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α-RuCl3 has been studied extensively because of its proximity to the Kitaev quantum-spin-liquid
(QSL) phase and the possibility of approaching it by tuning the competing interactions. Here we
present the first polarized inelastic neutron scattering study on α-RuCl3 single crystals to explore
the scattering continuum around the Γ point at the Brillouin zone center, which was hypothesized
to be resulting from the Kitaev QSL state but without concrete evidence. With polarization anal-
yses, we find that while the spin-wave excitations around the M point vanish above the transition
temperature TN, the pure magnetic continuous excitations around the Γ point are robust against
temperature. Furthermore, by calculating the dynamical spin-spin correlation function using the
cluster perturbation theory, we derive magnetic dispersion spectra based on the K-Γ model, which
involves with a ferromagnetic Kitaev interaction of −7.2 meV and an off-diagonal interaction of
5.6 meV. We find this model can reproduce not only the spin-wave excitation spectra around the M
point, but also the non-spin-wave continuous magnetic excitations around the Γ point. These results
provide evidence for the existence of fractional excitations around the Γ point originating from the
Kitaev QSL state, and further support the validity of the K-Γ model as the effective minimal spin
model to describe α-RuCl3.

Quantum spin liquids (QSLs) with fractionalized spin
excitations and long-range entanglement have drawn a lot
of attention since Anderson first proposed the QSL state
within the resonating-valence-bond (RVB) model [1] and
used it to explain the high-temperature superconductivi-
ty [2]. Typically, QSL states have been proposed in trian-
gular and kagome lattices where antiferromagnetic inter-
actions are highly frustrated due to the geometrical con-
strain, and therefore there remain strong quantum fluc-
tuations in these systems that prevent spins from estab-
lishing a long-range order as observed in a usual magnet
at low temperatures [3–7]. Besides the RVB model which
was built upon geometrical frustration, the Kitaev model
defined on the ideal two-dimensional honeycomb lattice
with spin S= 1/2, is an exactly solvable model with the
QSL ground state [8]. On a honeycomb lattice, there
is no geometrical frustration, and it is the anisotropic
bond-dependent Kitaev interactions that lead to the frus-
tration on a single site and give rise to the “Kitaev” QSL
state [8, 9]. A Kitaev QSL can host fractional excita-
tions represented by e.g., Majorana fermions, which be-

have as anyons obeying the non-Abelien statistics under
magnetic field, and allow to be braided for fault-tolerant
topological quantum computation [8, 10–12].

In general, for a spin-only system, it is unrealistic to
find the bond-dependent Kitaev interactions which un-
derlie the Kitaev QSL, as the spin interactions ought to
be isotropic along the three symmetry-equivalent bond-
s in a honeycomb lattice. One plausible approach of
realizing the anisotropic Kitaev interaction is to resort
to spin-orbital-coupling (SOC) assisted Mott insulators,
where the effective moment Jeff = 1/2 is an entangle-
ment of the orbital moment L = 1 and spin moment
S = 1/2 [9, 13, 14]. This idea was initially applied to
iridates such as Na2IrO3 where iridium and oxygen ions
form edge-shared IrO6 octahedra, and the 5d iridium ions
with strong SOC and Jeff = 1/2 form a two-dimensional
honeycomb network [13, 15–22]. The geometrical config-
uration suppresses the isotropic Heisenberg interaction
while on the other hand promotes the anisotropic Ki-
taev interaction in the aid of the large SOC and strong
spatial anisotropy of the d orbitals [13, 23]. These fea-
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tures should have made iridates a promising platform to
investigate the Kitaev physics. However, these materi-
als suffer from the following problems: i) the presence
of monoclinic and trigonal distortions renders the appli-
cability of the localized Jeff picture to these materials
questionable [22, 24, 25]; ii) iridium has a large neutron
absorption cross section and thus it is difficult to car-
ry out inelastic neutron scattering (INS) measurements
to extract the magnetic interactions; iii) large-size and
high-quality single crystals are not available [22].

Therefore, more efforts have been devoted into α-
RuCl3 with the honeycomb lattice recently, which can
also realize the SOC-assisted Jeff = 1/2 Mott insu-
lating state, despite the weaker SOC effect of the 4d
Ru3+ [26, 27]. Although the low-temperature phase is
not the long-sought Kitaev QSL but zigzag ordered phase
instead [27–31], it is shown to exhibit salient Kitaev inter-
actions due to the close-to-ideal bond configuration in the
RuCl6 octohedron [29, 31–39]. Notably, the zigzag order
is close to the Kitaev QSL phase in the phase diagram
and is fragile subject to external magnetic field [28, 40–
46] or pressure [47–49]. More intriguingly, a moder-
ate in-plane magnetic field may drive the system into
a QSL phase [50–53]. In the zigzag phase, INS experi-
ments show that the excitations are mostly concentrated
around the M and Γ points of the two-dimensional Bril-
louin zone, as sketched in Fig. 1(a). While it is general-
ly believed the gapped sharp excitations around the M
point are spin waves associated with the magnetic or-
der, the origin of the broad continuum around the Γ
point is still controversial [29, 31, 37, 54–60]. On the
one hand, various spectroscopic results, such as Raman
scattering [55, 56], optical THz spectroscopy [57–59], and
INS spectra [29, 37, 60], show a nearly temperature-
independent excitation continuum around the Γ point,
which is reminiscent of the fractionalized excitations o-
riginating from the Kitaev QSL state. On the other
hand, because of the small scattering angle around the
Γ point, the broad continuous feature in the INS experi-
ment could be due to the nuclear scattering [37], which is
also temperature independent. In addition, it has been
argued that the continuum feature may originate from
the incoherent excitations caused by strong magnetic an-
harmonicity [54]. Therefore, it is critical to distinguish
whether the continuum is fractional magnetic excitation
or nuclear scattering. Polarized neutron scattering ex-
periment from which pure magnetic scattering can be
obtained will help solve this problem [61, 62]. Howev-
er, because of the much reduced scattering cross section
in a polarized neutron experiment, it is very challenging
to obtain meaningful results for thin single crystals like
α-RuCl3.

In this Letter, we report polarized neutron scattering
study on 2-g high-quality α-RuCl3 single crystals. The
data allow us to distinguish magnetic scattering from nu-
clear scattering. Our polarization results show that the
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FIG. 1. (a) Schematic of the magnetic excitations in the first
Brillouin zone for α-RuCl3 in the zigzag magnetic order state.
Thick solid lines denote the Brillouin zone boundary. Excita-
tions around the Γ point represent the scattering continuum.
The six-fold symmetric excitations around the M point denote
spin-wave excitations. (b) Schematic of the experimental set-
up for the polarized neutron scattering measurements for the
case of P ‖Q. P is the neutron polarization direction, and Q
is the scattering vector, obtained by Q = ki − kf . ki and kf

are the initial and final wave vector of neutrons, respectively.
Neutron polarization directions parallel, up and perpendicu-
lar, with respect to Q are labeled by u, w and v, respectively.
SF and NSF denote spin-flip and non-spin-flip of neutrons, re-
spectively.

broad continuous excitations around the Γ point are of
magnetic origin, which are persistent at temperatures far
above the magnetic ordering temperature TN. In con-
trast, the spin-wave excitations around the M point dis-
appear above TN. Moreover, by comparing the calcula-
tion results using Kitaev-off-diagonal (K-Γ) and Kitaev-
Heisenberg (K-J) models with the unpolarized neutron
experimental data, we find that theK-Γ model with a fer-
romegntic K = −7.2 meV and Γ = 5.6 meV can describe
both the low-energy response of the spin-wave excitation-
s associated with the zigzag ordered state around the M
point, and the continuous magnetic excitations around
the Γ point. These results are consistent with the pres-
ence of fractional magnetic excitations in α-RuCl3 and
further support the K-Γ model to be the minimal effec-
tive spin model in describing the system.

High-quality single crystals of α-RuCl3 were grown us-
ing the chemical-vapor-transport method with α-RuCl3
powders. The sheet-like crystals had a natural a-b
plane as the cleavage plane and had a typical size of
10 × 10 × 1 mm3, which weighed about 60 mg a piece.
Both susceptibility measurements and specific heat mea-
surements showed a sharp antiferromagnetic phase tran-
sition at ∼7.5 K [31, 44, 51]. Polarized neutron scattering
measurements were performed on PANDA, a cold neu-
tron triple-axis spectrometer with the polarized option
located at FRM II [63]. XY Z-difference method for neu-
tron polarization analysis [64] was used to separate the
magnetic scattering from nuclear coherent, nuclear spin
incoherent, isotopic incoherent and background contri-
butions. Unpolarized neutron scattering measurements
were carried out on a cold neutron triple-axis spectrome-
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FIG. 2. (a) and (b) Energy scans of α-RuCl3 at the Γ point
(0, 0, 1.5) measured at 1.8 and 25 K with polarized neutrons
in the spin-flip (SF) and non-spin-flip (NSF) modes. The
neutron polarization used was P ‖Q. (c) and (d) Same scans
as in (a) and (b) but at the M point (0.5, 0, 0). Lines through
data are guides to the eye. Errors represent one standard
deviation throughout the paper.

ter FLEXX located at HZB. We used a fixed final energy
mode with Ef = 5 meV, and a double-focusing condition
for both the monochromator and analyzer for all these
experiments. For the experiment on PANDA, about 45
single crystals weighed about 2 g in total were co-aligned
together on two aluminum plates using a Laue x-ray d-
iffractometer. Heusler alloys with the (1, 1, 1) reflection
plane were used as the monochromator and analyzer.
Guide magnetic fields were used to rotate the neutron
polarization direction along (P ‖Q) or vertical to the s-
cattering wave vector (P ⊥ Q). A Mezei coil flipper
was used between the sample and analyzer to flip the po-
larization of neutrons. The flipping ratios of the three
directions u, v and w we labeled in Fig. 1(b) were 18.1,
7.5, 16.9, respectively. We denote a scattering event in
which the spin makes a 180◦ rotation as spin flip (SF),
and scattering with no spin direction change as non spin
flip (NSF). For the measurements on FLEXX, we used 24
single crystals with a total mass of ∼2.2 g. All the exper-
iments were conducted in the (H0L) plane. The sample
mosaic was about 3.6 degrees at PANDA and 1.93 de-
grees at FLEXX scanned around the Bragg peak (0, 0, 3).
We used the P3112 notation with a = b = 5.96 Å, and
c = 17.2 Å as the lattice constants. The wave vector Q
was described by (HKL) reciprocal lattice units (r.l.u.)
of (a∗, b∗, c∗) = (4π/

√
3a, 4π/

√
3b, 2π/c).

According to the polarized neutron scattering
rules [65], when the neutron polarization direction P is
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FIG. 3. (a) and (b) Energy scans at the Γ point measured at
1.8 and 25 K with polarized neutrons in the SF mode. The
neutron polarization used was P ⊥ Q. ISFv and ISFw are scat-
tering intensities for SF mode in directions of perpendicular
and up with respect to Q. (c) and (d) Pure magnetic inten-
sities around the Γ point measured at 1.8 and 25 K, obtained
by Iw+v

mag = Iwmag + Ivmag = 2ISFu − ISFv − ISFw . (e) and (f) Same
as in (c) and (d) but at the M point. Solid lines through data
are guides to the eye. Dashed lines denote the background.

parallel to the scattering vector Q, magnetic and nucle-
ar scatterings are detected in the SF and NSF channels,
respectively. In the experiment, we polarized neutrons
along the scattering vector first. Here we take (0, 0, 1.5)
as the Γ point since neutron scattering experiment can-
not access the Γ point at Q = 0. Figure 2 shows energy
scans at the Γ and M points (0.5, 0, 0) at 1.8 K (below
the TN of 7.5 K) and 25 K (well above the TN). As
shown in Fig. 2(a), pronounced magnetic excitations are
observed in the SF channel at T = 1.8 K at the Γ point.
There is a clear peak centered at about 1.8 meV. On the
other hand, the data in the NSF channel is essentially a
sloping background. These results indicate that the ex-
citations at the Γ point detected in the unpolarized INS
experiments previously are of magnetic origin [37, 45, 60].
When we increase the temperature up to 25 K, in the S-
F channel, there are still clear magnetic excitations on
top of the sloping background, as shown in Fig. 2(b).
The magnetic excitations are significantly broader than
those in the magnetically ordered state. This broad and
continuum-like feature is a characteristic of the fraction-
al excitations [37, 60]. We suspect that the reason why
intensities at low temperature are stronger than those at



4

(a)                                    (b)                                    (c)
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FIG. 4. (a) Magnetic dispersion along [H00] at T=1.8 K obtained by plotting the points marked with white cross dots. Left
side of the dispersion from H=-0.5 to 0 r.l.u is the mirror symmetrical figure on the right from H=0 to 0.5 r.l.u. (b) Magnetic
excitation spectrum of the K-Γ model for Γ/K = −0.73 with K < 0. (c) Theoretical magnetic excitation spectra for the zigzag
phases of the K-J model for J/K = −0.36 with K > 0.

high temperature is that the low-temperature excitation-
s have some interactions with the spin-wave excitations.
For comparison, we also measured the excitations at the
M point, which is the wave vector of the zigzag mag-
netic order [27, 31]. As shown in Fig. 2(c), a magnetic
peak is observed at T = 1.8 K in the SF channel on
top of the sloping background obtained in the NSF chan-
nel. As expected, this peak disappears when the tem-
perature is above the TN, consistent with it being the
spin-wave excitations arising from the zigzag magnetic
order [29, 31, 37]. The different temperature dependence
of the excitations at the Γ and M points and the persis-
tence of the magnetic excitations at the Γ point further
prove that these exciations are magnetic, fractionalized,
and robust within a certain temperature window [60, 66].

Although all the magnetic scattering is present in the
SF channel when P ‖Q, the total intensity contains some
background resulting from the incoherent nuclear spin s-
cattering with an intensity contribution of 2

3I
spin
inc [65]. In

order to deduct this term and obtain pure magnetic s-
cattering intensities, we polarized the neutron beam to
the two directions v and w perpendicular to Q as illus-
trated in Fig. 1(b) and performed the same scans as in
Fig. 2 to obtain ISF

v and ISF
w , as shown in Fig. 3(a) and

(b). Pure magnetic scattering intensities are given by
Iw+v
mag = Iwmag + Ivmag = 2ISF

u − ISF
v − ISF

w [65]. The so-
obtained intensities at the Γ point are shown in Fig. 3(c)
and (d). It can be seen that they exist at both low and
high temperatures. The temperature-stable magnetic ex-
citations at the Γ point are evident of the fractional exci-
tations which are originated from the Kitaev QSL state.
For comparison, the pure magnetic intensities at the M
point are shown in Fig. 3(e) and (f). In contrast to those
at the Γ point, the magnetic excitations at the M point
are only observed at the low temperature. The obser-
vations that the pure magnetic intensities Iw+v

mag at the Γ

point remain constant against temperature while those of
spin waves at the M point are completely vanishing above
the TN indicate the emergence of fractional excitations at
a higher temperature above the TN [60, 66].

After pinning down the origin of the excitations at
the Γ point, we next discuss the effective spin model to
describe the magnetic excitations at both the Γ and M
points, in contrast to previous attempts where the exci-
tations around the two momenta were treated separately
using different models [29, 31, 35, 37]. To do this, we first
performed unpolarized INS measurements at T = 1.8 K
to obtain the magnetic dispersion as shown in Fig. 4(a).
There are clear magnetic excitations weakly dispersing
from both the Γ and M points. A broad continuum with
a gap of∼1.8 meV appears around the Γ point, consistent
with the polarization data and earlier results [37, 45, 60].
To describe these data, we first consider the K-Γ mod-
el that we used to fit the spin-wave excitations in our
previous works [31, 35]. Its Hamiltonian can be written
as,

HK−Γ =
∑
<ij>

[KSγi S
γ
j + Γ(Sαi S

β
j + Sβi S

α
j )]. (1)

Here, γ = x, y, z labels the three nearest-neighbor bonds
on the honeycomb lattice, and (α, β, γ) is a permuta-
tion of (x, y, z) with α and β labeling the two remaining
directions on a γ bond. We calculated the dynamical
spin-spin correlation function using the cluster perturba-
tion theory, which has been successfully applied to oth-
er magnetically frustrated systems [67]. The calculated
results with one typical parameter set of ferromagnetic
K = −7.2 meV and Γ = 5.6 meV are shown in Fig. 4(b).
These parameters ensures that the system is in the zigzag
order phase [19, 35], and are consistent with our previous
works [31, 35]. Compared to the experimental spectra
shown in Fig. 4(a), it is clear that both the excitations



5

at the M and Γ points can be well captured by this mod-
el. As we demonstrated in Refs. [31, 35], the spin-wave
excitations should only be observed to disperse from the
M point around 2 meV and reach the band top at the Γ
point at E ∼4 meV within the K-Γ model. In Fig. 4(a)
and (b), the continuous excitation spectra around the Γ
point drop to a much lower energy of ∼2 meV, therefore
they should not be coherent spin waves but represent
fractional excitations, supporting our polarization anal-
yses.

For comparison, we also consider the widely proposed
K-J model for Kitaev materials [13, 15, 18, 19]:

HK−J =
∑
<ij>

(JSi · Sj +KSγi S
γ
j ). (2)

The calculated results with K = 9.8 meV and J =
−3.6 meV using the cluster perturbation theory are
shown in Fig. 4(c). Although the parameter set places
the system in the correct zigzag order phase in the phase
diagram constructed using the K-J model [13, 15, 18, 19],
and produces the spin-wave excitations dispersing from
the M point, the calculation deviates from experimen-
tal observations in various aspects. First, the spin-wave
excitations are gapless, in contrast to the gapped spec-
tra shown in Fig. 4(a). Second, the low-energy excita-
tions near the Γ point are absent. Third, the Kitaev
interaction is antiferromagnetic, contradicting previous
reports on the ferromagnetic Kitaev interaction in α-
RuCl3 [31, 35, 37, 39]. Therefore, the comparison be-
tween the experimental spectra and the theoretical re-
sults from different models not only confirms that the
K-Γ model is a more appropriate minimal spin model to
describe α-RuCl3 [31, 35, 37], but also represents as ev-
idence that there present continuous fractional magnetic
excitations near the Γ point. We note, however, in addi-
tion to the dominant K and Γ terms, some other finite
longer-range terms, although small, may be necessary to
stabilize the zigzag order state [36, 66].

To conclude, we study the magnetic excitations by car-
rying out polarized INS measurements on high-quality α-
RuCl3 single crystals. We find that there exist pure con-
tinuous magnetic excitations near the Γ point, which are
robust against temperature, as opposed to the spin waves
near the M point that vanish above TN. In addition, our
calculation using the cluster perturbation theory shows
that the K-Γ model with a ferromegntic K = −7.2 meV
and a comparable Γ = 5.6 meV not only can reproduce
the spin-wave excitations near the M point, but also the
continuous excitations near the Γ point. These results
are evident that there exist exotic fractional excitations
in α-RuCl3 due to its proximity to the Kitaev QSL state.

However, considering the weak cross sections of the
polarized experiment, further investigations with better
statistics by using more single crystals, increasing the
counting time, or optimizing the polarization options,
should be helpful to solidify the conclusion. Potentially,

one can learn details about the anisotropic interactions
and magnetizations with more serious polarization anal-
ysis because the scattering intensities contain both an in-
terference and a Chiral magnetic scattering term [68]. In
Ref. 66, it was proposed that the bond-dependent frac-
tional excitations in α-RuCl3 can be manifested in the
equal-time structure factor Sγ(Q) (γ = x, y, z represents
different spin components) in the intermediate temper-
ature range. We believe this is an interesting proposal
worth of future efforts. Furthermore, for systems like
α-RuCl3, strongly spin-orbital-coupling may give rise to
complex spin excitations like hybrid modes, the existence
of frustrated anisotropic interactions will naturally lead
to noticeable anharmonic effects [54]. These may better
explain the enhancement of the low-temperature excita-
tions at the Γ point as observed experimentally.
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