case, we have two possibilities. When

δz0 ∼ νδ21, with ν a constant that is not large then we

have μopt ≈ νδ21 and zopt ≈ 0. Therefore, we haveΘ ≈
1024 ϕ̃4

σ̃ δ21 we can use (B34) to find the optimal
overlap

Δ̃Co
p;opt ≈ 1 − δ21 −

1

2
σ̃2δ21 þ 16

ϕ̃4

σ̃2
δ21: ðB38Þ

We can also have δz0 ≥ 1, and therefore

μopt ¼ 8ϕ̃2 δz0
1þ Σ

; ðB39Þ

where Σ ≔ σ̃2=ð16ζd̃2ϕ̃2Þ. Finally, we find

Δ̃Co
p;opt ≈ 1 − δ21 −

1

2
σ̃2δ21 þ 16

ϕ̃4

σ̃2
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− 8
ϕ̃2

d̃2ð1þ ΣÞ2 ½σ̃
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þ ζd̃2σ̃2ð1þ ΣÞ2 þ 256d̃2σ̃2ϕ̃2

− 16ζd̃2σ̃2ϕ̃4ð1þ ΣÞ�δz20δ21: ðB40Þ

It is clear that, when δz0 ∼ νδ21, then we can effectively set
the terms proportional to δz0 in (B40) to zero and, as
expected, the result (B40) reduces to (B38).

[1] J. P. Dowling and G. J. Milburn, Quantum technology: The
second quantum revolution, Phil. Trans. R. Soc. A 361,
1655 (2003).

[2] F. Flamini, N. Spagnolo, and F. Sciarrino, Photonic quantum
information processing: A review, Rep. Prog. Phys. 82,
016001 (2019).

[3] S. Slussarenko and G. J. Pryde, Photonic quantum informa-
tion processing: A concise review, Appl. Phys. Rev. 6,
041303 (2019).

[4] M. O. Scully and M. S. Zubairy, Quantum Optics
(Cambridge University Press, Cambridge, England,
1997).

[5] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and
G.M. Tino, Precision measurement of the newtonian
gravitational constant using cold atoms, Nature (London)
510, 518 (2014).

[6] A. Tartaglia, Light as a probe of the structure of space-time,
J. Phys. Conf. Ser. 718, 072007 (2016).

BRUSCHI, CHATZINOTAS, WILHELM, and SCHELL PHYS. REV. D 104, 085015 (2021)

085015-22

https://doi.org/10.1098/rsta.2003.1227
https://doi.org/10.1098/rsta.2003.1227
https://doi.org/10.1088/1361-6633/aad5b2
https://doi.org/10.1088/1361-6633/aad5b2
https://doi.org/10.1063/1.5115814
https://doi.org/10.1063/1.5115814
https://doi.org/10.1038/nature13433
https://doi.org/10.1038/nature13433
https://doi.org/10.1088/1742-6596/718/7/072007


[7] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum
sensing, Rev. Mod. Phys. 89, 035002 (2017).

[8] J. L. O’brien, Optical quantum computing, Science 318,
1567 (2007).

[9] N. Gisin and R. Thew, Quantum communication, Nat.
Photonics 1, 165 (2007).

[10] G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G.
Bianco, and P. Villoresi, Experimental Satellite Quantum
Communications, Phys. Rev. Lett. 115, 040502 (2015).

[11] D. Dequal, G. Vallone, D. Bacco, S. Gaiarin, V. Luceri, G.
Bianco, and P. Villoresi, Experimental single-photon ex-
change along a space link of 7000 km, Phys. Rev. A 93,
010301(R) (2016).

[12] G. Vallone, D. Dequal, M. Tomasin, F. Vedovato, M.
Schiavon, V. Luceri, G. Bianco, and P. Villoresi, Interfer-
ence at the Single Photon Level Along Satellite-Ground
Channels, Phys. Rev. Lett. 116, 253601 (2016).

[13] S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G.
Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li et al., Satellite-to-
ground quantum key distribution, Nature (London) 549, 43
(2017).

[14] J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren,
W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai et al., Satellite-based
entanglement distribution over 1200 kilometers, Science
356, 1140 (2017).

[15] S.-K. Liao, H.-L. Yong, C. Liu, G.-L. Shentu, D.-D. Li, J.
Lin, H. Dai, S.-Q. Zhao, B. Li, J.-Y. Guan et al., Long-
distance free-space quantum key distribution in daylight
towards inter-satellite communication, Nat. Photonics 11,
509 (2017).

[16] J. Yin, Y. Cao, Y.-H. Li, J.-G. Ren, S.-K. Liao, L. Zhang,
W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai et al., Satellite-to-
Ground Entanglement-Based Quantum Key Distribution,
Phys. Rev. Lett. 119, 200501 (2017).

[17] M. Namazi, G. Vallone, B. Jordaan, C. Goham, R.
Shahrokhshahi, P. Villoresi, and E. Figueroa, Free-Space
Quantum Communication with a Portable Quantum
Memory, Phys. Rev. Applied 8, 064013 (2017).

[18] S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L.
Zhang, D. Rauch, M. Fink, J.-G. Ren, W.-Y. Liu et al.,
Satellite-Relayed Intercontinental Quantum Network, Phys.
Rev. Lett. 120, 030501 (2018).

[19] X. Han, H.-L. Yong, P. Xu, W.-Y. Wang, K.-X. Yang, H.-J.
Xue, W.-Q. Cai, J.-G. Ren, C.-Z. Peng, and J.-W. Pan,
Point-ahead demonstration of a transmitting antenna for
satellite quantum communication, Opt. Express 26, 17044
(2018).

[20] L. Calderaro, C. Agnesi, D. Dequal, F. Vedovato, M.
Schiavon, A. Santamato, V. Luceri, G. Bianco, G. Vallone,
and P. Villoresi, Towards quantum communication from
global navigation satellite system, Quantum Sci. Technol. 4,
015012 (2018).

[21] P. Xu, Y. Ma, J.-G. Ren, H.-L. Yong, T. C. Ralph, S.-K.
Liao, J. Yin, W.-Y. Liu, W.-Q. Cai, X. Han et al., Satellite
testing of a gravitationally induced quantum decoherence
model, Science 366, 132 (2019).

[22] H. Dai, Q. Shen, C.-Z. Wang, S.-L. Li, W.-Y. Liu, W.-Q.
Cai, S.-K. Liao, J.-G. Ren, J. Yin, Y.-A. Chen et al., Towards
satellite-based quantum-secure time transfer, Nat. Phys. 16,
848 (2020).

[23] D. Dequal, L. T. Vidarte, V. R. Rodriguez, G. Vallone, P.
Villoresi, A. Leverrier, and E. Diamanti, Feasibility of
satellite-to-ground continuous-variable quantum key distri-
bution, npj Quantum Inf. 7, 3 (2021).

[24] D. K. L. Oi, A. Ling, G. Vallone, P. Villoresi, S. Greenland,
E. Kerr, M. Macdonald, H. Weinfurter, H. Kuiper, E.
Charbon et al., Cubesat quantum communications mission,
Eur. Phys. J. Quantum Technol. 4, 6 (2017).

[25] O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma, B.
Shankar, J. F. M. Montoya, J. C. M. Duncan, D. Spano, S.
Chatzinotas, S. Kisseleff et al., Satellite communications in
the new space era: A survey and future challenges, IEEE
Commun. Surv. Tutorials 23, 70 (2021).

[26] H. Liu, C. Jiang, H.-T. Zhu, M. Zou, Z.-W. Yu, X.-L. Hu, H.
Xu, S. Ma, Z. Han, J.-P. Chen et al., Field Test of Twin-Field
Quantum Key Distribution Through Sending-Or-Not-Send-
ing Over 428 km, Phys. Rev. Lett. 126, 250502 (2021).

[27] J.-P. Chen, C. Zhang, Y. Liu, C. Jiang, W.-J. Zhang, Z.-Y.
Han, S.-Z. Ma, X.-L. Hu, Y.-H. Li, H. Liu et al., Twin-field
quantum key distribution over 511 km optical fiber linking
two distant metropolitans, Nat. Photonics 15, 570 (2021).

[28] I. Khan, B. Heim, A. Neuzner, and C. Marquardt, Satellite-
based QD, Opt. Photonics News 29, 26 (2018).

[29] C. Agnesi, L. Calderaro, D. Dequal, F. Vedovato, M.
Schiavon, A. Santamato, V. Luceri, G. Bianco, G. Vallone,
and P. Villoresi, Sub-ns timing accuracy for satellite
quantum communications, J. Opt. Soc. Am. B 36, B59
(2019).

[30] D. E. Bruschi, T. C. Ralph, I. Fuentes, T. Jennewein, and M.
Razavi, Spacetime effects on satellite-based quantum com-
munications, Phys. Rev. D 90, 045041 (2014).

[31] D. E. Bruschi, A. Datta, R. Ursin, T. C. Ralph, and I.
Fuentes, Quantum estimation of the schwarzschild space-
time parameters of the earth, Phys. Rev. D 90, 124001
(2014).

[32] J. Kohlrus, D. E. Bruschi, J. Louko, and I. Fuentes,
Quantum communications and quantum metrology in the
spacetime of a rotating planet, Eur. Phys. J. Quantum
Technol. 4, 7 (2017).

[33] G. V. Skrotskii, The influence of gravitation on the propa-
gation of light, Akademia Nauk SSR, Doklady 114, 73
(1957).

[34] J. Kohlrus, J. Louko, I. Fuentes, and D. E. Bruschi, Wigner
phase of photonic helicity states in the spacetime of the
earth, arXiv:1810.10502.

[35] Q. Exirifard, E. Culf, and E. Karimi, Towards communi-
cation in a curved spacetime geometry, Commun. Phys. 4,
171 (2021).

[36] B. Kocsis and A. Loeb, Distortion of gravitational-wave
packets due to their self-gravity, Phys. Rev. D 76, 084022
(2007).

[37] S. P. Kish and T. C. Ralph, Estimating spacetime parameters
with a quantum probe in a lossy environment, Phys. Rev. D
93, 105013 (2016).

[38] C. Kozameh and F. Parisi, Light propagation on quantum
curved spacetime and back reaction effects, Classical Quant.
Grav. 24, 4475 (2007).

[39] D. Rideout, T. Jennewein, G. Amelino-Camelia, T. F.
Demarie, B. L. Higgins, A. Kempf, A. Kent, R. Laflamme,
X. Ma, R. B. Mann et al., Fundamental quantum optics

SPACETIME EFFECTS ON WAVEPACKETS OF COHERENT … PHYS. REV. D 104, 085015 (2021)

085015-23

https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1126/science.1142892
https://doi.org/10.1126/science.1142892
https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1103/PhysRevLett.115.040502
https://doi.org/10.1103/PhysRevA.93.010301
https://doi.org/10.1103/PhysRevA.93.010301
https://doi.org/10.1103/PhysRevLett.116.253601
https://doi.org/10.1038/nature23655
https://doi.org/10.1038/nature23655
https://doi.org/10.1126/science.aan3211
https://doi.org/10.1126/science.aan3211
https://doi.org/10.1038/nphoton.2017.116
https://doi.org/10.1038/nphoton.2017.116
https://doi.org/10.1103/PhysRevLett.119.200501
https://doi.org/10.1103/PhysRevApplied.8.064013
https://doi.org/10.1103/PhysRevLett.120.030501
https://doi.org/10.1103/PhysRevLett.120.030501
https://doi.org/10.1364/OE.26.017044
https://doi.org/10.1364/OE.26.017044
https://doi.org/10.1088/2058-9565/aaefd4
https://doi.org/10.1088/2058-9565/aaefd4
https://doi.org/10.1126/science.aay5820
https://doi.org/10.1038/s41567-020-0892-y
https://doi.org/10.1038/s41567-020-0892-y
https://doi.org/10.1038/s41534-020-00336-4
https://doi.org/10.1140/epjqt/s40507-017-0060-1
https://doi.org/10.1109/COMST.2020.3028247
https://doi.org/10.1109/COMST.2020.3028247
https://doi.org/10.1103/PhysRevLett.126.250502
https://doi.org/10.1038/s41566-021-00828-5
https://doi.org/10.1364/OPN.29.2.000026
https://doi.org/10.1364/JOSAB.36.000B59
https://doi.org/10.1364/JOSAB.36.000B59
https://doi.org/10.1103/PhysRevD.90.045041
https://doi.org/10.1103/PhysRevD.90.124001
https://doi.org/10.1103/PhysRevD.90.124001
https://doi.org/10.1140/epjqt/s40507-017-0061-0
https://doi.org/10.1140/epjqt/s40507-017-0061-0
https://arXiv.org/abs/1810.10502
https://doi.org/10.1038/s42005-021-00671-8
https://doi.org/10.1038/s42005-021-00671-8
https://doi.org/10.1103/PhysRevD.76.084022
https://doi.org/10.1103/PhysRevD.76.084022
https://doi.org/10.1103/PhysRevD.93.105013
https://doi.org/10.1103/PhysRevD.93.105013
https://doi.org/10.1088/0264-9381/24/17/013
https://doi.org/10.1088/0264-9381/24/17/013


experiments conceivable with satellitesreaching relativistic
distances and velocities, Classical Quant. Grav. 29, 224011
(2012).

[40] L. B. Okun, Photons and static gravity, Mod. Phys. Lett. A
15, 1941 (2000).

[41] K. Wilhelm and B. N. Dwivedi, On the gravitational red-
shift, New Astron. 31, 8 (2014).

[42] R. V. Pound and G. A. Rebka, Gravitational Red-Shift in
Nuclear Resonance, Phys. Rev. Lett. 3, 439 (1959).

[43] N. Friis, A. R. Lee, and J. Louko, Scalar, spinor, and photon
fields under relativistic cavity motion, Phys. Rev. D 88,
064028 (2013).

[44] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation,
edited by C.W. Misner, K. S. Thorne, and J. A. Wheeler (W.
H. Freeman and Co., San Francisco, 1973).

[45] I. A. Pedrosa, A. Rosas, and C. Furtado, Coherent states of
light propagating in curved spacetimes, Int. J. Mod. Phys.
Conf. Ser. 18, 140 (2012).

[46] D. Rätzel, M. Wilkens, and R. Menzel, Gravitational
properties of light—The gravitational field of a laser pulse,
New J. Phys. 18, 023009 (2016).

[47] M. Gregory, F. F Heine, H. Kämpfner, R. Lange, M. Lutzer,
and R. Meyer, Commercial optical inter-satellite commu-
nication at high data rates, Opt. Eng. (Bellingham, Wash.)
51, 031202 (2012).

[48] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D.
Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C.
Ottaviani et al., Advances in quantum cryptography, Adv.
Opt. Photonics 12, 1012 (2020).

[49] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, Secure
quantum key distribution with realistic devices, Rev. Mod.
Phys. 92, 025002 (2020).

[50] S. L. Braunstein and P. van Loock, Quantum information
with continuous variables, Rev. Mod. Phys. 77, 513 (2005).

[51] S. J. van Enk and C. A. Fuchs, Quantum State of an Ideal
Propagating Laser Field, Phys. Rev. Lett. 88, 027902
(2001).

[52] S. J. Van Enk and C. A. Fuchs, Quantum state of a
propagating laser field, Quantum Inf. Comput. 2, 151165
(2002).

[53] R. Schnabel, Squeezed states of light and their applications
in laser interferometers, Phys. Rep. 684, 1 (2017).

[54] J. R. Klauder, An introduction to squeezed states, in
Symmetries in Science II (Springer US, Boston, MA,
1986), pp. 271–278.

[55] U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs,
30 years of squeezed light generation, Phys. Scr. 91, 053001
(2016).

[56] S. Daumont, B. Rihawi, and Y. Lout, Root-raised cosine
filter influences on papr distribution of single carrier signals,
in 2008 3rd International Symposium on Communications,
Control and Signal Processing (2008), pp. 841–845.

[57] T. Fortier and E. Baumann, 20 years of developments in
optical frequency comb technology and applications, Com-
mun. Phys. 2, 153 (2019).

[58] S. Fang, H. Chen, T. Wang, Y. Jiang, Z. Bi, and L. Ma,
Optical frequency comb with an absolute linewidth of
0.6 hz–1.2 hz over an octave spectrum, Appl. Phys. Lett.
102, 231118 (2013).

[59] A. R. H. Smith and M. Ahmadi, Quantizing time: Interact-
ing clocks and systems, Quantum 3, 160 (2019).

[60] R. Howl, R. Penrose, and I. Fuentes, Exploring the
unification of quantum theory and general relativity with
a Bose-Einstein condensate, New J. Phys. 21, 043047
(2019).

[61] M. Christodoulou and C. Rovelli, On the possibility of
laboratory evidence for quantum superposition of geom-
etries, Phys. Lett. B 792, 64 (2019).

[62] A. Berera, Quantum coherence to interstellar distances,
Phys. Rev. D 102, 063005 (2020).

[63] A. R. H. Smith and M. Ahmadi, Quantum clocks observe
classical and quantum time dilation, Nat. Commun. 11,
5360 (2020).

[64] G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M.
Prevedelli, M. Zych, Č. Brukner, and G. M. Tino, Quantum
test of the equivalence principle for atoms in coherent
superposition of internal energy states, Nat. Commun. 8,
15529 (2017).

[65] M. Carlesso, A. Bassi, M. Paternostro, and H. Ulbricht,
Testing the gravitational field generated by a quantum
superposition, New J. Phys. 21, 093052 (2019).

[66] C. M.Will, The confrontation between general relativity and
experiment, Living Rev. Relativity 17, 4 (2014).

[67] C. Liorni, H. Kampermann, and D. Bruss, Quantum
repeaters in space, New J. Phys. 23, 053021 (2021).

[68] M. Gündoğan, J. S. Sidhu, V. Henderson, L. Mazzarella, J.
Wolters, D. K. L. Oi, and M. Krutzik, Space-borne quantum
memories for global quantum communication, arXiv:2006
.10636.

[69] C. H. Bennett and G. Brassard, Quantum cryptography:
Public key distribution and coin tossing, arXiv:2003.06557.

[70] A. K. Ekert, Quantum Cryptography Based on Bells Theo-
rem, Phys. Rev. Lett. 67, 661 (1991).

[71] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger,
Dense Coding in Experimental Quantum Communication,
Phys. Rev. Lett. 76, 4656 (1996).

[72] M. Pavičić, O. Benson, A. W. Schell, and J. Wolters, Mixed
basis quantum key distribution with linear optics, Opt.
Express 25, 23545 (2017).

[73] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf,
T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum
information, Rev. Mod. Phys. 84, 621 (2012).

[74] C.-K. Hong, Z.-Y. Ou, and L. Mandel, Measurement of
Subpicosecond Time Intervals Between Two Photons by
Interference, Phys. Rev. Lett. 59, 2044 (1987).

[75] M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A.
Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson,
Integrated multichannel photon timing instrument with very
short dead time and high throughput, Rev. Sci. Instrum. 84,
043102 (2013).

[76] H. P. Specht, J. Bochmann, M. Mücke, B. Weber, E.
Figueroa, D. L. Moehring, and G. Rempe, Phase shaping
of single-photon wave packets, Nat. Photonics 3, 469
(2009).

[77] B. C. Berndt and B. Kim, Asymptotic expansions of certain
partial theta functions, Proc. Am. Math. Soc. 139, 3779
(2011).

BRUSCHI, CHATZINOTAS, WILHELM, and SCHELL PHYS. REV. D 104, 085015 (2021)

085015-24

https://doi.org/10.1088/0264-9381/29/22/224011
https://doi.org/10.1088/0264-9381/29/22/224011
https://doi.org/10.1142/S0217732300002358
https://doi.org/10.1142/S0217732300002358
https://doi.org/10.1016/j.newast.2014.01.012
https://doi.org/10.1103/PhysRevLett.3.439
https://doi.org/10.1103/PhysRevD.88.064028
https://doi.org/10.1103/PhysRevD.88.064028
https://doi.org/10.1142/S2010194512008355
https://doi.org/10.1142/S2010194512008355
https://doi.org/10.1088/1367-2630/18/2/023009
https://doi.org/10.1117/1.OE.51.3.031202
https://doi.org/10.1117/1.OE.51.3.031202
https://doi.org/10.1364/AOP.361502
https://doi.org/10.1364/AOP.361502
https://doi.org/10.1103/RevModPhys.92.025002
https://doi.org/10.1103/RevModPhys.92.025002
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/PhysRevLett.88.027902
https://doi.org/10.1103/PhysRevLett.88.027902
https://doi.org/10.5555/2011422.2011426
https://doi.org/10.5555/2011422.2011426
https://doi.org/10.1016/j.physrep.2017.04.001
https://doi.org/10.1088/0031-8949/91/5/053001
https://doi.org/10.1088/0031-8949/91/5/053001
https://doi.org/10.1038/s42005-019-0249-y
https://doi.org/10.1038/s42005-019-0249-y
https://doi.org/10.1063/1.4809736
https://doi.org/10.1063/1.4809736
https://doi.org/10.22331/q-2019-07-08-160
https://doi.org/10.1088/1367-2630/ab104a
https://doi.org/10.1088/1367-2630/ab104a
https://doi.org/10.1016/j.physletb.2019.03.015
https://doi.org/10.1103/PhysRevD.102.063005
https://doi.org/10.1038/s41467-020-18264-4
https://doi.org/10.1038/s41467-020-18264-4
https://doi.org/10.1038/ncomms15529
https://doi.org/10.1038/ncomms15529
https://doi.org/10.1088/1367-2630/ab41c1
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.1088/1367-2630/abfa63
https://arXiv.org/abs/2006.10636
https://arXiv.org/abs/2006.10636
https://arXiv.org/abs/2003.06557
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.76.4656
https://doi.org/10.1364/OE.25.023545
https://doi.org/10.1364/OE.25.023545
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1063/1.4795828
https://doi.org/10.1063/1.4795828
https://doi.org/10.1038/nphoton.2009.115
https://doi.org/10.1038/nphoton.2009.115
https://doi.org/10.1090/S0002-9939-2011-11062-1
https://doi.org/10.1090/S0002-9939-2011-11062-1

