000904646 001__ 904646
000904646 005__ 20220220013958.0
000904646 0247_ $$2arXiv$$aarXiv:2006.16113
000904646 0247_ $$2Handle$$a2128/30733
000904646 0247_ $$2altmetric$$aaltmetric:84941260
000904646 037__ $$aFZJ-2021-06215
000904646 1001_ $$0P:(DE-Juel1)178646$$aMüller, Matthias$$b0$$eCorresponding author$$ufzj
000904646 245__ $$aInformation Theoretical Limits for Quantum Optimal Control Solutions: Error Scaling of Noisy Channels
000904646 260__ $$c2020
000904646 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1645167307_29594
000904646 3367_ $$2ORCID$$aWORKING_PAPER
000904646 3367_ $$028$$2EndNote$$aElectronic Article
000904646 3367_ $$2DRIVER$$apreprint
000904646 3367_ $$2BibTeX$$aARTICLE
000904646 3367_ $$2DataCite$$aOutput Types/Working Paper
000904646 500__ $$aOpen quantum systems, Quantum optimal control, Channel capacities, Quantum speed limit, decoherence. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
000904646 520__ $$aAccurate manipulations of an open quantum system require a deep knowledge of its controllability properties and the information content of the implemented control fields. By using tools of information and quantum optimal control theory, we provide analytical bounds (information-time bounds) to characterize our capability to control the system when subject to arbitrary sources of noise. Moreover, since the presence of an external noise field induces an open quantum system dynamics, we also show that the results provided by the information-time bounds are in perfect agreement with the Kofman-Kurizki universal formula describing decoherence processes. Finally, we numerically test the universal scaling of the control accuracy as a function of the noise parameters, by using the dressed chopped random basis (dCRAB) algorithm for quantum optimal control.
000904646 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000904646 588__ $$aDataset connected to arXivarXiv
000904646 7001_ $$0P:(DE-HGF)0$$aGherardini, Stefano$$b1
000904646 7001_ $$0P:(DE-Juel1)176280$$aCalarco, Tommaso$$b2$$ufzj
000904646 7001_ $$0P:(DE-Juel1)187073$$aMontangero, Simone$$b3
000904646 7001_ $$0P:(DE-HGF)0$$aCaruso, Filippo$$b4
000904646 8564_ $$uhttps://juser.fz-juelich.de/record/904646/files/2006.16113.pdf$$yOpenAccess
000904646 909CO $$ooai:juser.fz-juelich.de:904646$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178646$$aForschungszentrum Jülich$$b0$$kFZJ
000904646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176280$$aForschungszentrum Jülich$$b2$$kFZJ
000904646 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000904646 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904646 920__ $$lyes
000904646 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0
000904646 9801_ $$aFullTexts
000904646 980__ $$apreprint
000904646 980__ $$aVDB
000904646 980__ $$aUNRESTRICTED
000904646 980__ $$aI:(DE-Juel1)PGI-8-20190808