001     904645
005     20250129094331.0
024 7 _ |a 10.1088/0256-307X/39/2/027501
|2 doi
024 7 _ |a 2128/30267
|2 Handle
024 7 _ |a WOS:000752027200001
|2 WOS
024 7 _ |a altmetric:123006856
|2 altmetric
037 _ _ |a FZJ-2021-06214
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Ran, Kejing
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Evidence for Magnetic Fractional Excitations in a Kitaev Quantum-Spin-Liquid Candidate α-RuCl3
260 _ _ |a Bristol
|c 2022
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1676897202_26372
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a It is known that 𝛼-RuCl3 has been studied extensively because of its proximity to the Kitaev quantum-spin-liquid(QSL) phase and the possibility of approaching it by tuning the competing interactions. Here we present the firstpolarized inelastic neutron scattering study on 𝛼-RuCl3 single crystals to explore the scattering continuum aroundthe 𝛤 point at the Brillouin zone center, which was hypothesized to be resulting from the Kitaev QSL state butwithout concrete evidence. With polarization analyses, we find that, while the spin-wave excitations around the𝑀 point vanish above the transition temperature 𝑇N, the pure magnetic continuous excitations around the 𝛤point are robust against temperature. Furthermore, by calculating the dynamical spin-spin correlation functionusing the cluster perturbation theory, we derive magnetic dispersion spectra based on the 𝐾–𝛤 model, whichinvolves with a ferromagnetic Kitaev interaction of −7.2meV and an off-diagonal interaction of 5.6 meV. We findthis model can reproduce not only the spin-wave excitation spectra around the 𝑀 point, but also the non-spinwavecontinuous magnetic excitations around the 𝛤 point. These results provide evidence for the existence offractional excitations around the 𝛤 point originating from the Kitaev QSL state, and further support the validityof the 𝐾–𝛤 model as the effective minimal spin model to describe 𝛼-RuCl3.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
588 _ _ |a Dataset connected to DataCite
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 0
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 1
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e PANDA: Cold three axes spectrometer
|f SR2
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)PANDA-20140101
|5 EXP:(DE-MLZ)PANDA-20140101
|6 EXP:(DE-MLZ)SR2-20140101
|x 0
700 1 _ |a Wang, Jinghui
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bao, Song
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Cai, Zhengwei
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Shangguan, Yanyan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ma, Zhen
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wang, Wei
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Dong, Zhao-Yang
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Cermak, P.
|0 P:(DE-Juel1)159141
|b 8
700 1 _ |a Schneidewind, A.
|0 P:(DE-Juel1)156579
|b 9
|u fzj
700 1 _ |a Meng, Siqin
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Lu, Zhilun
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Yu, Shun-Li
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Li, Jian-Xin
|b 13
700 1 _ |a Wen, Jinsheng
|0 P:(DE-HGF)0
|b 14
|e Corresponding author
773 _ _ |a 10.1088/0256-307X/39/2/027501
|0 PERI:(DE-600)2040565-0
|p 027501
|t Chinese physics letters
|v 39
|y 2022
|x 0256-307X
856 4 _ |u https://juser.fz-juelich.de/record/904645/files/Evidence%20for%20Magnetic%20Fractional%20Excitations%20in%20a%20Kitaev%20Quantum-Spin-Liquid%20Candidate%20%24alpha%24-RuCl%24_3%24%28Mobile%29.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/904645/files/schneidewind_ruclpolarizedCPL1216.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904645
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)156579
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2022
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-16
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHINESE PHYS LETT : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 2
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 3
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 4
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 5
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21