000904616 001__ 904616
000904616 005__ 20240403082755.0
000904616 0247_ $$2doi$$a10.1038/s41928-021-00620-x
000904616 0247_ $$2WOS$$aWOS:000677836800008
000904616 037__ $$aFZJ-2021-06186
000904616 082__ $$a621.3
000904616 1001_ $$0P:(DE-Juel1)188145$$aStrachan, John Paul$$b0$$eCorresponding author$$ufzj
000904616 245__ $$aFast Ising solvers based on oscillator networks
000904616 260__ $$aLondon$$bSpringer Nature Limited$$c2021
000904616 3367_ $$2DRIVER$$aarticle
000904616 3367_ $$2DataCite$$aOutput Types/Journal article
000904616 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710254243_19740
000904616 3367_ $$2BibTeX$$aARTICLE
000904616 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904616 3367_ $$00$$2EndNote$$aJournal Article
000904616 520__ $$aSome of the hardest problems we throw at computers are known as NP-hard or NP-complete. In the worst-case scenarios, solving them requires an amount of time or compute resources that scales exponentially with problem size. These types of problem are ubiquitous, and can show up, for example, when deciding a shipping route for package deliveries, when wiring up a state-of-the-art computer chip, when figuring out how to parse DNA sequence data, and when training an artificial neural network. Today, we get around such problems using approximations that can be highly problem specific — or, in fact, just declaring the problem intractable. Fortunately, real-world problems often end up being considerably easier than the worst-case scenarios. Nonetheless, many industries anxiously seek more powerful computers to let them solve larger problems faster and with better quality results.
000904616 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000904616 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904616 773__ $$0PERI:(DE-600)2917571-9$$a10.1038/s41928-021-00620-x$$gVol. 4, no. 7, p. 458 - 459$$n7$$p458 - 459$$tNature electronics$$v4$$x2520-1131$$y2021
000904616 8564_ $$uhttps://juser.fz-juelich.de/record/904616/files/s41928-021-00620-x.pdf$$yRestricted
000904616 909CO $$ooai:juser.fz-juelich.de:904616$$pVDB
000904616 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188145$$aForschungszentrum Jülich$$b0$$kFZJ
000904616 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)188145$$aRWTH Aachen$$b0$$kRWTH
000904616 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000904616 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT ELECTRON : 2019$$d2021-01-28
000904616 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000904616 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000904616 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000904616 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000904616 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000904616 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000904616 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000904616 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bNAT ELECTRON : 2019$$d2021-01-28
000904616 9201_ $$0I:(DE-Juel1)PGI-14-20210412$$kPGI-14$$lNeuromorphic Compute Nodes$$x0
000904616 980__ $$ajournal
000904616 980__ $$aVDB
000904616 980__ $$aI:(DE-Juel1)PGI-14-20210412
000904616 980__ $$aUNRESTRICTED