001     904616
005     20240403082755.0
024 7 _ |a 10.1038/s41928-021-00620-x
|2 doi
024 7 _ |a WOS:000677836800008
|2 WOS
037 _ _ |a FZJ-2021-06186
082 _ _ |a 621.3
100 1 _ |a Strachan, John Paul
|0 P:(DE-Juel1)188145
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Fast Ising solvers based on oscillator networks
260 _ _ |a London
|c 2021
|b Springer Nature Limited
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710254243_19740
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Some of the hardest problems we throw at computers are known as NP-hard or NP-complete. In the worst-case scenarios, solving them requires an amount of time or compute resources that scales exponentially with problem size. These types of problem are ubiquitous, and can show up, for example, when deciding a shipping route for package deliveries, when wiring up a state-of-the-art computer chip, when figuring out how to parse DNA sequence data, and when training an artificial neural network. Today, we get around such problems using approximations that can be highly problem specific — or, in fact, just declaring the problem intractable. Fortunately, real-world problems often end up being considerably easier than the worst-case scenarios. Nonetheless, many industries anxiously seek more powerful computers to let them solve larger problems faster and with better quality results.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
773 _ _ |a 10.1038/s41928-021-00620-x
|g Vol. 4, no. 7, p. 458 - 459
|0 PERI:(DE-600)2917571-9
|n 7
|p 458 - 459
|t Nature electronics
|v 4
|y 2021
|x 2520-1131
856 4 _ |u https://juser.fz-juelich.de/record/904616/files/s41928-021-00620-x.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:904616
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188145
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)188145
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT ELECTRON : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b NAT ELECTRON : 2019
|d 2021-01-28
920 1 _ |0 I:(DE-Juel1)PGI-14-20210412
|k PGI-14
|l Neuromorphic Compute Nodes
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-14-20210412
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21