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Information Theoretical Limits for Quantum
Optimal Control Solutions: Error Scaling of Noisy

Channels
Matthias M. Müller, Stefano Gherardini, Tommaso Calarco, Simone Montangero, Filippo Caruso

Abstract—Accurate manipulations of an open quantum system
require a deep knowledge of its controllability properties and the
information content of the implemented control fields. By using
tools of information and quantum optimal control theory, we pro-
vide analytical bounds (information-time bounds) to characterize
our capability to control the system when subject to arbitrary
sources of noise. Moreover, since the presence of an external noise
field induces an open quantum system dynamics, we also show
that the results provided by the information-time bounds are in
perfect agreement with the Kofman-Kurizki universal formula
describing decoherence processes. Finally, we numerically test
the universal scaling of the control accuracy as a function of the
noise parameters, by using the dressed chopped random basis
(dCRAB) algorithm for quantum optimal control.

Index Terms—Open quantum systems, Quantum optimal con-
trol, Channel capacities, Quantum speed limit, decoherence.

I. INTRODUCTION

A quantum system is defined as open when it interacts with
other systems or an environment with several degrees of free-
dom. Such an interaction radically changes the dynamics of the
system, e.g., making the dynamics propagator a non-unitary
operator [1], [2]. The semi-classical effects of the interaction
between a quantum system and the external environment can
be reliably modeled by adding stochastic noise fields acting on
operators governing the Hamiltonian evolution of the quantum
system. As a result, the evolution of the system turns out
to be described by stochastic quantum dynamics, e.g., the
stochastic Schrödinger equation, generating as solutions the
functionals that are usually known as quantum trajectories [3],
[4], [5], [6], [7], [8]. An example of a relevant noise source,
especially in biological and solid-state systems, is provided by
the 1/f noise [9], [10]. This kind of noise, which decreases
as a function of the frequency with a hyperbolic trend, is
usually responsible for destroying the phase coherence terms
of quantum operations implemented in solid-state devices [11].
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In order to prevent it, the prediction of the spectral properties
on the external noise sources [12], [13], [14], [15], e.g., by
means of quantum estimation methods [16], is going to play
a key role to enhance the performance of quantum technology
devices [17].

To tackle efficiently the problem of steering a noisy quantum
system in a desired way, a variety of solutions have been
introduced. A widely used tool to mitigate the detrimental
effect of the interaction of a system with its environment is
provided by dynamical decoupling (DD) of the system from
the environment [18]. This approach allows to enhance or
suppress certain desired interaction modes [19], [20], [21],
[22], [23], [24] and the protocols can also be optimized by
analytic or numeric optimization algorithms [25], [26], [27],
[28]. A different approach which we will also follow in this
article, is the extension of quantum optimal control (QOC)
methods [29], [30], [31], [32] to open quantum systems [33],
[34], [35], [36], [37], [38], [39], [40], [41]. Commonly used
algorithms for QOC include Krotov [42] gradient ascent pulse
engineering (GRAPE) [43] and optimization in the chopped
random basis (CRAB) [44], [45], e.g., following the dressed
CRAB (dCRAB) algorithm [46].

The smoothness and bandwidth of the QOC solution is
an important constraint that can be included in the QOC
algorithm. The CRAB/dCRAB algorithm naturally produces
a bandwidth-limited solution by making an ansatz for the
solution using a basis with the desired properties. Such
a spectrally-limited control has been achieved also with
gradient-based QOC algorithms such as Krotov [47] and
GRAPE [48] through filters in the update formula. Alterna-
tively, also the CRAB-ansatz can be combined with gradient
optimization. The gradient-based algorithms of the CRAB
family are known as gradient optimization using parametriza-
tion (GROUP) and a comparison is undertaken in Ref. [49]. In
this article we employ the dCRAB algorithm [44], [45], [46],
which has been successfully demonstrated experimentally on
different quantum platforms [41], [50], [51], including the use
of closed-loop optimization [52], [53], [54].

An important limit for any quantum control solution is
given by a time-energy bound known as quantum speed
limit (QSL) [55], [56] that fundamentally reflects the time-
energy uncertainty relation. It can be formulated also for
open quantum systems [57] and its effect can be observed by
QOC when the pulse operation time approaches the theoretical
QSL [58].

Another bound is given by the information content of the
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control pulse: in Ref. [59] a so-called “2M − 2-rule” (M
being the dimension of the quantum system) for the degrees
of freedom of the control field could be confirmed by studying
numerically different QOC problems. Later this could be found
also for quantum many-body systems [60]. Arguments based
on information theory allowed to quantify the information
content of a control field and to introduce bounds on the
control error and minimum pulse operation time [61]. Indeed,
by using the tools from classical and quantum information
theory [2], [62], [63], [64], one can consider the control pulse
as a communication signal whose correct reception means the
achievement of the desired control task with suitably small
error. The same reasoning applies also when the control over
the quantum system is achieved through another quantum
system, considering the quantum communication channel from
the controlling quantum system to the controlled quantum
system [65].

It is worth noting that any communication channel is
subjected to (usually correlated) external noise sources that
have the effect of degrading the transmitted signals or losing
information packets. However, the modeling of such signal
degradation has allowed to understand the processes under-
lying system-noise field interactions, as for example in [66]
where correlated quantum dynamics, also leading to non-
Markovian evolutions, has been analyzed with an information
theory perspective.

In this paper, we assume that one or more noise sources
affect the internal Hamiltonian of the quantum system under
analysis, governing the coherent part of its dynamical evo-
lution. This means that the interaction between the system
and the external environment leads to extra non-deterministic
terms proportional to an external stochastic field, modeled
by a stochastic Schrödinger equation as previously described.
Thus, after deriving the master equation governing the mean
stochastic dynamics of the system, averaged over the noise
realization, we evaluate the channel capacity associated to an
optimal control problem, whereby the optimized control pulse
acts on the noisy quantum system. According to Shannon’s
theorems [63], [64], the values of the corresponding channel
capacity in the frequency domain strictly depend on the noise
power spectral density, as well as the control error in reaching
a desired quantum state. In particular, in this paper the relations
between these quantities are quantitatively characterized, both
analytically and by means of numerical simulations, and we
show that they are in agreement with the Kofman-Kurizki
universal formula for decoherence in quantum processes [19],
[20].

II. CONTROL PROBLEM

A. System Dynamics

We consider a quantum system described by a state ρ(t),
where the time evolution is given by a stochastic Schrödinger
equation (SSE)

ρ̇ = −i[H(t), ρ] . (1)

Here, the Hamiltonian

H(t) = Hd + f(t)Hc + ξ(t)Hn (2)

consists of a drift term Hd, a control term f(t)Hc (with control
operator Hc and control field f(t)) and a stochastic noise term
ξ(t)Hn (where Hn is a fixed operator and ξ(t) is a stochastic
field).

B. Control Objective
The goal of the quantum optimal control problem is to find

the optimal control pulse f̂(t) driving the quantum system
from the initial state ρ(0) to the target state ρ̂ at final time
T . The optimization problem that provides f̂(t) does not
necessarily have an exact solution. This necessarily entails
a non-zero control error ε, meaning that the optimal control
pulse does not perfectly drive the system to the target state ρ̂
but to a final state ρ(T ) in the ε-ball around the target state.
The control error ε is commonly expressed as a function of
the Uhlmann fidelity [67] F(ρ̂, 〈ρ(T )〉) between the target state
and the final state, i.e., ε ≡ 1− F(ρ̂, 〈ρ(T )〉), with

F(ρ̂, 〈ρ(T )〉) ≡ Tr
√√

ρ̂〈ρ(T )〉
√
ρ̂. (3)

Note that the averaging 〈·〉 of the final state refers to the
statistics of the noise field ξ(t). From here on we omit this
averaging unless explicitly stated.

C. Optimization Algorithm
In the example section we will study how well for specific

control problems the control objective can be achieved by
means of QOC. In particular, we will employ the dCRAB
algorithm [46] to solve the optimization problem. This algo-
rithm makes an ansatz for the optimal solution of the form

f(t) =

Nc∑
i=1

cifi(t) (4)

and the optimization is then performed on this subspace of
smaller dimension. This can in principle be done by any
direct search method: in this work we use the Nelder-Mead
simplex algorithm [68] to find the optimal set of coefficients ci
(i = 1, . . . Nc). To exploit the usually advantageous properties
of the control landscape [31], [69] which could be distorted
by the finite dimensional expansion, after convergence of the
direct search method a basis change can be introduced and the
optimization continued in an iterative way:

f j(t) = cj0f
j−1(t) +

Nc∑
i=1

cjif
j
i (t) , (5)

where f ji (t) are the new basis functions, and f j−1(t) is the
optimal solution from the (j − 1)th iteration. The coefficient
cj0 allows the optimization to move along the direction of the
old pulse, while the coefficients cji (i = 1, . . . , Nc) allow it to
move along the new search directions f ji (t).

If we choose the basis functions f ji (t) to be trigonometric
functions with random frequencies ωji and choose these fre-
quencies to lie in an interval of a specified bandwidth, we can
in a natural way incorporate a bandwidth constraint for f(t).
As we will see, we will also need to fix the pulse power, which
can be done by simply rescaling the coefficients cji (such that
the desired pulse power is obtained) before calculating the
system evolution.
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III. TIME-CONTINUOUS STOCHASTIC SCHRÖDINGER
EQUATION AND MASTER EQUATION

In this section we derive the Master equation obtained by
averaging the SSE over the noise realizations. If we plug in the
explicit form of the Hamiltonian, Eq. (2) into the Schrödinger
equation (1), we obtain

ρ̇ = −i[H(t), ρ] = −i[Hd + f(t)Hc, ρ]− i[ξ(t)Hn, ρ] . (6)

The integral form of the initial value problem is given by

ρ(t) = ρ(0)− i
∫ t

0

[H(t′), ρ(t′)]dt′, (7)

which can be re-inserted into the differential equation leading
to

ρ̇(t) = i[Hd + f(t)Hc, ρ]

−i
[
ξ(t)Hn,

(
ρ(0)− i

∫ t

0

[H(t′), ρ(t′)]dt′
)]

.(8)

The stochastic process ξ(t) follows the distribution pt(ξ),
whereby the mean value and the correlation function of ξ(t)
are respectively defined as 〈ξ(t)〉 =

∫
ξ
pt(ξ)ξdξ and

Rξ(t, t
′) ≡

〈
ξ(t)ξ′(t′)

〉
=

∫
ξ

∫
ξ′
pt,t′(ξ, ξ

′)ξξ′dξdξ′ , (9)

where 〈·〉 denotes the averaging over the noise realizations.
For 〈ξ〉 = 0 we find, after averaging,

ρ̇(t) = −i [Hd + f(t)Hc, ρ(t)]

−
[
Hn,

[
Hn,

∫ t

0

Rξ(t, t
′)ρ(t′)dt′

]]
. (10)

Analogous results regarding stochastic dynamics in Hilbert
spaces have been already found for instance in Ref. [1].

IV. NOISE CORRELATION FUNCTION AND POWER
SPECTRAL DENSITY

A central role in the characterization of the SSE is given by
our knowledge of the noise correlation function Rξ(t, t

′). In
particular, in this paper we will investigate control problems
involving quantum systems subjected to white noise as well
as coloured ones, under the assumption of {ξ(t)}t∈R being a
weakly stationary stochastic process. This implies the follow-
ing properties [71]:

(i) the mean value of ξ does not depend on the time instant
t in which the noise field is sampled, i.e.

∫
pt(ξ)ξdξ =∫

pt+t′(ξ)ξdξ, ∀t′ ∈ R.
(ii) the correlation function is translation invariant:

Rξ(t, t
′) = Rξ(t + t′′, t′ + t′′) ∀t′′ ∈ R. This implies

that we can write Rξ(t, t′) = Rξ(τ), with τ = t− t′.
(iii) the second moment of ξ is finite:

∫
pt(ξ)ξ

2dξ <∞ ∀t′ ∈
R.

As a result, the SSE reads

ρ̇(t) = −i [Hd + f(t)Hc, ρ(t)]

−
[
Hn,

[
Hn,

∫ t

0

Rξ(t− t′)ρ(t′)dt′
]]

. (11)

It is worth noting that the case of non-stationary noise
terms can be obtained by considering {ξ}t∈R as a piece-wise
stationary stochastic process.

A. Example: Master Equation for Gaussian White Noise

Let us assume that ξ(t) is a Gaussian white noise field with
zero mean value 〈ξ(t)〉 and correlation function

Rξ(t− t′) = 2γδ(t− t′). (12)

Then, the SSE of Eq. (11) is described by the following master
equation:

ρ̇(t) = −i[Hd + f(t)Hc, ρ(t)]− 2γ
[
Hn, [Hn, ρ(t)]

]
, (13)

where the parameter γ stands for the noise strength. For
instance, if we consider a two-level system and Hn is taken to

be equal to the Pauli matrix σz =

(
1 0
0 −1

)
, the SSE simply

becomes

ρ̇(t) = −i[Hd + f(t)Hc, ρ(t)] + γ

(
0 ρ12(t)

ρ21(t) 0

)
. (14)

Thus, this approach can be considered as the micro-
scopic derivation of the pure-dephasing Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) equation, as conventionally
stated in the open quantum systems literature [1], [2].

V. MEASURES OF SIGNALS INFORMATION CONTENT

A. Signal-to-noise ratio

The signal-to-noise ratio is a measure used in statistical
signal processing to compare the powers of a desired signal
and an external noise source [72]. It is usually characterized in
the frequency domain. By properly formalizing the signal-to-
noise ratio, we are able to predict the amount of information
carried by a specific signal embedded in a noisy environment.
In our case the desired signal is represented by the control
Hamiltonian f(t)Hc (and in particular the deterministic time-
dependent control field f(t)), while the noise is given by the
noise Hamiltonian ξ(t)Hn, i.e. by the stochastic noise field
ξ(t).

The signal-to-noise ratio S/N is defined as the ratio of the
power of the signal S and the power of the noise N . By
introducing also the power Pf of the control field f(t) and
the power Σξ of the stochastic noise field ξ(t), we can define

S = Pf ||Hc|| and N = Σξ||Hn|| , (15)

where, without loss of generality, we can set the operator
norms to ||Hc|| = ||Hn|| = 1 as the proportionality factors
can be absorbed in f(t) and ξ(t). The signal-to-noise ratio
can then be written as

S

N
=
Pf
Σξ
. (16)

In Eq. (16), the power Pf of the control field is defined as

Pf ≡
1

T

∫ T

0

|f(t)|2dt , (17)

where T is the duration of the control pulse. Using Parseval’s
theorem the power Pf of the control field can be expressed
also in the frequency domain:

Pf =
1

2π

∫ ∞
−∞

φf (ω)dω, (18)
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where φf (ω) denotes the power spectral density of f(t),
namely the Fourier transform of its auto-correlation function
Rf (τ) ≡

∫∞
0
f∗(t)f(t− τ)dt:

φf (ω) =

∫ ∞
−∞

Rf (τ)e−iωτdτ . (19)

Likewise, we can define the power spectral density of the
stochastic noise field as

ϕξ(ω) =

∫ ∞
−∞

Rξ(τ)e−iωτdτ (20)

and consequently the power Σξ of the stochastic noise field
as

Σξ =
1

2π

∫ −∞
∞

ϕξ(ω)dω . (21)

In conclusion, the signal-to-noise ratio can be written as

S

N
=

∫∞
−∞ φf (ω)dω∫∞
−∞ ϕξ(ω)dω

. (22)

B. Channel capacity

In Shannon information theory, a channel can asymptot-
ically transmit a message without errors at the maximum
rate C, (channel capacity) [62]. Then, the information (in
terms of number of bits) carried by the signal (in our case
the control field f(t)) is defined as If ≡ CT , with T the
duration of the signal. The channel capacity thus quantifies
the information carried by the maximum number M of
distinguishable messages that can be reliably encoded and
decoded in a communication procedure through this channel
per unit time [62], [2].

In this paper, we specifically investigate how a control
field can steer a quantum system, such that the state of the
quantum system is transformed in a desired way. In such a
QOC problem, the role of the decoded messages is played by
the number of distinguishable states that can be reached and
the encoded messages is replaced by the set of all admissible
control fields f(t). The communication channel then depends
on the control landscape related to the specific quantum
system dynamics [31], [69] and on the stochastic noise field.
The information transferred to the system is given by the
information encoded in the control field f(t) reduced by the
detrimental action of the stochastic noise field ξ(t), while the
specific control landscape reflects the ability of the quantum
system to receive this information.

In this section, we investigate from an information theoret-
ical perspective the channel capacity related to the transfer of
information from the control apparatus onto the system, while
for now we neglect the possibly limited ability of the system
to utilize this information. This will give us an upper bound
for the channel capacity of the global channel (i.e. from the
control apparatus to the final state of the system dynamics).
This intermediate step allows us to apply directly the seminal
works of Shannon [63], [64] and has the advantage of not being
affected by the limitations regarding the dimensionality and
controllability of the quantum system.

1) Noiseless case: The channel capacity of the noiseless
channel is given by Hartley’s law [70]. In this case, what pre-
vents M (the maximum number of distinguishable messages)
from being infinite are (i) a finite dynamic range ∆f of the
amplitude of the encoded signal and (ii) inaccuracies in the
signal. The former is related to the magnitude of the control,
and the latter to the precision δf of the signal (i.e. as generated
by the control electronics). Thus, Hartley’s law states that in
the noiseless case the channel capacity equals

C = ∆Ω log2(M) = ∆Ω log2

(
1 +

∆f

δf

)
, (23)

where ∆f/δf is generally denoted as the resolution of the
pulse f(t), while ∆Ω = ωmax−ωmin is the channel bandwidth
given by the minimal and maximal frequency of the control
field, ωmin and ωmax, respectively.

2) Gaussian noise channels: Shannon showed [62], [63],
[64] that also in the presence of noise, there exists a non-
zero value for the channel capacity C such that the error
in transmitting an infinitely long message can be arbitrarily
small. In this case, the limitations to the channel capacity are
the bandwidth ∆Ω and the power of the noise fields. More
formally, the capacity C of this noisy channel equals to

C =

∫ ωmax

ωmin

log2

(
1 +

φf (ω)

ϕξ(ω)

)
dω . (24)

Thus, for Gaussian white noise Eq. (24) reduces to

C = ∆Ω log2

(
1 +

S

N

)
, (25)

where S/N is given by Eq. (22). The result of Eq. (25) is
commonly known as the Shannon-Hartley theorem.

Note that Eq. (24) holds under the assumption that the
noise field is a continuous stochastic process sampled from a
Gaussian distribution with known variance. However, as also
shown in [64], the results for Gaussian noise channels are
enough for the general characterization of classical channel
capacities, since we can always refer – at least approximately
– to the case of arbitrary noise sources by starting from the
Gaussian one.

In what follows we present the results of our studies. In
particular, we provide tight analytical lower-bounds for the
error made in controlling a quantum system subject to arbitrary
noise fields. For this purpose, we unify the classical Shannon
theory for communication in the presence of noise, the in-
formation theoretical analysis of QOC as proposed in [61]
(but applied also to colored noise fields) and the Kofman-
Kurizki decoherence theory for a quantum system coupled to
an environment described by a continuum of levels [19], [20].

VI. ERROR LIMIT AND TIME BOUND

In this section we study how the channel capacity of the
control problem transforms into a bound for the admissible
precision (or error) of the QOC solution as well as a bound
on the required time given the control resources. Such a time
reflects an information theoretical speed limit that prevents
from steering the system faster at given precision.
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Following [61], we first introduce W , the set containing all
the density operator solutions (i.e. for all admissible control
functions f(t)) of the SSE describing the dynamics of the
system. W is also denoted as the set of reachable states and
depends on the initial state ρ0. W has dimension dimW ≡
DW(n), which in turn is a function of the dimension n of the
system Hilbert space. Next, we introduce a measure for the
complexity of the optimal control field: D is formally defined
as the number of independent degrees of freedom of the
control f(t). More practically, D can be equal, for example,
to the minimal number of independent bang-bang control
pulses [18] or proportional to the bandwidth or sampling points
of f(t). In particular, in [61] it has been proven that the
information content If carried by the control pulse, with If
proportional to D, cannot be smaller than the product of DW
and − log2(ε), i.e., If ≥ −DW log2(ε), where for a control
error ε ∈ [0, 1] (e.g. ε = 1−F), − log2(ε) represents the self-
information of ε. Another interpretation is that If has to be
at least sufficient to specify the ε−ball surrounding the target
state. We can rewrite this bound as a lower bound for the
control error ε:

ε ≥ 2
−

If
DW . (26)

Hence, from If ≡ CT , one finds that the minimal time needed
to reach a given target state ρ̂ in DW with precision ε is

T ≥ −DW
C

log2(ε). (27)

Eq. (27) can be interpreted as follows: The amount of infor-
mation necessary to solve the QOC problem with precision
ε under finite channel capacity C sets a time bound for the
system dynamics . As a further step, we derive the formal
expression of the control error bound both in the noiseless
case and in the presence of white and colored noise.

A. Error bound for a noiseless channel

In the noiseless case, the channel capacity C is provided
by Hartley’s law: C = ∆Ω log2(1 + ∆f/δf). Thus, If =
T∆Ω log2(1 + ∆f/δf) = D log2(1 + ∆f/δf), where we
substitute D = ∆ΩT since the bandwidth ∆Ω together with
the total time reflects the number of degrees of freedom
encoded in the control pulse. Accordingly, by substituting the
expression for If in Eq. (26), one has

ε ≥
(

1 +
∆f

δf

)− D
DW

. (28)

B. Error bound for Gaussian white noise

Let us now consider a Gaussian white noise source. Accord-
ing to the Shannon-Hartley theorem, in this case the informa-
tion carried by the control pulse is If = D log2(1 + S/N),
with S/N the signal-to-noise ratio. This entails the following
expression for the control error bound:

ε ≥
(

1 +
S

N

)− D
DW

. (29)

C. Error bound for Gaussian coloured noise

As explained in Section V-B2, the capacity C of a channel
perturbed by colored Gaussian noise is given by Eq. (24). This
means that the information carried by the control pulse is

If = T

∫ ωmax

ωmin

log2

(
1 +

φf (ω)

ϕξ(ω)

)
dω . (30)

Hence, this time, we obtain a control error of

ε ≥ 2
− T
DW

∫ ωmax
ωmin

log2

(
1+

φf (ω)

ϕξ(ω)

)
dω
. (31)

VII. ERROR BOUNDS FROM PERTURBATION THEORY

A. The small noise approximation

The Hamiltonian of Eq. (2) can be understood as composed
of an (unperturbed) system (described by Hs(t) = Hd +
f(t)Hc(t)) and a perturbation (described by Hp(t) = ξ(t)Hn),
that is,

H(t) = Hs(t) +Hp(t) . (32)

If we take only the system Hamiltonian Hs(t) together with
the initial state |φ0〉, we obtain a Schrödinger equation with
solution |φ(t)〉 for the time evolution of the unperturbed sys-
tem. The time evolution of the perturbed system is described
by the state |φp(t)〉 that is the solution to the Schrödinger
equation defined by the perturbed Hamiltonian H(t) and the
initial state |φ0〉.

The fidelity of the perturbed dynamics with respect to the
unperturbed dynamics is given by Fp ≡ |〈φ(T )|φp(T )〉|.
Exploiting Gronwall’s lemma [73] we find

‖|φ(T )〉 − |φp(T )〉‖ ≤ ‖Hp‖
‖Hs‖

(exp {‖Hs‖T} − 1) , (33)

where the norms of the Hamiltonians are the time-maximum
of the standard operator norm and can be approximated by
‖Hp‖2 ≈ N and ‖Hs‖2 ≈ S. Some algebra yields

‖|φ(T )〉 − |φp(T )〉‖2 = 2− 2Re〈φ(T )|φp(T )〉 (34)
≤ 2− 2Fp ≡ 2εp , (35)

where Re stands for the real part. By resolving for the
operation error εp due to the perturbation (noise) we get the
upper bound for the error

εp ≤ 1

2

‖Hp‖2

‖Hs‖2

(
exp

{∫ T

0

‖Hs(t)‖dt

}
− 1

)2

(36)

As a first result we can thus state that the operation error εp
due to a perturbation (i.e. the noise term in Eq. (2)) scales with
‖Hp‖2
‖Hs‖2 ≈

N
S . If we further assume that without noise we can

perfectly control the system, then εp is also an upper bound
for the control error ε of the noisy system. This is consistent
with Eq. (29) for S/N � 1.
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B. Relation with the Kofman-Kurizki decoherence universal
formula

The decay of unstable states into a continuum of quantum
levels, mimicking a macroscopic reservoir, is well described
by the so-called Kofman-Kurizki universal formula [20]. The
open dynamics originated by the interaction between a finite-
dimensional quantum system and a reservoir leads to de-
coherence, i.e., the asymptotic loss of the quantum system
coherence. We have already seen in Section III and IV that
decoherence can be described by modeling the interaction with
the reservoir as weak stochastic perturbations. In this regard,
the Kofman-Kurizki universal formula, under the hypothesis
of weak coupling, predicts how a coherent manipulation of
the quantum system modifies its decay rate into the reser-
voir [21], [25], [74]. This decay rate can also be engineered
with optimization techniques to suppress and enhance dif-
ferent coupling modes [25], [27], [28]. Therefore, we phe-
nomenologically expect that the information-time bound of
Eq. (27) for the error scaling and the Kofman-Kurizki universal
formula for the quantum system decay rate are related. To
simplify the derivation, let us consider a two-level system
coupled to an arbitrary colored noise field, with Hamiltonian
H(t) = f(t)σx+ξ(t)σz , where ξ(t) denotes the colored noise
field with a spectral density ϕξ(ω). We denote the eigenstates
of the Pauli operator σx by |0〉 and |1〉 and we suppose the
system is initially prepared in the state (|0〉+ |1〉)/

√
2. Under

the influence of control and noise, the probability to keep the
system in its initial state decays as

p(t) =
1

2
(1 + e−χ(t)) , (37)

where
χ(t) ≡

∫ ∞
0

F (ω)ϕξ(ω)dω (38)

is the so-called decoherence function and F (ω) is also de-
noted as filter function and resembles the spectrum of the
control pulse. In quantum noise spectroscopy or dynamical
decoupling [18], [22], [23], [24], [27], [75], [76], [77], [78],
[79], [80], the control pulse is modulated, according to a set
of pulse modulation functions, in order to encode information
on the noise field in the probability p(t) or to minimize the
decoherence function χ(t), respectively. For a continuous con-
trol field f(t) we can introduce the accumulated phase θ(t) ≡∫ t

0
f(t′)dt′, and the pulse modulation functions y(t) = cos θ(t)

and z(t) = sin θ(t), so that the filter function is given by
F (ω) = 4

π (|Y (ω)|2 + |Z(ω)|2), with Y (ω) ≡
∫ t

0
y(t′)eiωt

′
dt′

and Z(ω) ≡
∫ t

0
z(t′)eiωt

′
dt′, where we follow the notation of

Ref. [27].
If the control pulse f(t) is designed with the aim to protect

the system in its initial state, the control error is given by
ε = 1− p. Thus, after a fixed time T , we can write

ε ≈ 1

2
χ(T ) =

1

2

∫ ∞
0

F (ω)ϕξ(ω)dω , (39)

where e−χ(t) has been approximated as 1− χ(t) (for a small
error). To gain more insight into the scaling of the error with
the control resources we make the following approximations:
the filter function F (ω) can be designed to have support only

around a central frequency ωc (e.g. for bang-bang control
the filter function has a sinc2-shape, but also for optimally
modulated pulses the bandwidth remains small [25]) and
with a small bandwidth if compared to the power spectral
density of the stochastic noise field. Thus, we can make the
approximation

ε ≈ C0 ϕξ(ωc) , (40)

with C0 a constant term depending on the specific choice of
the filter function.

Let us now compare this result with the information theoret-
ical limit as given by Eq. (31). Since in practical applications
the control pulse is chosen such that the signal-to-noise ratio
(evaluated in dB) exceeds a minimum threshold (at least 10-
20 dB) that ensures a satisfactory value of the control fidelity
F (e.g. more than 90%), we can make the approximation
log2 (1 + φf (ω)/ϕξ(ω)) ≈ log2 (φf (ω)/ϕξ(ω)), such that

ε & 2
− T
DW

∫ ωmax
ωmin

log2

(
φf (ω)

ϕξ(ω)

)
dω
.

At this point, we also assume that the bandwidth of the con-
trol field is smaller than the frequency variation of the power
spectral density ϕξ(ω) of the noise field 1. As a consequence,
the integral

∫
ω

log2 (φf (ω)/ϕξ(ω)) dω can be approximated
by its integrand ∆Ω log2 (C1/ϕξ(ωc)), evaluated at the central
frequency ωc of the effective pulse modulation, together with
the characteristic spectral width ∆Ω. The constant C1 depends
on the precise value and shape of φf (ω). As a consequence,

ε &

(
ϕξ(ωc)

C1

)∆ΩT
DW
≈ C2 ϕξ(ωc) , (41)

with D = ∆ΩT chosen to be of the same order of magnitude
than DW and C2 = 1/C1 is a constant 2.

While the above considerations assume that the system
should be protected in its initial state, a similar analysis could
be made for a state transformation. Indeed, also in this more
general case, the filter function F (ω) has to be chosen in such
a way that the decoherence function χ(t) is minimized. How-
ever, this time the constraint of this minimization is not only
given by the available resources but also by the requirement
that the coherent part of the dynamics leads to the desired
state transformation [26]. As a consequence, Eq. (40) will no
longer be a small noise approximation, but a lower bound on
the control error. We have thus proven that the information-
theoretical bound of Eq. (31) leads to the same scaling of the
error with the noise as the one obtained in Eq. (40) starting
from the Kofman-Kurizki universal decoherence formula.

Example: 1/f-noise: As an example, we consider that the
noise field is sampled by a 1/f distribution, commonly used
to model statistical fluctuations of a wide number of physical
and biological systems [9], [10], [11]. As explained in these
references, the power spectral density of the 1/f -noise decays

1This assumption is the same that we have made for the filter function
F (ω) to derive the bound in Eq. (40). In this case, f(t) enters the dynamics
only through the pulse modulation functions y(t) and z(t) that contain the
effective degrees of freedom (see also the arguments in section V-B).

2Given a fixed value of the bandwidth ∆Ω of the control pulse, ∆ΩT is
of the same order of magnitude of DW if the dimension of the QOC problem
saturates the dimension of the set of reachable states.
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Fig. 1. Dephasing channel (Sec. VIII-A): Control error scaling with respect to
signal to noise ratio S/N for different values of D. We choose the parameters
T = 1, ωy = 2π× 1, ωz = 2π× 1. In each optimization, the noise strength
γ is chosen as a function of the control pulse power Pf to set the value of
S/N . The data points are the minimum error from 10 optimization runs for
each value of D, namely (D = 2, blue squares), (D = 5, yellow circles),
(D = 10, red triangles), and (D = 20, green crosses). The theory curve (grey
line, ’bound’) shows the result of the fit of the model Eq. (44) as described
in the text (a1 = 0.53, b1 = 0.001).

as a power law with the frequency, i.e., φf (ω) ∝ 1/ωα where
the exponent α is typically in the range 0 < α < 2 [4]. The
case of α = 1 is also called pink noise (1/f -noise). Thus,
the natural choice in this case is to operate the system at
high frequency. According to the Kofman-Kurizki universal
decoherence formula, when moving to higher frequencies, the
error ε decays as ε ≈ C0/ω

α
c . Likewise, if we consider the

error-bound arising from the Shannon-Hartley theorem, we
find that ε & C2/ω

α
c , i.e. confirming the result.

VIII. EXAMPLES WITH GAUSSIAN WHITE NOISE

A. Dephasing channel

We consider a two-level system with one control field and
the following coherent Hamiltonian:

H1(t) = f(t)σx + ωyσy + ωzσz, (42)

where f(t) is the control field and, as usual, {σx, σy, σz} is
the set of the Pauli matrices. We add (Gaussian white) noise
on the σz operator and thus obtain the master equation

ρ̇ = −i[H1(t), ρ] + γ

(
0 ρ12

ρ21 0

)
. (43)

Our aim is to control at fixed bandwidth ∆Ω of the control
field f(t) the transfer from the state ρ0 = |0〉〈0| to the state
ρ̂ = |1〉〈1|. We show in Fig. 1 the scaling for the control
error ε with respect to the signal-to-noise ratio, where we have
optimized the state transfer with dCRAB. In the simulation,
we have DW = 3, the dimension of the space of mixed qubit
states, D = ∆Ω

2π T and T the final time of the control operation.
We choose the parameters T = 1, ωy = ωz = 2π × 1. and
the control bandwidth ∆Ω ∈ 2π × {2, 5, 10, 20}. To fix the
signal-to-noise-ratio to the desired value, at each optimization

iteration we calculate the signal power S = Pf and set
γ = 1/(2T S

N ). This corresponds to a physical model where
the noise is induced by a frequency instability of the control
pulse proportional to the pulse strength. We can see that the
optimization error in this example does not depend on the
control bandwidth (except for high signal-to-noise ratios) and
that instead the error is dominated by the signal-to-noise ratio.
From Eq. (29) we expect

log ε1 & log

(
a1

1 + S
N

+ b1

)
(44)

up to some constants a1 and b1. To verify the model from the
numerical data we take the data for D = 20 and fit the function
log(ε1) to the logarithm of the numeric errors. We do the same
fit also for alternative model log ε2 = log(a2 exp(−b2 SN )+c2).
If the fit for the first model produces a lower root-mean-square
of the residuals (RMS), this effectively proves our prediction
for the scaling of the error. In Fig. 1 we show the fit of ε1

for which we obtain a RMS of 0.062. If we additionally fit
the exponent −D/DW , we obtain −D/DW ≈ −1.05 and
reduce the RMS to 0.031, while for ε2 we obtain a RMS of
0.27, confirming our model as well as −D/DW ≈ −1. This
finding is consistent with the perturbative treatment of the time
evolution in Sec. VII-A. Thus, increasing D above the value
of DW saturates the information that can be transferred onto
the system and the original exponent can be approximated by
−D/DW ≈ −1.

B. Decay channel

As a second example, we consider a two-level system with
the coherent Hamiltonian H2(t) = f(t)σx+ωzσz and a decay
term given by the Lindblad superoperator L(ρ) as follows:

L(ρ) = γ

(
aρa† − 1

2
a†aρ− 1

2
ρa†a

)
= γ

(
ρ22 − 1

2ρ12

− 1
2ρ21 −ρ22

)
,

where a† and a are the creation and annihilation operators of
the qubit excitation and γ is the inverse lifetime of the excited
level. We set T = 1, ωz = 2π× 2, γ = 2π× 0.4 and we then
fix the signal power to

∫ T
0
f2(t)dt = (2π × 4)2, and thus the

signal-to-noise ratio as S/N =
∫ T

0
f2(t)dt/γ = 2π × 100.

We try to optimize the state transfer between a random
initial state and a random target state and investigate 100
instances of such random pairs of (pure) states. We optimize
each random instance for different values of the bandwidth
∆Ω. Fig. 2 shows the scaling of the maximum control error
(maximized over the random instances of initial and target
states) with the bandwidth. Again, we consider two models
for the error scaling and fit the parameters. From Eq. (29) we
obtain

ε1 & a1 exp(−b1∆Ω) + c1 (45)

up to some constants a1, b1 and c1. To verify the model from
the numerical data we fit this model to the data where we
exclude the data point for the smallest value of ∆Ω as outlier,
since for a small bandwidth (virtually constant pulse) the error
is influenced by the maximal value of 1. We do the same for
an alternative model ε2 = a2(∆Ω)−b2 +c2. In Fig. 2 we show
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Fig. 2. Decay channel (Sec. VIII-B): Control error scaling with respect to the
maximum bandwidth ∆Ω. The system offers both a decaying and a stable
state. The control error is reduced when a higher bandwidth allows faster
transitions between the two states. The figure shows the maximal control
error over 100 random instances of input and target states (blue squares). If
the bandwidth is too low we do not have any control over the system and the
maximal error is given by the form of the fidelity function. We fit the error
model Eq. (45) to the remaining data points as described in the text (grey
solid line, a1 = 0.51, b1 = 0.039, c1 = 0.098).

the fit of ε1 for which we obtain a RMS of 0.017, while for
ε2 we obtain a RMS of 0.063.

Note that the bandwidth plays a crucial role here. Indeed,
the optimal control strategy in this case is to move the system
as fast as possible into the decoherence free subspace (or
more precisely in the non-decaying state |0〉〈0|) and to give
the system another fast kick right before the end of the time
dynamics to steer it into the target state. The higher the
admissible bandwidth is, the faster these kicks can be and
so the smaller the time the system is exposed to decay and
the smaller the control error.

IX. EXAMPLES WITH GAUSSIAN COLOURED NOISE

To test the analytical results in section VII-B we simulate
the time dynamics of one qubit following the Hamiltonian

H3(t) = f(t)σx + ξ(t)σz, (46)

where ξ(t) is the coloured noise field with spectrum ϕξ(ω),
as well as

H4(t) = f(t)σx + ωyσy + (ωz + ξ(t))σz. (47)

In all cases we set T = 1,
∫ T

0
f2(t)dt = ω2

x,
∫ T

0
ξ2(t)dt = 4π2

and ωy = ωz = 2π. We consider two different kinds of noise,
i.e. 1/fα-noise with α ∈ {2, 4}. To simulate the dynamics we
generate 20 realizations of each type of noise and solve the
SSE for each realization separately. The control objectives are
then calculated as the average state overlap from all the 20
realizations.

A. State Protection

First, we consider the case treated analytically in the pre-
vious subsections, i.e. we consider an initial state |0〉+|1〉√

2
and
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ǫ

ωx (2π)

Fig. 3. State protection (Sec. IX-A): Control error scaling with respect to the
Rabi frequency ωx of the driving for 1/f2-noise and 1/f4 noise and state
preservation in |0〉+|1〉√

2
. For each of the two types of noise we investigated

separately the evolution of the system according to the Hamiltonians H3

and H4. The Hamiltonian H3 includes just the noise and the control and
in this case a constant pulse already encodes all possible information. The
control error scales with the expected 1/ωαx law corresponding to both the
information theoretical bound and the analytic decoherence formula. In the
second scenario the dynamics is governed by H4 which includes also static
terms in the Hamiltonian and thus a time-modulated control pulse is needed.
Yet, the scaling with ωαx is still roughly maintained.

try to preserve the system in this state. For the scenario H3

(i.e. the dynamics is described by the Hamiltonian H3(t))
we keep the pulse f(t) = ωx = const. Instead, for the
scenario H4 (i.e. the dynamics is described by the Hamiltonian
H4(t)) we try to find an optimal solution f(t) respecting the
power constraint and with a pulse modulation corresponding
to D = 10. Fig. 3 shows the results confirming the expected
scaling of the control error with ωx, i.e. ε & 1/ωαx . The
numerical data obtained with H3 is much better described by
theory (that was developed for H3), but also the results from
H4 confirm overall the scaling. To quantify the correspondence
between numerical data and simulation we employ the model
log(ε) = a+ b log(ωx) and fit it to the logarithm of the error,
where we treat again the smallest value of ωx as outlier since
the error is influenced by the maximal admissible value of 1.
From this fit we obtain for the curves the parameter b as an
estimate for α. We find b = 1.7 ± 0.1 for (α = 2 and H3),
b = 2.4 ± 0.3 for (α = 2 and H4), b = 4.0 ± 0.1 for (α = 4
and H3), b = 3.3 ± 0.3 for (α = 4 and H4). Summarizing,
we can clearly distinguish 1/f2-noise from 1/f4-noise, where
the precision is about 0.1 − 0.3 for H3 and slightly smaller
for H4.

B. State Transfer

Then, we consider a more general case, where the initial
state and the target state are chosen randomly. We examine
50 different random pairs of initial and target states for each
set of investigated parameters. We choose the scenario H4 and
fix the pulse energy by setting ωx = 2π × 5. Then we try to
find an optimal choice of the control pulse that minimizes the
error of the control problem for different values of the control
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Fig. 4. State transfer (Sec. IX-B): Control error scaling with respect to the
bandwidth of the control pulse ∆Ω for 1/f2-noise and 1/f4 noise and
state transfer between two random states. The time evolution is given by the
Hamiltonian H4. For each pair of α and ∆Ω, the figure shows the maximum
control error over all pairs of random initial and target states. For both values
of α we fit the scaling of the error ε ∝ 1/(∆Ω)a and obtain a = 1.3 and
a = 1.9 for α = 2 and α = 4 , respectively.

bandwidth and for both 1/f2- and 1/f4-noise. In Fig. 4 we
show the numerical results for the maximum error over all
instances of random initial and target states for both types of
noise and each value of the bandwidth. We expect the error
to scale as ε ∝ 1/(∆Ω)a. Numerically we find a = 1.3 and
a = 1.9 for α = 2 and α = 4 , respectively. Due to the more
complex dynamics we do not recover exactly the scaling from
Fig. 3 or a similar analytic prediction. However, we still find
a clear difference in the error scaling for the two types of
noise since the fast system modulations can suppress the low
frequency noise more efficiently than the high frequency noise.
As a consequence, we can conclude that the control resources
can be used to operate the system in a regime where it is less
affected by the noise. In particular, if the noise power spectral
density is decreasing with increasing frequency, increasing the
bandwidth of the control (and thus its information content)
allows to transform this decreasing noise into a decreasing
control error. If the noise decreases faster, also the error scaling
is more advantageous and less resources are required to obtain
the same control error, compared to a slowly decreasing noise
power spectral density.

X. CONCLUSIONS

We have studied the error scaling of a quantum control
problem as a function of the noise level and control resources
from an information theoretical perspective as well as from
a dynamic perspective both analytically and numerically. We
have shown that the two approaches lead to the same scaling
and thus are consistent. To achieve the results we have
extended the information theoretical model of Ref. [61] to
colored noise and we have investigated numerical examples
for both white noise and colored noise to study the relationship
between the information theoretical error bounds with the
results of optimal control solutions. We have also analytically

investigated the dynamics of a quantum system coupled to
a temporally correlated environment, with the help of the
Kofman-Kurizki universal formula and recovered the same
scaling of the control error with the control modulation as
predicted by the information theoretical bounds. We expect
that our results can pave the way towards an improved
design of optimized control pulses for open quantum systems,
whereby the optimization is performed also with respect to
some environmental features. High fidelity control of open
quantum systems is an extremely important ingredient in the
emerging field of quantum technologies where one needs to
perform precise operations under realistic (noisy) settings.
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