001     904613
005     20230123101913.0
024 7 _ |a 10.1038/s41467-021-25873-0
|2 doi
024 7 _ |a 2128/31517
|2 Handle
024 7 _ |a altmetric:101740839
|2 altmetric
024 7 _ |a pmid:34608133
|2 pmid
024 7 _ |a WOS:000703617100028
|2 WOS
037 _ _ |a FZJ-2021-06183
082 _ _ |a 500
100 1 _ |a Pedretti, Giacomo
|0 0000-0002-4501-8672
|b 0
245 _ _ |a Tree-based machine learning performed in-memory with memristive analog CAM
260 _ _ |a [London]
|c 2021
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1658488715_6966
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tree-based machine learning techniques, such as Decision Trees and Random Forests, are top performers in several domains as they do well with limited training datasets and offer improved interpretability compared to Deep Neural Networks (DNN). However, these models are difficult to optimize for fast inference at scale without accuracy loss in von Neumann architectures due to non-uniform memory access patterns. Recently, we proposed a novel analog content addressable memory (CAM) based on emerging memristor devices for fast look-up table operations. Here, we propose for the first time to use the analog CAM as an in-memory computational primitive to accelerate tree-based model inference. We demonstrate an efficient mapping algorithm leveraging the new analog CAM capabilities such that each root to leaf path of a Decision Tree is programmed into a row. This new in-memory compute concept for enables few-cycle model inference, dramatically increasing 103 × the throughput over conventional approaches.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Graves, Catherine E.
|0 0000-0002-0907-583X
|b 1
700 1 _ |a Serebryakov, Sergey
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mao, Ruibin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sheng, Xia
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Foltin, Martin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Li, Can
|0 0000-0003-3795-2008
|b 6
700 1 _ |a Strachan, John Paul
|0 P:(DE-Juel1)188145
|b 7
|e Corresponding author
|u fzj
773 _ _ |a 10.1038/s41467-021-25873-0
|g Vol. 12, no. 1, p. 5806
|0 PERI:(DE-600)2553671-0
|n 1
|p 5806
|t Nature Communications
|v 12
|y 2021
|x 2041-1723
856 4 _ |u https://juser.fz-juelich.de/record/904613/files/s41467-021-25873-0.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904613
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)188145
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-02
920 1 _ |0 I:(DE-Juel1)PGI-14-20210412
|k PGI-14
|l Neuromorphic Compute Nodes
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-14-20210412


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21