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General solution of the time evolution of two interacting harmonic oscillators
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We study the time evolution of an ideal system composed of two harmonic oscillators coupled through a
quadratic Hamiltonian with arbitrary interaction strength. We solve its dynamics analytically by employing
tools from symplectic geometry. In particular, we use this result to completely characterize the dynamics of
the two oscillators interacting in the ultrastrong-coupling regime with additional single-mode squeezing on both
oscillators, as well as higher-order terms. Furthermore, we compute quantities of interest, such as the average
number of excitations and the correlations that are established between the two subsystems due to the evolution.
We find that this model predicts a second-order phase transition and we compute the critical exponents and the
critical value. We also provide an exact decoupling of the time evolution in terms of simple quantum optical
operations, which can be used for practical implementations and studies. Finally, we show how our techniques
can be extended to include more oscillators and higher-order interactions.
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I. INTRODUCTION

Harmonic oscillators are paramount among quantum sys-
tems, due to their great importance for the description of
bosonic systems, such as the modes of the electromagnetic
field or phononic excitations of optomechanical systems [1],
many-body systems [2], circuit quantum electrodynamics
(QED) [3], Dicke models in the thermodynamical limit [4–6],
and cavity QED [7]. Regardless of the overwhelming number
of studies that have used coupled harmonic oscillators for
different tasks, there is still a lack of analytical control and
understanding of relatively simple systems, such of two cou-
pled harmonic oscillators in the ultrastrong-coupling regime.
Some progress in this direction has been achieved for oscil-
lators in the ultrastrong-coupling regime on resonance [8],
for charged particles in anisotropic potentials [9], and by
using higher-order perturbation theory [10], while approaches
to general solutions have been put forward providing re-
sults of different degrees of complexity [11,12]. In general,
an explicit solution to the full problem remains outstand-
ing.

In this paper we close this gap and provide the exact solu-
tion of the time evolution of a system of two coupled harmonic
oscillators that interact through a time independent quadratic
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Hamiltonian. Our results are free from approximations and
apply to the whole parameter space. Therefore, these results
allow us to study the dynamics of the harmonic oscillators on
a variety of experimental platforms. We apply these solutions
to the important scenario of two oscillators that interact in the
ultrastrong-coupling regime with the addition of single-mode
squeezing on each oscillator. The solutions are given explic-
itly in terms of the Hamiltonian parameters, and we employ
these results to compute a few quantities of physical interest,
such as particle creation number and entropy of entanglement
between the modes. We also discuss the occurrence of phase
transitions for which we are able to find the critical value and
the critical exponents, and we highlight which existing phys-
ical systems can benefit from this analytical understanding
[4,13]. This analytical control over the dynamics can provide
new insights and motivate the pursuit of new experimental
regimes of operation. We also discuss extensions of this paper
to tackle diagonalization of Hamiltonians of higher order,
i.e., Hamiltonians that contain cubic or higher powers of the
quadrature operators [14]. These terms appear, for example, in
statistical mechanics [6] and models of interacting molecules
[15,16]. Furthermore, we use mathematical tools from sym-
plectic geometry to show how the time evolution induced by
the ultrastrong-coupling Hamiltonian, with additional single-
mode squeezing, can be decomposed into a sequence of time
independent simple quantum optical operations, i.e., mode
mixing and squeezing, while the dependence on time enters
only through a phase rotation throughout the process. This
result allows us to interpret the time evolution as a channel,
which can be implemented through basic operations either in a
simulation or in an experiment. This decomposition can open
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the door to applying and combining our results to other fields,
such as the theory of quantum channels [17].

This paper is organized as follows. In Sec. II we introduce
the necessary tools. In Sec. III we solve the time evolution an-
alytically and we characterize the phase transition. In Sec. IV
we apply our results to compute a few relevant quantities,
such as the entropy of entanglement. Section V deals with
the introduction of higher-order terms. Finally, in Sec. VI we
provide a decoupling of the time evolution in terms of simple
quantum optical operations.

II. TOOLS

A. Hamiltonian

A generic quadratic Hamiltonian describing two harmonic
oscillators with mass mk , momentum p̂k , position x̂k , and
frequency ωk , where we have k = a, b, is given by

Ĥ = 1

2

[
p̂2

a

ma
+ ω2

a x̂2
a + p̂2

b

mb
+ ω2

b x̂2
b

]
+ V (x̂a, x̂b, p̂a, p̂b), (1)

where V (x̂a, x̂b, p̂a, p̂b) is a potential formed by quadratic
combinations of the position and momentum operators, and
the canonical commutation relations read [x̂k, p̂k′ ] = i h̄δkk′ .
The Hamiltonian (1) can be written in terms of creation and
annihilation operators

â = 1√
2

(q̂a + i p̂a), â† = 1√
2

(q̂a − i p̂a),

b̂ = 1√
2

(q̂b + i p̂b), b̂† = 1√
2

(q̂b − i p̂b),

(2)

where we have introduced the quadrature operators q̂a :=√
ma ωa/h̄ x̂a and (h̄ ma ωa)−1/2 p̂a → p̂a, and analogous for

mode b̂. In this new basis, the Hamiltonian (1) takes the form

Ĥ = Ĥ0 + V (â, b̂, â†, b̂†), (3)

where Ĥ0 = h̄ ωa â† â + h̄ ωd b̂† b̂ denotes the free Hamilto-
nian (we have discarded the zero-point energy constant), and
now the potential V is obtained as a combination of terms that
are quadratic in the new operators.

The potential can take, for example, the form
V (â, b̂, â†, b̂†) = g (â b̂† + â† b̂ + â b̂ + â† b̂†), and in this
case we see that the first two terms take excitations of one
oscillator into the other one (mode mixing) while the second
two terms are associated with parametric amplification
(squeezing). The system described by (3) with such potential
is said to be in the ultrastrong-coupling regime [18,19] if the
coupling strength g is comparable with the frequencies
ωa and ωd. An extension of this ultrastrong-coupling
Hamiltonian (3) occurs when mode mixing and squeezing
have different coupling constants. In addition, if we include
also single-mode squeezing of each oscillator, we obtain the
Hamiltonian of the form

Ĥ = Ĥ0 + h̄ gbs(â b̂† + â† b̂) + h̄ gsq(â† b̂† + â b̂)

+ h̄ λa (â†2 + â2) + h̄ λb (b̂†2 + b̂2). (4)

Here, gbs, gsq, λa, and λb are the coupling constants of
the mode-mixing interaction, the squeezing interaction, the

single-mode squeezing of mode â, and the single-mode
squeezing of mode b̂, respectively.

Hamiltonians of this form can be engineered in phys-
ical systems such as coupled nanomechanical oscillators
[1,20], coupled vibrational modes of molecules [21], and cou-
pled microwave resonators in circuit QED [22,23] (see also
Appendix D).

B. Time evolution

The time evolution operator Û (t ) induced by a time depen-
dent Hamiltonian Ĥ (t ) reads

Û =
←
T exp

[
− i

h̄

∫ t

0
dt ′ Ĥ (t ′)

]
, (5)

where
←
T stands for the time-ordering operator.

The solution to the implicit expression (5) for our Hamilto-
nian (4) has already been obtained when ωa = ωd, that is, on
resonance [8]. Further analysis of this system within higher-
order perturbation theory has also given partial results [10]. In
this paper we proceed beyond this special case, and provide
the full solution to the problem.

C. Linear dynamics

The Hamiltonian (4) induces linear dynamics.1 Such dy-
namics are defined as those induced by Hamiltonians that
are quadratic in the creation and annihilation operators (or
equivalently in the quadrature operators), which is the case of
this paper. Therefore, we can use the symplectic formalism
[24] to map the usually intractable problem of manipulating
unitary operators to the much more tractable problem of mul-
tiplying low-dimensional matrices, an approach that has been
recently developed in the literature for linear systems [11]—
an alternative approach was attempted in [25], and has also
been extended to nonlinear ones [26]. An extensive review
can be found in the literature [24].

We start by collecting the creation and the annihilation
operators in the vector X̂ of operators defined as X̂ :=
(â, b̂, â†, b̂†)Tp. Any linear unitary evolution of our two os-
cillators can be represented by a 4 × 4 symplectic matrix S
through the defining equation

X̂(t ) = Û (t )† X̂ Û (t ) = S X̂. (6)

The defining property of a symplectic matrix S is that it sat-
isfies S � S† = S† � S = �, where � is the symplectic form
[24]. Given the choice of ordering of the operators in the
vector X̂, we have that

S =
(

α β

β∗ α∗

)
, (7)

and � = −i diag(1, 1,−1,−1). Notice that the defining prop-
erty of the symplectic matrix S is equivalent to the well-known

1In this paper we use the term linear for unitary operators induced
by Hamiltonians that are quadratic in the creation and annihilation
operators. This terminology is completely independent from the fun-
damental linearity of quantum mechanics.
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Bogoliubov identities, which in matrix form read α α† −
β β† = 1 and α βTp − β αTp = 0.

Finally, any quadratic Hamiltonian Ĥ can be put in a matrix
form H by the following:

Ĥ = h̄

2
X̂† H X̂, H =

(
U V
V ∗ U∗

)
, (8)

where U and V satisfy U = U† and V = V T .
Therefore, the action (6) of the time evolution operator

Û (t ) on the (vector of) creation and annihilation operators
implies that it has the symplectic representation S(t ) of the
form

S(t ) =
←
T exp

[
�

∫ t

0
dt ′ H (t ′)

]
, (9)

which is easy to verify explicitly.
We note here that Bogoliubov transformations are sym-

plectic transformations. In fact, the defining properties of
symplectic matrices are just another way of stating that the
transformations preserve the canonical commutation rela-
tions.

D. Covariance matrix formalism

In this paper we will consider Gaussian states of bosonic
systems. Gaussian states are prominent across many areas
of physics [24]. In conjunction with the techniques defined
above, they allow for a full description and characterization
of the whole physical system using the covariance matrix
formalism. Note that, while the analytical solution of the time
evolution applies to systems that are initially in any state, the
addition of the covariance matrix formalism can be done only
when considering Gaussian states. A full introduction to this
topic can be found in the literature [24].

A Gaussian state ρ̂G of N bosonic modes in the covariance
matrix formalism is fully characterized by the N-dimensional
vector of first moments d and the N × N covariance matrix of
second moments σ defined by

dn :=〈X̂n〉,
σnm :=〈X̂nX̂ †

m + X̂ †
mX̂n〉 − 2 〈X̂n〉〈X̂ †

m〉. (10)

Here, X̂n is the nth element of the vector X̂ of operators, and
〈·〉 is the average with respect to the state ρ̂G.

We have seen that if a unitary transformation Û (t ) acting
on an initial Gaussian state is linear, then it is represented by a
symplectic matrix S through (9), and the usual von Neumann
relation ρ̂G(t ) = Û (t ) ρ̂G(0) Û †(t ) takes the form

σ(t ) =S(t ) σ(0) S†(t ). (11)

This equation must be supplemented by the transformation of
the first moments, which reads d (t ) = S d (0).

Williamson’s theorem guarantees that any 2 N × 2 N ma-
trix, such as the covariance matrix σ, can be put in diagonal
form as σ = s ν⊕ s† by an appropriate symplectic matrix s
(see [27]). The diagonal matrix ν⊕ is called the Williamson
form of the covariance matrix σ and has the expression ν⊕ =
diag(ν1, ..., νN , ν1, ..., νN ), where νn � 1 are called the sym-
plectic eigenvalues of σ and are found as the absolute value of

the spectrum of i � σ. The general expression for such eigen-
values is νn = coth( h̄ ωn

2 kB Tn
), where Tn is a local temperature

of each subsystem. This is equivalent to the statement that
Gaussian states are locally (i.e., in terms of single subsystems)
equivalent to thermal states (up to local unitary transforma-
tions). Clearly, when Tn = 0 for all n one has ν⊕ ≡ 1, i.e., the
state is pure.

Finally, we recall that, in this formalism, tracing over a
subsystem is extremely easy. It is sufficient to delete the rows
and columns in the covariance matrix corresponding to the
subsystems one wishes to trace out.

III. TIME EVOLUTION OF THE SYSTEM

In this section we present the explicit expression of the
time evolution represented by the transformation (9). We leave
all details of the calculations to Appendix A for simplicity of
presentation.

A. Time evolution of the system: Full coupling

Let us now proceed with our main computation. We first
note that the problem of computing the time evolution with
the Hamiltonian (4) has been so far addressed only in certain
particular cases, where ωa = ωb and gbs = gsq in [8], for gsq =
0 (i.e., the rotating wave approximation) and for λa = λb = 0
in [28,29]. General methods have also been put forward using
Lie algebra approaches [11,12]; however, exact solutions are
typically difficult to obtain in this way.

Our approach starts by recalling that the Hamiltonian (4)
can be easily diagonalized by a Bogoliubov (i.e., symplectic)
transformation, therefore providing (symplectic) eigenvalues
κ±, namely, the eigenvalues of i � H . Work in this direction
has already been done for simpler scenarios [10,30]. In the
present case, some algebra allows us to compute κ±, which
have full expression that can be found in (A12).

We are now in the position of obtaining the explicit form
of the symplectic representation

S(t ) =
(

A(t ) B(t )
B∗(t ) A∗(t )

)
(12)

of the time evolution operator induced by the full Hamiltonian
(4). We find that the 2 × 2 matrices A(t ) and B(t ) have the
expression

A(t ) = αTp e−i κ t α − βTp ei κ t β,

B(t ) = αTp e−i κ t β − βTp ei κ t α,
(13)

where ATp(t ) = A(t ), B†(t ) = −B(t ), and κ = diag(κ+, κ−).
Detailed computations on how to obtain the matrices α and

β explicitly in terms of the Hamiltonian parameters are left
to Appendix A, but we briefly sketch the procedure here. We
start with the form (8) of the Hamiltonian, where the matrices
U and V read

U =
(

ωa gbs

gbs ωb

)
, V =

(
λa gsq

gsq λb

)
. (14)

We then recall that a 2N × 2N symmetric or Hermitian matrix
can be put in diagonal form by means of a symplectic matrix s
according to Williamson’s theorem. Simple algebra allows us
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to find

U = αTp κ α + βTp κ β,

V = αTp κ β + βTp κ α,
(15)

which can in principle be inverted to obtain explicitly the
coefficients αnm and βnm. The expressions that can be found
in this way correspond to those found in the literature for
ωa = ωb (see [8]).

Given the solution above, the defining equation (6) implies
that the creation and annihilation operators evolve as(

â(t )
b̂(t )

)
= A(t )

(
â
b̂

)
+ B(t )

(
â†

b̂†

)
. (16)

This is our main result. An explicit solution can be given once
the constraints (15) have been explicitly solved, which might
be difficult depending on the exact form of U and V .

B. Time evolution of the system: Ultrastrong coupling

In the ultrastrong-coupling regime [18,19] we typically
have gbs = gsq = g, and therefore the full expression (A12)
reduces to

κ2
± =1

2

{
ω2

a + ω2
b − λ2

a − λ2
b ±

[(
ω2

a − ω2
b + λ2

b − λ2
a

)2

+16 (ωa ωb + λa λb) g2
]1/2}

(17)

which, for λa = λb = 0, reads

κ2
± =1

2

[(
ω2

a + ω2
b

) ±
√(

ω2
a − ω2

b

)2 + 16ωaωb g2

]
(18)

for ωa � ωb and ωa < ωb, respectively.
In this case, the Bogoliubov coefficients αnm and βnm found

in (15) are computed explicitly in Appendix B. The final
expressions read

α11 = κ+ + ωa − λa

2
√

κ+(ωa − λa)
cθ , β11 = − ωa − κ+ − λa

2
√

κ+(ωa − λa)
cθ ,

α12 = κ+ + ωb − λb

2
√

κ+(ωb − λb)
sθ , β12 = − ωb − κ+ − λb

2
√

κ+(ωb − λb)
sθ ,

α21 = κ− + ωa − λa

2
√

κ−(ωa − λa)
sθ , β21 = − ωa − κ− − λa

2
√

κ−(ωa − λa)
sθ ,

α22 = − κ− + ωb − λb

2
√

κ−(ωb − λb)
cθ , β22 = − ωb − κ− − λb

2
√

κ−(ωb − λb)
cθ ,

(19)

where we have introduced cθ := cos θ and sθ := sin θ for sim-
plicity of presentation, while the angle 0 � 2θ � π is defined
through the trigonometric relation

tan(2 θ ) :=
√[


 − (
λ2

b − λ2
a

)]2 − (
ω2

a − ω2
b

)2(
ω2

a − ω2
b

) (20)

and the quantity 
2 := (ω2
a − ω2

b + λ2
b − λ2

a )2 +
16 (ωa ωb + λa λb) g2. Notice that when ωa = ωb one has
to obtain the equivalent formulas to the ones above starting
the calculations by imposing ωa = ωb. It is not possible to set

ωa = ωb at the end. The results for this scenario have already
been obtained in previous work [8].

C. Time evolution of the system: Phase transition at the critical
coupling

We are now in the position to make a few considerations
on our main results.

The symplectic eigenvalues (17) of the full Hamiltonian
must be real. This implies that the coupling strength g is lim-
ited by the critical coupling gcr through the equation |g| � gcr,
where gcr reads

gcr := 1

2

√∣∣(ω2
a − λ2

a

) (
ω2

b − λ2
b

)∣∣
ωa ωb + λa λb

. (21)

As expected, the expression for the critical coupling (21)
matches that for coupled harmonic oscillators in the ultra-
strong regime without squeezing, i.e., gcr = √

ωa ωb/2 (see
[4]). Therefore, when ωa = λa, ωb = λb, or both, there can
be no coupling between the oscillators, that is, gcr = 0 and the
constraint |g| � gcr implies |g| = 0. Note that the existence of
such critical value is a consequence of Williamson’s theorem.
In fact, the theorem requires that the 2N × 2N symmetric or
Hermitian matrix that one wishes to put in diagonal form be
positive definite [27]. Clearly, when one of the symplectic
eigenvalues becomes zero, it implies that the original matrix is
not positive definite, and therefore it cannot be put in diagonal
form through a symplectic transformation. Physically, this
means that, once we reach the critical coupling, the system
cannot be recast as a collection of (two in our case) uncoupled
harmonic oscillators.

We can further compute what happens close to the critical
coupling gcr. We set g = gcr(1 − ε), where ε can be positive
or negative and |ε| � 1, and we obtain the perturbative ex-
pansion of the symplectic eigenvalues (17) to first order ε. We
have, focusing on ωa � ωb,

κ2
+ = ω2

a + ω2
b − λ2

a − λ2
b − 2

(
ω2

a − λ2
a

) (
ω2

b − λ2
b

)
ω2

a + ω2
b − λ2

a − λ2
b

ε,

κ− = 1√
gcr

√
2

∣∣(ω2
a − λ2

a

) (
ω2

b − λ2
b

)∣∣
ω2

a + ω2
b − λ2

a − λ2
b

|g − gcr|1/2,

(22)

where we have made explicit the dependence of κ− on |g −
gcr|. This implies that among the Bogoliubov coefficients (19),
those that are proportional to 1/

√
κ− will be proportional

to |ε|−1/4. Therefore, they grow unboundedly. The behavior
of κ− for |g − gcr|/gcr � 1 reveals this to be a second-order
phase transition [4]. Such transitions are well known in other
areas of physics. For example, they occur in systems that
are covered under the umbrella of Dicke models, where the
total spin of an ensemble of multiple two-level systems is
coupled to a common mode of light [4], or in superconducting
circuits with artificial atoms [6]. In the limit of large num-
bers N of atoms (i.e., two-level systems) Dicke models can
be mapped using a Holstein-Primakoff transformation into
the Hamiltonian (4), with λa = λb = 0. This makes possible
the identification of the phase transition between the normal
phase and the superradiant phase by the condition that both
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eigenvalues are real (when one of them becomes imaginary
we have a phase transition).

A standard way to classify the phase transition is to note
that we can write the dependence of κ− on |g − gcr| around
the critical value gcr as κ− ∝ |g − gcr|z ν . In our case we have
ν = −1/4, and z = 2 is known as the dynamical critical
exponent [4,5].

Finally, note that our Hamiltonian provides a richer sce-
nario compared to those considered for λa = λb = gsq = 0
due to the fact that the parameter space available is larger [6].
Concretely, this is a consequence of the fact that the critical
value (21) is not determined only by the one parameter, such
as the product of the two frequencies when λa = λb = gsq =
0, but by the combination of four coupling constants that are
all independent. Therefore, the phase transition can occur in a
very wide landscape of competing free parameters, potentially
leading to different physical regimes [6].

D. Time evolution of the system: Multimode extension

We note here that our results are not limited to two modes
only. For example, it is possible to use our techniques to solve
the Hamiltonian of three harmonic oscillators with interaction
Hamiltonian ĤI of the form

ĤI = λad (q̂a − q̂b)2 + λdc(q̂b − q̂c)2 + λca(q̂c − q̂a)2. (23)

In fact, the expressions (12), (13), and (15), as well as the
main result (16), apply to systems of arbitrary number N
of modes. The only modifications that will occur are the
following: (i) all matrices have either dimension 2N × 2N or
N × N , instead of 4 × 4 and 2 × 2 as in the present case; (ii)
the matrix κ that collects the frequencies of the normal modes
will read κ := diag(κ1, ..., κN ); (iii) the constraint equations
necessary for this case are the straightforward extension of
those found in (15).

Notice that, in general, finding the symplectic matrix s (or,
equivalently, the Bogoliubov matrices α and β) that diagonal-
izes the Hamiltonian matrix H becomes increasingly hard for
N > 2 (see Appendix A). Nevertheless, our procedure can be
repeated step by step whenever the case presents itself.

IV. EXCITATIONS AND ENTANGLEMENT IN THE
ULTRASTRONG-COUPLING REGIME

Our results provide the time evolution of the creation and
annihilation operators which can in turn be used to compute
the expectation value of any quantity of interest. Here we
restrict ourselves to the class of Gaussian states, which al-
low us to showcase the impact of our result through explicit
and analytical expressions. Note that our results can be used
for any state, including Fock states, but we leave it to fu-
ture work to extend this paper in the direction of arbitrary
states.

The covariance matrix of a Gaussian state evolves through
Eq. (11), while the vector of first moments d := 〈X̂〉 evolves
as d (t ) = S(t ) d (0). At any time t , the covariance matrix σ(t )
of the system has the form

σ =
( U (t ) V (t )

V∗(t ) U∗(t )

)
, (24)

where the 2 × 2 matrices U (t ) and V (t ) read

U (t ) = AU (0) A∗ − BU∗(0) B∗ − AV (0) B

+ BV∗(0) A∗,

V (t ) = AV (0) A − BV∗(0) B∗ − AU (0) B∗

+ BU∗(0) A. (25)

The total number of excitations N (t ) can be obtained through
the expression N (t ) = 1

4 Tr[σ(t )] − 1, which reads

N (t ) = N (0) − Tr[B2 ReU (0)] − TrRe[B A ReV (0)]. (26)

Initial vacuum state

To illustrate the results we can start with the initial vacuum
state |0〉 of the system. The covariance matrix σ(0) of this
system is just σ(0) = 14.

Using the expression (26) we have N (t ) = |B11(t )|2 +
|B22(t )|2 + 2 |B12(t )|2. Therefore, we have

N (t ) =2 Tr
(
β βTp) + 2 Tr

(
β βTp ei κ t β βTp e−i κ t

)
− 2 TrRe

(
β αTp ei κ t β αTp ei κ t

)
. (27)

The creation of particles from the vacuum depends directly
on β, vanishes for β = 0, and is a signature of squeezing pro-
cesses. Squeezing would not occur if the original Hamiltonian
was used within the rotating wave approximation alone, and
without single mode squeezing.

Notice that, in general, the number of excitations will be
strictly larger than zero, and can approach zero when κ+ =
κ− + 2 n π , for some appropriate n ∈ Z. Furthermore, the
number of excitations oscillates with time, which we expect
since the time evolution is unitary.

We can also compute some quantities that measure the
amount of correlations, or entanglement, generated between
the two modes. The simplest one is the entropy of entangle-
ment SVN, which is just the von Neumann entropy of one of
the two reduced systems (note that, since the state is globally
pure, the entropy of entanglement of both subsystems has
the same value). In the language of the covariance matrix
formalism, we have SVN := f+(ν) − f−(ν), where ν is the
symplectic eigenvalue of the reduced state of mode â, and
f±(ν) := ν±1

2 ln ν±1
2 .

The reduced state σa(t ) of mode â has the expression

σa = 1 + 2

( |B11|2 + |B12|2 A11B11 + A12B12

A∗
11B∗

11 + A∗
12B∗

12 |B11|2 + |B12|2
)

, (28)

and therefore we find

ν =
√

(1 + 2|B11|2 + 2|B12|2)2 − 4|A11B11 + A12B12|2.
(29)

The coefficients Anm and Bnm are defined in (B4).
We have entropy of entanglement when SVN[ν(t )] > 0,

which occurs when ν(t ) > 1. In fact, the reduced state of
mode â is initially pure and therefore ν(0) = 1. However, due
to the entangling nature of the ultrastrong-coupling Hamil-
tonian, we have that ν(t ) > 1 and therefore some quantum
correlations are established between the two systems. Note
that, since for continuous variables there is no such thing as a
“maximally entangled state,” the fact that ν(t ) > 0 guarantees
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the presence of correlations between the two subsystems, but
the actual numerical value of SVN[ν(t )] does not provide an
intuitive understanding on “how much” correlations are
present, since no natural scale is available.2

Finally, entanglement can also be computed using the sep-
arability criterion of the partial transpose—i.e., the positive
partial transpose (PPT) criterion [31,32]—which for Gaussian
states of two modes can be cast as the following procedure.

We take the full state σ(t ) at time t and compute the spec-
trum of i � P σ(t ) P [note that σ̃(t ) = P σ(t ) P is the partial
transpose of the state σ(t ) in mode b̂, in this basis], where the
matrix P reads

P :=

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟⎟⎟⎠. (30)

The spectrum has eigenvalues +ν̃±,−ν̃±, where 0 < ν̃− <

ν̃+. These are also called the symplectic eigenvalues of the
partial transpose. Recall that the symplectic eigenvalues ν±
of the state are always greater than or equal to 1. However,
the smallest symplectic eigenvalue ν̃− of the partial transpose
can be smaller than one. If that is the case, the PPT criterion
for a bipartite system guarantees that there is entanglement
in the state. Furthermore, all measures of entanglement are
monotonic functions of ν̃− (see [24]).

The procedure outlined here allows us to compute the
smallest symplectic eigenvalue ν̃− of the partial transpose and
therefore detect the presence of entanglement. The explicit
result in terms of the parameters of the problem is too cum-
bersome to be presented here. However, our results allow for
immediate numerical analysis of the amount of entanglement
present as a function of the parameters of the problem and
of time. We leave it to specialized work to perform analysis
of this type. Finally, we note that entanglement for coupled
bosonic systems modeled by Hamiltonians such as (4) has
been already numerically studied in different works, such as
[33].

It is possible to apply our results to other initial Gaussian
states of interest. Given the expression (25) for states at some
time t , it is possible to analyze thermal states, for which
U (0) = diag(ν+, ν−) and V (0) = 0, and two mode squeezed
states, for which U (0) = cosh r 12 and V (0) = sinh r σx. We
choose to leave these cases for more specialized work.

V. EXTENSION TO HIGHER-ORDER INTERACTIONS

The techniques developed in this paper can be extended
to solve Hamiltonians that include higher-order interactions.
By this we mean interactions that are at least cubic in the
product of the annihilation and creation operators. We will
first provide an example that has already been studied in the
literature, and then introduce a more general treatment.

2This is in contrast with, say, qubit systems, where maximal entan-
glement exists and can be found in states such as Bell states. In this
case, the entanglement is normalized to take values between 0 (no
entanglement) and 1 (maximal entanglement).

Consider a quadratic two-mode Hamiltonian which only
includes a mode-mixing term:

Ĥbs =h̄ω( â† â − b̂† b̂) + h̄g (â† b̂ + b̂ â†). (31)

This Hamiltonian is obtained by setting ωb = −ωa = −ω,
gbs = g, gsq = λa = λb = 0, and gbs = 0 in (4). The matrix
form (8) of the Hamiltonian is

U =
(

ω g
g −ω

)
(32)

and V = 0, and in the symplectic matrix formalism Ĥbs =
h̄
2 X̂

†
θ κ̃ X̂θ where X̂θ = sθ X̂, and sθ is the symplectic ma-

trix that diagonalizes it. Therefore, the Hamiltonian matrix
Hbs = h̄

2 s†
θ κ̃ sθ is diagonalized by the symplectic matrix sθ =

α ⊕ α∗, which is given by αnm Bogoliubov coefficients α11 =
α22 = cos θ , α12 = −α21 = sin θ , and tan(2 θ ) = −g/ω. All
the other Bogoliubov coefficients are zero. The eigenfrequen-
cies κ± define the diagonal matrix κ̃ := κ ⊕ κ, where κ :=
diag(κ+, κ−) and κ± = ±κ = ±

√
ω2 + g2.

Therefore, the diagonal “free” Hamiltonian Ĥ0 is given by
Ĥ0 = h̄

2 X̂
†κ̃X̂ = h̄

√
(ω2 + g2)(â†â − b̂†b̂). Now we proceed

to include biquadratic interactions:

Ĥ2 = Caaaa â†2 â2 + Cbbbb b̂†2 b̂2 + Cabab â† b̂† â b̂

+ Cabbb â† b̂† b̂ b̂ + Cabaa â† b̂† â â

+ Cbbab b̂† b̂† â b̂ + Caaab â† â† â b̂

+ Caabb â† â† b̂ b̂ + Cbbaa b̂† b̂† â â + Ĥcte. (33)

The total Hamiltonian Ĥ that includes both quadratic Ĥbs and
biquadratic Ĥ2 terms is given by Ĥ = Ĥbs + Ĥ2. Analytical
solutions to the dynamics of such a full Hamiltonian are found
by writing the biquadratic Hamiltonian (33) as

Ĥ2 = �2
h̄

2
(X̂†

θ κ̃ X̂θ )2 (34)

and solving for the C coefficients in terms of the
Bogoliubov coefficients. This yields Caaaa = Cbbbb =
�2 α11α22 = �2 cos2 θ , Cabab = −�2 (α11α22 + α12α21) =
−2 �2 cos(2 θ ), Caabb = Cbbaa = −�2α12α21 = �2 sin2 θ

and Cabaa = −Cabbb = Caaab = −Cbbab = �2(α11α12 −
α22α21) = �2 sin(2 θ ) (see [14,34,35]). Here �2 is a free
parameter corresponding to the two-body interaction strength.
The term Ĥcte := h̄ �2 (â† â + b̂† b̂) commutes with the full
Hamiltonian and can be ignored since it just adds a global
phase to the time evolution of the state.

The Hamiltonian Ĥ = Ĥbs + Ĥ2 is an extension of the two-
mode Bose-Hubbard [2] and Lipkin-Meshkov-Glick [36,37]
models. It can be applied, for example, to describe the dynam-
ics of the two-mode Bose-Einstein condensate (BEC). The
biquadratic interactions in Ĥ2 are elastic and mode-mixing
collisions. In a double-well BEC, the operators â† â† â â and
b̂† b̂† b̂ b̂ are on-site elastic collisions and â† b̂† â b̂ are elastic
collisions at the wave-function overlap. Mode-changing inter-
actions are â† b̂† â â, â† b̂† b̂ b̂, â† â† â b̂, and b̂† b̂† â b̂, which
correspond to collision assisted tunneling, while b̂† b̂† â â and
â† â† b̂ b̂ correspond to two-body coherent tunneling. The
two-mode Bose-Einstein condensate Hamiltonian ĤBEC is ob-
tained using a two-mode approximation of the wave function
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of the form φ̂θ = φaâ + φbb̂, for appropriate functions φa and
φb, and it reads

ĤBEC = h̄

2

∫
dx φ̂

†
θ Ĥt φ̂θ + �2

∫
φ̂

†
θ φ̂

†
θ φ̂θ φ̂θ , (35)

where Ĥt = ∇2 + V (x) is the double-well Hamiltonian. The
functions φa and φb are related to the functions φ̃a and φ̃b

for which the Hamiltonian becomes diagonal through φa =
cos θ φ̃a + sin θφ̃b and φb = − sin θ φ̃a + cos θφ̃b. All details
can be found in the appropriate literature [35]. Note that
it is common in the mathematical treatment of this model
to neglect assisted and two-body tunneling terms; however,
keeping these terms yields Hamiltonians with exact solutions
[38]. In the covariance matrix formalism, the Hamiltonian is
given by

ĤBEC = h̄

2
(X̂†

θ κ̃ X̂θ ) + �2(X̂†
θ κ̃ X̂θ )2. (36)

Collision terms are usually written in normal order for math-
ematical convenience. However, in the covariance matrix
formalism, it is more convenient to write collision and higher-
order terms as powers of the quadratic Hamiltonian X̂†

θ κ̃ X̂θ .
Previous work [14] showed that the Hamiltonian can be writ-
ten as

ĤBEC = Û †
θ

(
Ĥ0 + �2Ĥ2

0

)
Ûθ , (37)

where the operator Ûθ = e
θ
2 (â†b̂+b̂†â) is the unitary representa-

tion of the symplectic matrix sθ . Hamiltonians with nth-order
interactions take the form

Ĥ = Û †
θ

(
N∑

p=1

�pĤ p
0

)
Ûθ , (38)

where �p is the strength of the pth-order interaction term.
As an example of the application of higher-order Hamil-

tonians given by (38), a model including two-body (p = 2)
and three-body (p = 3) elastic and mode-exchange collisions
is solved using the techniques described above [38]. This en-
abled the understanding of the effects of three-body collisions
in a two-mode BEC given by sextic terms such as â†â†â†âââ.
The analysis shows that three-body collisions change the
probability distribution of the ground state as well as the
dynamics of the relative population. Interestingly, three-body
interactions can inhibit collapse of the relative population, an
effect usually seen when two-body collisions are present.

In this paper we are interested developing methods to
solve Hamiltonians that not only include mode-mixing terms
but also squeezing terms. By using the symplectic matrix
formalism we are able to extend the Hamiltonian (38) to in-
clude simultaneously squeezing and higher-order interactions.
Writing nth-order interactions in terms of a general symplec-

tic transformation s we have Ĥn = �n
h̄
2 (X̂s

†
κ̃ X̂s)n, where

X̂s = sX̂. This expression now has nonvanishing β coeffi-
cients. The diagonal Hamiltonian H0 now includes two-mode
squeezing terms â†â† + ââ, b̂†b̂† + b̂b̂ and â†b̂† + âb̂, while
the biquadratic Hamiltonian contains higher-order squeezing
terms such as â†b̂†â†b̂† + âb̂âb̂. The Hamiltonian that in-
cludes mode-mixing and squeezing interactions up to order

N reads

ĤN = h̄

2

N∑
p=1

�p(X̂†
s κ̃ X̂s)p, (39)

and it is diagonalizable by solving as a function of the interac-
tion strengths �p and the Bogoliubov coefficients contained in
the matrix s. Applications, which we will present in a followup
paper, enable finding analytical solutions for squeezing in
the two-mode BEC and higher-order squeezing in parametric
down-conversion.

VI. CIRCUIT IMPLEMENTATION OF THE
ULTRASTRONG-COUPLING TIME EVOLUTION

Here we show that the time evolution induced by the
ultrastrong-coupling Hamiltonian can be decomposed into a
sequence of simpler operations, which we interpret as provid-
ing a simple way to implement a two-mode bosonic quantum
channel. Detailed calculations can be found in Appendix C.

A. Circuit decomposition

The foundation for this decomposition is the important
result that states that any linear unitary operator of N bosonic
modes can be decomposed as a sequence of three operations:
(i) a generalized beam splitter of N modes; (ii) single mode
squeezing of each mode; and (iii) another generalized beam
splitter of N modes (in general different from the first one)
[39].

In our language, this means that the time evolution sym-
plectic matrix (12) can be written as

S(t ) ≡ o(−φ)sq(−r)o(−ϕ)e�κ̃t o(ϕ)sq(r)o(φ). (40)

Here, o(ϕ), sq(r), and o(φ) are symplectic matrices in their
own right, which represent the generalized beam splitter [o(ϕ)
and o(φ)], and the squeezer [sq(r)]. Or, in the language of
quantum optics, the matrix o(θ ) implements a mode-mixing
channel, while the matrix sq(r) implements a single mode
squeezing channel on both modes. We have also collected the
squeezing parameters ra, rb in the vector r := (ra, rb).

To obtain our decomposition (40) we have used the ex-
pression S(t ) = s−1 exp[� κ̃ t] s obtained in (A3), we have
applied the aforementioned result to the symplectic matrix
s, and we have used the following algebraic properties:
the matrix o(ψ ) has real valued entries, o(ψ ) oTp(ψ ) =
o(ψ ) o(−ψ ) = 1, s†

q(r) = sq(r), and sq(−r)sq(r) = 1. The
expressions for the 4 × 4 orthogonal matrix o(ψ ) and the
4 × 4 squeezing matrix sq(r) can be found in (C3). Finally,
recall that exp[�κ̃t] = diag(e−iκ+t , e−iκ−t , eiκ+t , eiκ−t ).

In our case, the angles φ and ϕ and the squeezing param-
eters ra and rb are related to the original parameters of the
problem through the definitions

tan(2 φ) := 2
α11 α12 + α21 α22

2α2
21 − 2α2

12 + β2
11 + β2

12 − β2
21 − β2

22

,

tan(2 ϕ) := 2
β11 β21 + β12 β22

β2
11 + β2

12 − β2
21 − β2

22

,

sinh2(ra) := 1

2

[
β2

11 + β2
12 + β2

21 + β2
22 + K

]
,

sinh2(rb) := 1

2

[
β2

11 + β2
12 + β2

21 + β2
22 − K

]
. (41)
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FIG. 1. Decomposition of the total time evolution operator of
modes â and b̂, represented by the symplectic matrix S(t ), in terms
of simpler quantum optical operations. According to (40), the time
evolution channel can be constructed by a sequence of the following
operations (from right to left): mixing of the modes with angle
φ; individual squeezing of each mode with parameters r = (ra, rb);
mixing of the modes with angle ϕ; free evolution for time t of the
resulting modes with frequencies κ±, respectively, implemented by
S0(t ) := exp[�κ̃t]; mixing of the modes with angle −ϕ; individual
squeezing of each mode with parameter −r; and mixing of the modes
with angle −φ. Clearly, if the frequencies κ± are such that S0(t ) = 1

at some time t̃ , then S(t̃ ) = 1 as well.

Here, the expressions for the coefficients αnm are given in (19)
and we have defined K2 := (β2

11 − β2
22)2 + (β2

12 − β2
21)2 +

2(β2
11 + β2

22)(β2
12 + β2

21) + 4β11β12β21β22 for ease of presen-
tation. Importantly, the squeezing in the evolution, which is
quantified by ra and rb, vanishes if all beta coefficients βnm

vanish. Therefore, the presence of βnm coefficients is neces-
sary for the existence of squeezing in the system.

Finally, in Fig. 1 we give a pictorial representation of the
operation (40) as a sequence of appropriate operations.

B. Circuit implementation: Considerations

Let us now make a few considerations about the decom-
posed solution (40). We start by noting that, when e�κ̃t = 1, it
immediately follows that S(t ) ≡ 1. This means that the chan-
nel acts as the identity for times t̃n that satisfy the condition
(κ+ ± κ−)t̃n = 2 n π . The advantage of this channel decom-
position picture is that it gives a clear understanding of the
action of the time evolution on the creation and annihilation
operators. In particular, it informs us that the time evolution
can be essentially implemented by applying to the system
some specific time independent quantum optical transforma-
tions [i.e., squeezing and mode mixing implemented by the
matrices sq(r) and o(ψ ), respectively], while the evolution in
time is provided solely by the free term e�κ̃t with (symplectic)
frequencies κ±.

Overall, the total action of the channel (40) is to two-mode
squeeze the initial modes, with the addition of local mixing of
the operators as well.

C. Circuit implementation: Applications

Our work can be applied to any system that is modeled, at
least in some regime, by the Hamiltonian (4).

FIG. 2. Microwave LC resonator, where L is the inductivity and
C is the capacity. Such a resonator can be described using Eqs. (3)
and (42).

A particular implementation can be that of microwave cir-
cuits [40–42] for circuit QED. Circuit QED enables the most
straightforward realization of the ultrastrong-coupling regime,
since the interaction between the electrical components can
be engineered appropriately. So far, a lot of interest has been
devoted to reach this regime with qubits coupled to resonators.
There have been three main approaches: (i) observing the
effect of Bloch-Siegert shift in driven systems [43–45]; (ii)
simulating the ultrastrong coupling using additional fields
and examining the effective Hamiltonians in a suitably de-
fined rotating frame [46–48]; and (iii) designing couplers that
achieve coupling strengths comparable with the frequency
[49,50]. Here we take the latter approach and propose a circuit
consisting of two LC oscillators with both capacitive and
inductive coupling, realizing independently the two interac-
tion terms studied before. In addition, each oscillator can be
parametrically pumped, which will add the squeezing term. A
very schematic depiction of the basic building block of such
microwaves systems can be found in Fig. 2.

It is possible to engineer the interacting part ĤI of the total
Hamiltonian Ĥ = Ĥ0 + ĤI as

ĤI =gC (â − â†) (b̂ − b̂†) Capacitive coupling,

ĤI =gL (â† + â) (b̂† + b̂) Inductive coupling. (42)

A detailed derivation of how to obtain such couplings can be
found in Appendix D.

In this case it is easy to see that one can map such system to
the one studied in this paper by setting gbs = gsq = gC for the
capacitive coupling, while setting gbs = −gsq = gL for the in-
ductive coupling. Therefore, this implies that using a suitable
combination of both capacitive and inductive couplings might
allow one to implement the Hamiltonian (4) with microwave
systems [51].

VII. CONCLUSIONS

We have found the analytical solution of the time evolution
of two harmonic oscillators interacting through a quadratic
Hamiltonian with arbitrary parameters. As an important case
of interest, we applied this result to obtain the full evolution
of the oscillators in the ultrastrong-coupling regime including
single mode squeezing of each mode, where we provided
all quantities as explicit functions of the parameters of the
Hamiltonian.

Our solutions allow for the explicit evaluation of any
quantity of interest. We have focused on computing the
average number of excitations in the system and the en-
tropy of entanglement generated between the two oscillators.
The latter, together with other measures of entanglement,
can provide useful characterizations of the entanglement of
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the system for potential use in quantum information tasks
[17]. In addition, we found the existence of a second-order
phase transition, which is closely related to Dicke-like mod-
els operating in the thermodynamical limit. To characterize
the transition, we computed the relevant defining parameters,
such as the dynamical critical exponent. We also discussed
how our techniques can be used to study particular families
of Hamiltonians of higher order, namely, those that contain
terms that are at least cubic in the difference between the
quadrature operators of the oscillators. Furthermore, we were
able to show that the time evolution can be decomposed as a
sequence of simple, time independent quantum optical opera-
tions and free evolution. This result illustrates the importance
of the techniques used here, and the fact that complicated
Hamiltonians can be implemented by sequences of simpler
operations, and simulated efficiently.

Concluding, not only did we provide an analytical solution
to the time evolution of two harmonic oscillators interacting
in the ultrastrong-coupling regime, but we also provided a
systematic way to implement such evolution through simple
quantum optical operations within a simulation or in the lab-
oratory. We leave it to further work to exploit these results for
specific applications.
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APPENDIX A: TIME EVOLUTION IN THE
ULTRASTRONG-COUPLING REGIME THROUGH THE

SYMPLECTIC FORMALISM

The (two-mode) bosonic Hamiltonian Ĥ that is quadratic
in the creation and annihilation operators, or equivalently in
the quadratures, has matrix representation H that is obtained
through the definition Ĥ := h̄

2 X
† HX. The generic expression

for H is

H =
(

U V

V ∗ U∗

)
. (A1)

Here, U = U† and V = V Tp.
The Hamiltonian induces time evolution in the symplectic

formalism through the symplectic matrix

S(t ) := exp[� H t], (A2)

where we have defined the symplectic form � :=
−i diag(1, 1,−1,−1) and we recall that symplectic matrices
S satisfy the property S � S† = S† � S = �.

Williamson’s theorem guarantees that a positive definite,
Hermitian, or symmetric 2N × 2N matrix H , such as the
Hamiltonian, can be put in diagonal form through the relation
H = s† κ̃ s, where s is a symplectic matrix [27]. Here, we have
that κ̃ is the symplectic form of H .3 Therefore, we have

S(t ) = exp[� H t]

= exp[� s† κ̃ s t]

= exp[s−1 s � s† κ̃ s t]

= exp[s−1 � κ̃ s t]

= s−1 exp[� κ̃ t] s

= −� s† � exp[� κ̃ t] s, (A3)

where we have used the property s−1 = −� s† � derived
from the definition s � s† = � of symplectic matrices. We
emphasize that the symplectic matrix s is the one that diag-
onalizes the Hamiltonian matrix H . We also have that κ̃ =
diag(κ+, κ−, κ+, κ−), and these elements are known as the
symplectic eigenvalues [24] of the matrix H .

Therefore, we have found that

S(t ) = −� s† � exp[� κ̃ t] s. (A4)

Notice that the expression (A4) holds for any time indepen-
dent and quadratic Hamiltonian.

Defining the symplectic matrices S(t ) as

S(t ) =
(

A(t ) B(t )
B∗(t ) A∗(t )

)
, s =

(
α β

β α

)
(A5)

we then obtain

A(t ) = αTp e−i κ t α − βTp ei κ t β,

B(t ) = αTp e−i κ t β − βTp ei κ t α,
(A6)

where we have defined κ = diag(κ+, κ−) and, therefore, κ̃ =
κ ⊕ κ. These coefficients have the same functional forms as
those that appear in the results found in the literature for the
resonant case [8]. Needless to say, they also reduce to such
coefficients when ωa = ωb. Furthermore, notice that ATp(t ) =
A(t ) and B†(t ) = −B(t ).

Together with the main equations (A6) we need the con-
straints

U = αTp κ α + βTp κ β,

V = αTp κ β + βTp κ α,
(A7)

which are nothing more than the statement that the Hamilto-
nian H is diagonalized by the symplectic matrix s.

Notice that we can multiply the first line of (A7) on the
right by αTp and the second line by βTp, to obtain

U αTp = αTp κ ααTp + βTp κ β αTp,

V βTp = αTp κ β βTp + βTp κ α βTp.
(A8)

3In the literature, the symplectic form of the covariance matrix is
usually denoted by ν⊕.
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Subtracting and using the Bogoliubov identities we have

U αTp − V βTp = αTp κ. (A9)

Inverting the products and repeating we get

U βTp − V αTp = −βTp κ. (A10)

Taking the transpose we obtain the equivalent sets of con-
straints:

αU − βV = κ α,

βU − αV = −κ β.
(A11)

Finally, we see that the symplectic frequencies κ± read

κ2
± := 1

2

[
ω2

a + ω2
b + 2

(
g2

bs − g2
sq

) − λ2
a − λ2

b ±
{[

ω2
a + ω2

b + 2
(
g2

bs − g2
sq

) − λ2
a − λ2

b

]2 − 4ω2
aω

2
b + 4ω2

aλ
2
b + 4ω2

bλ
2
a

+8ωaωbg2
bs + 8ωaωb g2

sq − 16 (ωa λb + ωb λa) gbs gsq + 8
(
g2

bs + g2
sq

)
λa λb − 4

(
g2

bs − g2
sq

)2 − 4λ2
a λ2

b

]1/2}
(A12)

in the general case. When λa = λb = 0 they reduce to

κ2
± = 1

2

{
ω2

a + ω2
b + 2

(
g2

bs − g2
sq

) ± [(
ω2

a − ω2
b

)2 + 8 ωa ωb
(
g2

bs + g2
sq

) + 4
(
ω2

a + ω2
b

) (
g2

bs − g2
sq

)] 1
2
}
. (A13)

APPENDIX B: TIME EVOLUTION THROUGH THE SYMPLECTIC FORMALISM: gsq = gbs = g

Let us assume here that gsq = gbs = g. In this case we can find a solution for (A7) using (A11). First of all we write the
Bogoliubov matrices as

α =
(

α11 α12

α21 α22

)
, β =

(
β11 β12

β21 β22

)
. (B1)

Lengthy algebra allows us first to show that

α11 = κ+ + ωa − λa

2
√

κ+ (ωa − λa)
cos θ, β11 = − ωa − κ+ − λa

2
√

κ+ (ωa − λa)
cos θ,

α12 = κ+ + ωb − λb

2
√

κ+ (ωb − λb)
sin θ, β12 = − ωb − κ+ − λb

2
√

κ+ (ωb − λb)
sin θ,

α21 = κ− + ωa − λa

2
√

κ− (ωa − λa)
sin θ, β21 = − ωa − κ− − λa

2
√

κ− (ωa − λa)
sin θ,

α22 = − κ− + ωb − λb

2
√

κ− (ωb − λb)
cos θ, β22 = − ωb − κ− − λb

2
√

κ− (ωb − λb)
cos θ, (B2)

which we supplement with the definition θ , which reads

tan(2 θ ) :=

√[√(
ω2

a − ω2
b + λ2

b − λ2
a

)2 + 16
(
ωa ωb + λa λb

)
g2 − (

λ2
b − λ2

a

)]2

− (
ω2

a − ω2
b

)2

(
ω2

a − ω2
b

) . (B3)

Notice that 0 � 2θ � π and α2
11 − β2

11 = α2
22 − β2

22 = cos2 θ and α2
12 − β2

12 = α2
21 − β2

21 = sin2 θ .
Finally, focusing on λa = λb = 0 for simplicity of presentation, this allows us to obtain

A11(t ) = [cos2 θ cos(κ+ t ) + sin2 θ cos(κ− t )] − i

2

[
κ2

+ + ω2
a

κ+ ωa
cos2 θ sin(κ+ t ) + κ2

− + ω2
a

κ− ωa
sin2 θ sin(κ− t )

]
,

A12(t ) = ωa + ωb

4
√

ωb ωa
sin(2 θ ) [cos(κ+ t ) − cos(κ− t )] − i

sin(2 θ )

4
√

ωb ωa

[
κ2

+ + ωb ωa

κ+
sin(κ+ t ) − κ2

− + ωb ωa

κ−
sin(κ− t )

]
,

A21(t ) = A12(t ),

A22(t ) = [
sin2 θ cos(κ+ t ) + cos2 θ cos(κ− t )

] − i

2

[
κ2

+ + ω2
b

κ+ ωb
sin2 θ sin(κ+ t ) + κ2

− + ω2
b

κ− ωb
cos2 θ sin(κ− t )

]
,

B11(t ) = − i

2

[
κ2

+ − ω2
a

κ+ ωa
cos2 θ sin(κ+ t ) + κ2

− − ω2
a

κ− ωa
sin2 θ sin(κ− t )

]
,

B12(t ) = ωa − ωb

4
√

ωb ωa
sin(2 θ ) [cos(κ+ t ) − cos(κ− t )] − i

sin(2 θ )

4
√

ωb ωa

[
κ2

+ − ωb ωa

κ+
sin(κ+ t ) − κ2

− − ωb ωa

κ−
sin(κ− t )

]
,
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B21(t ) = − B∗
12(t ),

B22(t ) = − i

2

[
κ2

+ − ω2
b

κ+ ω
sin2 θ sin(κ+ t ) + κ2

− − ω2
b

κ− ωb
cos2 θ sin(κ− t )

]
. (B4)

APPENDIX C: TIME EVOLUTION CHANNEL
DECOMPOSITION

In this section we wish to employ a result that shows
that any linear optical transformation of N bosonic modes,
i.e., any unitary induced by a quadratic Hamiltonian, can be
decomposed into a product of a generalized mode mixing,
a single mode squeezer acting on all modes, followed by
another generalized mode mixer [39].

In particular, we start from the transformation (A3) and its
form

S(t ) = s−1 exp[� κ̃ t] s, (C1)

and make the ansatz

s = o(ϕ)sq(r)o(φ), (C2)

where o(ψ ) is an orthogonal matrix and sq(r) is the squeez-
ing matrix [39]. All matrices have real entries and have the

explicit form

o(ψ ) :=

⎛
⎜⎜⎝

cos ψ sin ψ 0 0
− sin ψ cos ψ 0 0

0 0 cos ψ sin ψ

0 0 − sin ψ cos ψ

⎞
⎟⎟⎠,

sq(r) :=

⎛
⎜⎜⎝

cosh ra 0 sinh ra 0
0 cosh rb 0 sinh rb

sinh ra 0 cosh ra 0
0 sinh rb 0 cosh rb

⎞
⎟⎟⎠. (C3)

Note the following algebraic properties of these matri-
ces: o(ψ ) oTp(ψ ) = 1, o−1(ψ ) = o(−ψ ), sq(r) = sTp

q (r), and
s−1

q (r) = sq(−r). This implies that we have

S(t ) = o(−φ)sq(−r)o(−ϕ) exp[� κ̃ t] o(ϕ)sq(r)o(φ), (C4)

which is our main decomposition result.
We then need to match the decomposition s =

o(ϕ)sq(r)o(φ) to the explicit form found in (A5), with
coefficients (B1) that read (B2). Lengthy algebra leads us to
obtain the expressions

tan(2 φ) := 2
α11 α12 + α21 α22

α2
11 − α2

12 + α2
21 − α2

22

,

tan(2 ϕ) := 2
α11 α21 + α12 α22

α2
11 + α2

12 − α2
21 − α2

22

,

cosh2(ra) := 1

2

[
α2

11 + α2
12 + α2

21 + α2
22 +

√(
α2

11 − α2
12 + α2

21 − α2
22

)2 + 4
(
α11α12 + α21α22

)2
]
,

cosh2(rb) := 1

2

[
α2

11 + α2
12 + α2

21 + α2
22 −

√(
α2

11 − α2
12 + α2

21 − α2
22

)2 + 4
(
α11α12 + α21α22

)2
]
,

(C5)

which prove that the ansatz provides a solution to the decomposition problem.
A more illuminating form of (C5), which highlights the role of the squeezing, can be obtained by manipulating the expressions

and using the Bogoliubov identities. We find

tan(2 φ) := 2
α11 α12 + α21 α22

2α2
21 − 2α2

12 + β2
11 + β2

12 − β2
21 − β2

22

,

tan(2 ϕ) := 2
β11 β21 + β12 β22

β2
11 + β2

12 − β2
21 − β2

22

,

sinh2(ra) := 1

2

[
β2

11 + β2
12 + β2

21 + β2
22 +

√(
β2

11 − β2
22

)2 + (
β2

12 − β2
21

)2 + 2
(
β2

11 + β2
22

)(
β2

12 + β2
21

) + 4β11β12β21β22

]
,

sinh2(rb) := 1

2

[
β2

11 + β2
12 + β2

21 + β2
22 −

√(
β2

11 − β2
22

)2 + (
β2

12 − β2
21

)2 + 2
(
β2

11 + β2
22

)(
β2

12 + β2
21

) + 4β11β12β21β22

]
. (C6)

It is clear that, when the βnm coefficients vanish, there is no squeezing in the overall evolution—signalled by the fact that, in this
case, ra = rb = 0.
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FIG. 3. Three coupled microwave LC resonators, where L is the
inductivity and C is the capacity.

APPENDIX D: SUPERCONDUCTING CIRCUITS AS A
PLATFORM FOR QUADRATIC BOSONIC HAMILTONIANS

We proceed here to derive the interaction Hamiltonians
presented in (42) from a basic circuit QED implementation. A
pictorial representation of the system considered can be found
in Fig. 3.

We start by considering three LC resonators coupled as
depicted. Here, L stands for impedance and C stands for
capacitance. The variables φ1 and φ2 are the fluxes.

The Lagrangian L = L(φ1, φ2, φ̇1, φ̇2) of the system reads

L = 1

2
C1 φ̇2

1 − 1

2

φ2
1

L1
+ 1

2
C2 φ̇2

2 − 1

2

φ2
2

L2
+ 1

2
Cc (φ̇1 − φ̇2)2

− 1

2

(φ1 − φ2)2

Lc
. (D1)

We can compute the conjugate momenta π1 and π2 of the
variables φ1 and φ2 and we find

π1 := δL
δφ1

= (C1 + Cc ) φ̇1 − Cc φ̇2,

π2 := δL
δφ2

= −Cc φ̇1 + (C2 + Cc ) φ̇2. (D2)

In other words, we have(
π1

π2

)
=

(
C1 + Cc −Cc

−Cc C2 + Cc

)(
φ̇1

φ̇2

)
, (D3)

which implies that(
φ̇1

φ̇2

)
=

(
C2+Cc

(C1+Cc ) (C2+Cc )−C2
c

Cc
(C1+Cc ) (C2+Cc )−C2

c
Cc

(C1+Cc ) (C2+Cc )−C2
c

C1+Cc
(C1+Cc ) (C2+Cc )−C2

c

)(
π1

π2

)
.

(D4)

The Hamiltonian H = H(φ1, φ2, π1, π2) is defined as H :=
π1 φ̇1 + π2 φ̇2 − L.

Lengthy algebra allows us to find

H = π2
1

2 C̃1
+ φ2

1

2 L̃1
+ π2

2

2 C̃2
+ φ2

2

2 L̃2
+ C̃c π1 π2 + 1

L̃c
φ1 φ2,

(D5)

where we have defined

C̃1 := C1 C2 + Cc (C1 + C2)

C2 + Cc
, C̃2 := C1 C2 + Cc (C1 + C2)

C1 + Cc
,

C̃c := C1 C2 + Cc (C1 + C2)

Cc
,

1

L̃1
:= 1

L1
+ 1

Lc
,

1

L̃2
:= 1

L2
+ 1

Lc
, L̃c := Lc (D6)

for convenience of presentation.
We now introduce the convenient quantities ω1, ω2, Z1, and

Z2 defined as

ω1 := 1√
L̃1 C̃1

, Z1 :=
√

L̃1

C̃1
, φ1ZPF :=

√
Z1

2
,

p1ZPF :=
√

1

2 Z1
, ω2 := 1√

L̃2 C̃2

, Z2 :=
√

L̃2

C̃2
,

φ2ZPF :=
√

Z2

2
, p2ZPF :=

√
1

2 Z2
, (D7)

and perform the following quantization:

φ1 → φ̂1 = φ1ZPF (â1 + â†
1), p1 → p̂1 =1

i
p1ZPF (â2 − â†

2),

φ2 → φ̂2 = φ1ZPF (â2 + â†
2), p2 → p̂2 =1

i
p2ZPF (â2 − â†

2),

(D8)

where imposing the canonical commutation relations
[φ̂1, p̂1] = [φ̂2, p̂2] = i implies that [â1, â†

1] = [â2, â†
2] = 1.

Therefore, we finally obtain the quantized Hamiltonian Ĥ,
which reads

Ĥ = ω1

(
â†

1 â1 + 1

2

)
+ ω2

(
â†

2 â2 + 1

2

)
− gC (â†

1 − â1)

× (â†
2 − â2) + gL (â†

1 + â1) (â†
2 + â2). (D9)

Here we have defined the coupling constants gC :=
C̃c p1ZPF p2ZPF and gL := 1/L̃c φ1ZPF φ2ZPF.

Notice that, as was the purpose of this derivation, we
have shown that the interaction part of the Hamiltonian (D9)
matches exactly the terms presented in (42).
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