001     904644
005     20220224125159.0
024 7 _ |a 10.1029/2021JD035018
|2 doi
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2169-897X
|2 ISSN
024 7 _ |a 2169-8996
|2 ISSN
024 7 _ |a 2128/30513
|2 Handle
024 7 _ |a altmetric:121097341
|2 altmetric
024 7 _ |a WOS:000751226300015
|2 WOS
037 _ _ |a FZJ-2021-06213
082 _ _ |a 550
100 1 _ |a Becker, Erich
|0 0000-0001-7883-3254
|b 0
|e Corresponding author
245 _ _ |a A high‐resolution whole‐atmosphere model with resolved gravity waves and specified large‐scale dynamics in the troposphere and stratosphere
260 _ _ |a Hoboken, NJ
|c 2022
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643028370_6536
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present a new version of the HIgh Altitude Mechanistic general Circulation Model (HIAMCM) with specified dynamics. We utilize a spectral method that nudges only the large-scale flow to MERRA-2 reanalysis. The nudged HIAMCM simulates gravity waves (GWs) down to horizontal wavelengths of about 200 km from the troposphere to the thermosphere like the free-running model, including the generation of secondary and tertiary GWs. Case studies show that the simulated large-scale GWs are consistent with those in the reanalysis, while the medium-scale GWs compare well with observations in the northern winter 2016 stratosphere from the Atmospheric InfraRed Sounder (AIRS). GWs having wavelengths larger than about 1350 km can be described with the nonlinear balance equation. The GWs relevant in the stratosphere, however, have smaller scales and require a different approach. We propose that the GW amplification due to kinetic energy transfer from the large-scale flow combined with GW potential energy flux convergence helps to identify the mesoscale GW sources due to spontaneous emission. The GW amplification is strongest in the region of maximum large-scale vertical wind shear in the mid-stratosphere. Maps of the time-averaged stratospheric GW activity simulated by the HIAMCM and computed from AIRS satellite data show a persistent hot spot over Europe during January 2016. At about 40 km, the average GW amplitudes are maximum in the region of fastest large-scale flow. We argue that refraction of GWs originating in the troposphere, as well as GWs from spontaneous emission in the stratosphere contribute to this effect.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Vadas, Sharon L.
|0 0000-0002-6459-005X
|b 1
700 1 _ |a Bossert, Katrina
|0 0000-0002-7076-0449
|b 2
700 1 _ |a Lynn Harvey, V.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zülicke, Christoph
|0 0000-0003-1241-2291
|b 4
700 1 _ |a Hoffmann, Lars
|0 P:(DE-Juel1)129125
|b 5
773 _ _ |a 10.1029/2021JD035018
|0 PERI:(DE-600)2016800-7
|n 2
|p e2021JD035018
|t Journal of geophysical research / D
|v 127
|y 2022
|x 0148-0227
856 4 _ |u https://juser.fz-juelich.de/record/904644/files/JGR%20Atmospheres%20-%202021%20-%20Becker%20-%20A%20High%25u2010Resolution%20Whole%25u2010Atmosphere%20Model%20With%20Resolved%20Gravity%20Waves%20and%20Specified.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/904644/files/Becker-etal-JGRA-2021.pdf
909 C O |o oai:juser.fz-juelich.de:904644
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129125
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J GEOPHYS RES-ATMOS : 2019
|d 2021-01-30
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21