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ABSTRACT

Diamond based quantum technology is a fast emerging field with both scientific and technological importance. With the growing knowledge
and experience concerning diamond based quantum systems comes an increased demand for performance. Quantum optimal control
(QOC) provides a direct solution to a number of existing challenges as well as a basis for proposed future applications. Together with a swift
review of QOC strategies, quantum sensing, and other relevant quantum technology applications of nitrogen-vacancy (NV) centers in dia-
mond, the authors give the necessary background to summarize recent advancements in the field of QOC assisted quantum applications
with NV centers in diamond.
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I. INTRODUCTION

The nitrogen-vacancy (NV) center1,2 is one of the major plat-
forms in the evolving field of quantum technologies. Its remarkable
stability, long spin coherence time, and optical properties make it espe-
cially attractive for quantum applications. Like any other quantum sys-
tem, however, it is subject to experimental imperfections and
limitations. Quantum optimal control3 (QOC) aims to improve the
efficiency of system manipulation under such constraints. In this
introductory review article, we aim to provide an overview of the NV
center applications that can be improved with QOC and outline the
modus operandi for their implementation.

This review has been organized as follows: Sec. II introduces NV
centers in diamond and their most useful properties. Section III
reviews the basic quantum sensing techniques, and provides a brief
account of possible quantum information and computation applica-
tions of NV centers. Section IV breaks down the principles and meth-
ods of QOC theory. This includes an introduction on the structure of
QOC problems and an overview of some of the most common numer-
ical QOC algorithms. Section V reviews the control techniques dis-
cussed in Sec. IV applied to the system and methods discussed in Secs.
II and III, respectively. This review has been written such that the
reader can refer to Secs. II and IV more or less independently. Finally,
the Appendixes give a description of the relevant Hamiltonians for the
NV center spin system.

II. THE NITROGEN-VACANCY CENTER

Diamonds host a variety of point defects,5,6 i.e., lattice sites where
one of the carbon atoms is replaced with a different atom or vacancy.
The appearance of color in pure diamond is due to the presence of
particular optically active point defects. Ib diamonds, for example, are
yellow [see Fig. 2(a)] due to single substitutional nitrogen impurities.
Such fluorescent point defects have a unique spectral signature and are
called color-centers. Among them are the silicon-vacancy center,7 the
germanium-vacancy center,8 the tin-vacancy center,9 the NV center,
and several others, which have been extensively studied over the past
two decades.5,10 It is noteworthy that the color centers in diamond
emit photoluminescence (PL), which is bright enough to enable obser-
vation of single defect sites with a confocal microscope, e.g., in regular
patterns of nanostructures (see Fig. 1 and caption for details). To add
the capability for spin manipulation, microwaves (MWs) are applied
to the color centers under investigation.

The subject of this review, the NV center, is formed when one of
the four carbon atoms in the unit cell of the diamond lattice is replaced
by a nitrogen atom, accompanied by the formation of a neighboring
vacancy site, shown in Fig. 1. NV centers have three known energeti-
cally stable states; NV�, NV0, and NVþ. In this review, we limit our
focus to NV� (from here on simply called NV). It is the most promis-
ing of the three for applications in quantum metrology and quantum
information because of its magneto-optical properties. In Secs. IIA
and IIB, we briefly describe these useful characteristics of the NV cen-
ter for the matter of clarity and self-sufficiency with a main focus on
optimal control applications. For more details, we refer the reader to
more in-depth reviews on NV centers and related applications.2,14,15

A. General properties of NV centers in diamond

As a host material, diamond itself has a number of useful proper-
ties, including hardness, high refractive index, and nontoxicity.
Various techniques can be used to manufacture NV center containing
diamond (Fig. 2). The main fabrication methods include high pressur-
e–high temperature (HPHT) synthesis, detonation synthesis, and
chemical vapor deposition16,17 (CVD). While detonation synthesis
only leads to nanodiamonds [see Fig. 2(b)]. HPHT and CVD produce
diamonds of various morphologies including bulk and single crystals.
Very recently, upscaling single crystal CVD diamond to wafer scales
(10 cm) has been accomplished via heteroepitaxy13 [see Fig. 2(d)]. Ion
implantation18 is commonly used to create NV centers in diamond;
other methods include doping the crystal during the growth process to
incorporate the desired impurity. The availability of a broad range of
materials fosters a spectrum of applications including scanning probe
diamond tips [Fig. 2(c)] with single NV centers for nanoscale sens-
ing,19–24 engineered NV ensemble based sensors,25 wide field imaging
with NV center ensembles in bulk diamond,26 and diamonds coupled
to cavities27–30 as well as biological application31–34 in different envi-
ronments, temperature, and pressure ranges.

Despite the many advances in material synthesis techniques, dia-
monds have inherent noise sources that limit the performance of NV
center-based applications. In diamonds with exotic geometries like the
scanning probes (Fig. 2) as well as systems with shallow NV centers,
even the external environment plays a big role. Accordingly, the pro-
tection from both inherent and external noise has a high priority for
the NV center community to improve performance. Exploring

FIG. 1. Sketch of a typical confocal setup used for experiments with NV centers in
diamond. A laser (green) optically addresses the NV centers in the objective focal
plane. The photoluminescence signal (red) is filtered and collected for analysis. The
image in the bottom right panel shows a confocal scan of a diamond sample with a
regular square pattern of diamond nanopillars and markers containing NV centers.
The image on the lower left side shows the NV� center lattice structure. Inside the
typical diamond lattice structure, two adjacent carbon atoms are replaced by a nitro-
gen atom and a vacancy. The NV axis, joining the nitrogen atom and the vacancy,
can have four possible orientations in the unit cell. [Bottom left panel (in circle)]
Reproduced with permission from Itoh, AAPPS Bull. 25, 12 (2015). Copyright 2015,
image by Nimba Oshnik (Ref. 4).
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techniques of QOC (Sec. IV) promises to make the aforementioned
spin systems more robust against unwanted noise.

Also important for its applicability is the NV center’s electronic struc-
ture35–37 (Fig. 3): The vacancy site contains six electrons (three dangling

carbon electrons, two nitrogen electrons, and one electron trapped from a
nearby donor in the crystal lattice as shown in Fig. 1), which form a spin
triplet system with ms ¼ 61; 0. The electrons are tightly bound to the
defect making the NV center a truly atomic sized system.

As depicted in Fig. 3, the excited and ground state spin triplets
are separated by 1.945 eV, corresponding to a purely radiative transi-
tion [zero-phonon line (ZPL) in Fig. 4(a)] at 637 nm. Additionally,
intermediate singlet states occur energetically in-between the triplet
states. At thermal equilibrium, the spin population in the ground states
is governed by the Maxwell–Boltzmann distribution law.38 Upon irra-
diation with a green laser (k¼ 532nm), the population in the ground
states is transferred to the excited levels through a combination of radi-
ative absorption and nonradiative relaxation processes, involving the
excited levels of the NV center and the conduction band of the dia-
mond crystal. The excitation process is followed by direct radiative
decay as well as nonradiative decay through the intermediate states.
The radiative transitions between the ground and excited states are
spin preserving; the decay via the intermediate states, however, is not
(although it is spin dependent, nonetheless). The decay rate from the
excited level ms ¼ 61 spin states to the intermediate singlet state is
comparable to the rate of the direct radiative decay to the ground state.

FIG. 2. Diamonds for NV center-based applications: (a) HPHT grown single crystal diamond with labeled crystal facets (Ref. 11) (mm sized crystal). The yellow color arises
due to nitrogen impurities (Ib diamond). Reprinted with permission from Balmer et al., J. Phys.: Condens. Matter 21, 364221 (2009). Copyright 2009, IOP Publishing. (b)
Detonation nanodiamonds. From Materialscientist, “Electron micrograph of aggregated dnds,” Wikipedia, accessed 27 April 2020, https://en.wikipedia.org/wiki/
Detonation_nanodiamond. Copyright 2020 by Author(s). Adapted and modified by permission licensed under a CC BY-SA 3.0 License from Ref. 12. (c) Diamond based scan-
ning probe with single NV center at the tip for nanoscale sensing. Adapted with permission from Radtke et al., Micromachines 10(11), 718 (2019). Copyright 2019, Author(s),
licensed under a CC BY 4.0 License. (d) CVD grown diamond wafer (heteroepitaxy). Adapted and modified with permission from Schreck et al., Sci. Rep. 7, 1 (2017).
Copyright 2017, Author(s), licensed under a CC BY 4.0 License.

FIG. 3. NV center electronic structure. The ZPL is represented by red arrows
(k¼ 637 nm), green arrows signify off-resonant excitation, and the dashed arrows
indicate the possible nonradiative decay channels. The spin state lifetimes are
given as tLT, and the in-box level scheme shows the Zeeman splitting of the
ground-levels under the influence of a static external magnetic field Bnv.
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For the excited level ms¼ 0 spin state, the decay via the singlet state is
negligible. This results in a majority of the population being pumped
into thems¼ 0 ground-level spin state under laser illumination.

The transition frequency in the absence of an external field
between the degenerate ms ¼ 61 and the ms¼ 0 spin states in the
ground-level is 2.871GHz. An external magnetic field lifts the degener-
acy of the ms ¼ 61 states as depicted in Fig. 3 and experimentally
observed in Fig. 4(c) (Zeeman splitting). If the magnetic field is suffi-
ciently strong, the ms ¼ 61 states are well separated in frequency
allowing for the spin system to be approximated as a qubit, with one of
thems ¼ 61 states and thems¼ 0 state forming the two qubit levels.

Example 1. Rabi oscillations
Let us consider an example (also see the example in Sec. IVA),

approximating the NV center as a two level system with the ground
state j0i and excited state j1i. This assumption holds when the ms

¼ 61 spin states are nondegenerate under the influence of a static
magnetic field along the NV axis. It is common practice to consider
the NV axis as the quantization axis (Fig. 1). The system can be initial-
ized in the ms¼ 0 ground state with a green laser pulse. Subsequently,

a MW field of frequency xnv is applied to resonantly drive the transi-
tion j0i $ j1i, leading to a continuous population transfer. The
observed coherent oscillation (Rabi flopping) of the population
between the spin states is shown in Fig. 5.

Figure 5 also shows the Bloch sphere representation of the NV
qubit spin state. The north pole of the Bloch sphere corresponds to
the pure j1i state, whereas the south pole indicates the pure j0i state.
The Bloch vector (red arrow) represents the spin state of the system
at a given instance and x̂ and ŷ indicate the polarization of the driv-
ing field in the rotating frame (see Appendix B). Pulses rotate the
state vector with a speed dependent on the driving field strength
around an axis dependent on its phase (blue curve). A rotation by
180�, in this case fully transferring the population from ms¼ 0 to
ms¼ 1, is referred to as a p-pulse. p=2-pulses rotate the state-vector
by 90�. In this case, they would create a superposition state between
ms¼ 0 and ms¼ 1. The Hamiltonian for this system in the rotating
wave approximation (RWA) (see Appendix B) is given by Eq. (6). If
the drive is constantly applied, the system undergoes Rabi oscilla-
tions as shown in Fig. 5 with a frequency X that is proportional to
the strength of the applied microwave field.

FIG. 4. Distinguishing properties of the NV (the axis connecting the nitrogen atom and the vacancy in the lattice) center (at room temperature). The y-axis (counts) represents the PL
signal from the NV centers; (a) emission spectrum of the NV center, the ZPL corresponds to the purely radiative 637 nm transition from excited to ground-level; (b) simulated second-
order correlation function of photons emitted from a single NV center shows the antibunching effect; (c) simulated Zeeman splitting under an external magnetic field; the right-hand
vertical axis gives the approximate values of the magnetic field along the NV axis; (d) simulated spin dependent fluorescence; time trace of the state-dependent photoluminescence
from the NV center; the ms ¼ 61 state (blue curve) is darker compared to the mS¼ 0 state (red curve) because of population shelving in the intermediate metastable state.
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The decay of the amplitude of oscillation is owed to the inherent
decoherence and decay processes in the spin system.

The following points summarize the properties that render NV
centers well suited for quantum technology applications:

(1) The NV center has a magnetically active ground-level spin trip-
let state with the ms ¼ 61 states exhibiting Zeeman splitting
(Fig. 3) in the presence of external fields. This sensitivity toward
external fields is the key to the majority of sensing applications.

(2) In addition, the transition between the ground-level spin states
can be coherently manipulated with microwaves.

(3) The ground-level spin states also exhibit spin dependent fluo-
rescence due to selection rules and the transition rates men-
tioned above. It ensures a clear readout contrast between the
two qubit levels, which is crucial for quantum applications [see
Fig. 4(d)]. Alternatively, other readout schemes based on NV
charge state detection are also possible.

(4) The ms¼ 0 spin state of the ground-level triplet can be effi-
ciently initialized via an off-resonant laser excitation; this qubit
initialization is a pivotal property for all quantum sensing and
quantum computation applications.

(5) The nuclear spins in the NV center cluster exhibit dynamic
nuclear polarization,39 opening up the possibility of nuclear
spin-based quantum computation applications.

(6) All these properties are exploitable at room as well as cryogenic
temperature.

(7) Additionally, diamond is a biocompatible host, which is crucial
for life science applications.

(8) Various other properties (Fig. 4), e.g., stable emission of single
photons, also make these spin systems highly suitable for quan-
tum sensing and quantum information applications.

B. Spin Hamiltonian

Before we explore the vast field of applications of the NV cen-
ter, it is useful to study the governing Hamiltonian for the spin sys-
tem in order to understand the theoretical basis of the applications.
The NV center spin in the diamond lattice undergoes a variety of
interactions because of external magnetic and electric fields, as well
as the crystal strain field, and other spins in the crystal lattice. The
spin Hamiltonian for the NV center’s ground-level spin triplet can
be obtained on the basis of the ms ¼ 61 and ms¼ 0 spin operators.
It can be derived by perturbative expansion of the full Hamiltonian
of the system in terms of the spin operators (see Appendix A for
more details), such that the thermal degrees of freedom average
out.40,41 Assuming the NV axis to be the quantization axis, the spin
Hamiltonian can be written as

Ĥ ¼ �hD Ŝ
2
Z �

2
3

� �
þ �hEðŜ2X � Ŝ

2
YÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zero�field term

þ �hcnv~B �~̂S
zfflfflfflfflffl}|fflfflfflfflffl{magnetic interaction

þ �hdkEZ Ŝ
2
Z �

2
3

� �
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þ Qi Î
2
Z;i|fflffl{zfflffl}

nuclear quadrupole interactions

0
@

1
A: (1)

The first term in the Hamiltonian above is the zero-field term, i.e., the
system Hamiltonian in the absence of external fields, where �h is the
reduced Planck constant, ~̂S ¼ ðŜX ; ŜY ; ŜZÞ> are the spin operators

(see Appendix A), D is the axial, and E is the nonaxial zero-field
parameter, respectively. At room temperature and ambient pressure,
D � 2.87GHz varies by around �80 kHz=K and 1:5 kHz=bar

FIG. 5. Illustration of Rabioscillation (left) and Bloch sphere representation (right side).
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with temperature and pressure changes, respectively (see Secs. IIIA 3
and IIIA 4).

The second term in the Hamiltonian represents the magnetic
field interaction, where cnv ¼ 2p� 28 MHz/mT is the gyromagnetic
ratio for the NV center spin and~B is the external magnetic field.

The electric field interaction with the NV center spin is repre-
sented by the third term in the Hamiltonian.~E ¼ ðEX ; EY ; EZÞ> is the
effective electric field vector, representing contributions from external
electric fields as well as the crystal field, arising from crystal strain and
pressure (see Sec. IIIA 4). dk and d? are the axial and transverse cou-
pling constants, respectively, arising from the symmetry of the crystal
structure at the site of the NV center. In comparison to the magnetic
field, the electric field has a much weaker interaction with the NV
spin, with dk at around 0:17Hz=ðVm�1Þ and d? of the order of
10�3 Hz=ðVm�1Þ.

The NV center spin interacts with other spin systems in the host
crystal and its surroundings. The most dominant interactions are with
the 15N or 14N nucleus in the NV center and the 13C nuclear spins in
the surrounding diamond lattice. These spin–spin interactions are rep-
resented by the hyperfine interaction terms in the Hamiltonian. N i is
the hyperfine interaction tensor between the electron and the ith
nuclear spin and ~̂I i is the nuclear spin operator. There are two main
contributions to the hyperfine interaction tensor: First, the isotropic
Fermi contact interaction that arises from the interaction of the elec-
tron cloud with the nearby nucleus (see Appendix A). Second, the
anisotropic magnetic dipole interactions of the NV spin with distant
nuclear spins. The magnitude of the latter interaction decays as 1=r3

with the distance r from the nuclear spin and is comparatively weaker
than the Fermi contact interaction terms.

On top of the hyperfine coupling, the nuclear spins also interact
with the external magnetic field. This is represented as the nuclear
Zeeman interaction term, where ci is the gyromagnetic ratio of the cor-
responding nuclear spin i.

Finally, nuclei like 14N can exhibit quadrupole splitting; this is
represented by the last term in the Hamiltonian. Here, Qi represents
the quadrupole splitting. As an example, the quadrupole splitting for
the 14N nuclei inside the diamond lattice has been estimated to be
around 5MHz.42

The reader is advised to refer to Appendix A for a detailed
description of these Hamiltonian terms and their origins.

III. QUANTUM TECHNOLOGY APPLICATIONS WITH NV
CENTERS

We now proceed with the exploration of the versatility of NV
centers in terms of their potential applications in quantum technolo-
gies. As quantum sensors, they have been utilized for magnetic and
electric field sensing (Secs. IIIA 1 and IIIA 2), thermometry (Sec.
IIIA 3), strain/pressure measurements (Sec. IIIA 4), orientation track-
ing, and more. NV centers have further found application in quantum
information related experiments (Sec. III B). In addition, the NV cen-
ter is also a reliable nonclassical source of single photons and has been
utilized in various single photon experiments.43,44

A. Quantum sensing applications

In principle, NV centers possess the necessary properties to be
practical quantum sensors.45 The efficient spin state initialization/read-
out and the sensitivity to various physical parameters have resulted in a

variety of diamond based sensing applications. As diamonds are simple
to handle in terms of logistics, maintenance, and manipulation in com-
parison to other (atomic) quantum systems, their application has
received a lot of attention. The main focus has been on using the quan-
tum nature of the defect center’s spin to detect classical physical signals
(called classical detection, in contrast to quantum detection, which is
based on the use of entanglement45). In several sensing applications,
NV centers have proven to outperform their counterparts. Figure 6
shows one such example, juxtaposing different scanning magneto-
meters that are commonly implemented for sensing. A summary of
the different measurable parameters with NV center-based sensors is
provided in Table I. The sensing methods rely on efficient and coher-
ent spin manipulation, whereby experimental imperfections limit their
success. In this section, we briefly discuss different sensing protocols,
experimental limitations, and other challenges. A review of the current
techniques based on QOC (see Sec. IV) to overcome/circumvent the
described obstacles and efficiently use the NV centers as quantum sen-
sors is given in Sec. VA. For completeness, we also outline related
applications in quantum information and computation.

1. Magnetic field sensing

Magnetic field sensing is the most common application of NV
centers as quantum sensors. As illustrated in the full Hamiltonian Eq.
(1), the external magnetic field interacts directly with the NV spin. In
addition to continuous wave spectroscopy experiments [Fig. 4(c)], sev-
eral nuclear magnetic resonance (NMR)/EPR based spin manipulation
techniques51 with microwave pulses can be applied to quantify the
magnitude of the interaction as well as the directional dependence of
the external field to be studied. These techniques pave the way for vec-
tor magnetometery,20 magnetic field imaging at the nanoscale,21 detec-
tion of single spins,52 and a number of other applications. All these
methods rely on efficient initialization (laser), manipulation

FIG. 6. Comparison of scanning magnetometers for nanoscale sensing. The plot
shows experimentally demonstrated magnetic field sensitivities for Hall sensors
(Ref. 46), scanning SQUID sensors (Ref. 47), magnetic resonance force micro-
scopes (Ref. 48), and NV center based sensors (Ref. 49) as a function of the
sensor-sample distance [markers represent experimentally obtained values, for
details refer to Appel et al. (Ref. 50)]. Diagonal lines indicate the theoretical thresh-
old for the detection of 1, 103, and 106 electron spins (lB) within 1 s and a single
nuclear spin (dashed, lN) in the same time. From Appel, “Scanning nanomagne-
tometry: Probing magnetism with single spins in diamond,” Ph.D. thesis (University
of Basel, 2017). Copyright (2017) by Authors. Adapted and modified by permission
licensed under the terms of a CC BY-NC-ND 4.0 License.
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(microwaves) and readout (typically laser, although several other pos-
sibilities exist,53,54 see the study by Barry et al.14 for details) of the spin
system.

The most basic sensing protocol is the direct measurement of the
Zeeman splitting (see Sec. II B) under the influence of an external mag-
netic field [Fig. 4(c)]. This technique requires the application of a con-
tinuous, off-resonant laser to the spin system. The MW frequency is
swept, driving the ms ¼ 0$ ms ¼ 61 transition when the resonance
condition is met. This in turn results in a measurable decrease in the
fluorescence from the NV center [see Fig. 4(c)]. Gruber et al.55 demon-
strated the first of these optically detected magnetic resonance (ODMR)
experiments with a single NV center, showing that the splitting of reso-
nant peaks (dips) gives information about the external magnetic field.

Nonpolarized (thus randomly flipping) spins proximal to the NV
center create fluctuating magnetic fields at the position of the NV cen-
ter. The interaction strength of the NV center with the fields fluctuat-
ing at the transition frequency between ms ¼ 0 andms ¼ 61 can be
directly inferred from the lifetime (T1) of the spin states. Such relaxom-
etry techniques have been, in particularly, used for life science applica-
tions,26 magnetic noise sensing,56 and surface and material studies.57

Another common method for DC magnetometery is the Ramsey
interference pulse technique58 depicted in Fig. 7. Balasubramanian
et al.59 first experimentally demonstrated this method with NV centers
using ultrapure CVD grown single crystal diamond as a host material.
In theory, the Ramsey sequence is the spin equivalent of an optical
Mach–Zehnder interferometer. It is based on measuring the phase
induced by external perturbations on a superposition state of the spin
system. The “mirrors” and “beam splitters” for this interference
experiments are formed by the p

2-pulses applied at MW frequency
(Fig. 7). The induced phase / is directly proportional to the external
magnetic field component BkðtÞ,

/ ¼ cnv

ðs

0
BkðtÞdt; (2)

where s is the free spin precession duration. The phase accumulation
arises from the Larmor precession of the spin about the magnetic field
vector.

Additional pulses can be used to cancel out the phase induced by
the DC field, so that the phase information can be used for measuring
ACmagnetic fields (Fig. 8).

This idea is exploited in the spin-echo pulse sequence60 (Fig. 8).
The additional p-pulse refocuses the signal such that the total phase
accumulation in this case is

/ ¼ cnv

ðs

0
BkðtÞdt �

ð2s
s
BkðtÞdt

" #
: (3)

When the time period of the AC field is an even multiple of the free
precession time s, the two terms for phase accumulation above are
equal and cancel each other [see Fig. 8(b)]. This way the phase induced
by slowly varying fields over the entire sequence is zero. Such spin
manipulation experiments with NV centers have been independently
reported by several authors in the last decade.59,61–63

The spin-echo protocol with a single refocusing p-pulse is the
basic building block of the dynamical decoupling (DD) sequences64

(Fig. 9) that make use of multiple refocusing p-pulses. Decoupling the
system from DC or slowly varying fields is accompanied by coupling
to a given frequency signal (Fig. 8). The general phase accumulation
for a series of p pulses over a duration of time t can be estimated as

TABLE I. Summary of quantum sensing with NV centers. gB and gE are the sensitivities with respect to the magnetic field B and the electric field E, respectively. r is the standard
deviation in the measurement (related to the detected noise), S is the detected signal, and tm is the measurement time (limited by the coherence time of the system). D and E
are the axial and nonaxial zero-field parameters, respectively.

Sensed parameter
Parameter/sensitivity

dependence Reported sensitivities References

Magnetic field (B) gB ¼
r

½@S=@B�max

ffiffiffiffiffi
tm
p

pT-lT/
ffiffiffiffiffiffi
Hz
p

Balasubramanian et al. (Ref. 59),
Webb et al. (Ref. 72), and
Neumamm et al. (Ref. 73)

Electric field (E) gE ¼
r

½@S=@E�max

ffiffiffiffiffi
tm
p �100 V/cm/

ffiffiffiffiffiffi
Hz
p

Dolde et al. (Ref. 70)

Temperature (T ) dD
dT ;

dE
dT

10–100 kHz/K, �1:4� 10�4 Hz/K Dolde et al. (Ref. 74) and Acosta et al. (Ref. 71)

Pressure (P) dD
dP

105–106 Pa/
ffiffiffiffiffiffi
Hz
p

Doherty et al. (Ref. 75)

FIG. 7. Ramsey spin manipulation sequence for DC magnetic field sensing. The NV
axis is considered to be the quantization axis. The parallel component, Bk, of the
external DC magnetic field is the signal under consideration. Resonant MW control
pulses are used to apply p

2-rotations. The first pulse rotates the spin from the ground
state into a superposition in the equatorial plane (blue curve). During the free pre-
cession time s, the magnetic field component Bk induces a phase / (black curve).
When the spin is rotated again with a second pulse, the phase can be inferred by
projecting the spin along the quantization axis. The required measurement is done
by repeating the process a number of times and reading out whether the NV center
is in the ground or excited state after each repetition. The distribution of measure-
ments then gives the projection along the quantization axis.
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/se ¼ cnv

ðt
0
Bkðt0ÞMðt0Þdt0; (4)

whereM is known as the modulation function and reflects whether
the phase accumulated over the specific period s in the sequence is
positive or negative (Fig. 9).

In the case of a broadband external field (periodically or ran-
domly oscillating), the contribution to the total phase induced by
different frequency components depends on the so-called weighing
function [Fig. 9(b)] for the given pulse sequence. These weighing

functions are similar to those of narrow-band frequency filters, i.e., they
enhance signals from resonant frequencies and suppress nonresonant
external field contributions.65 Decoupling the spin system from the
noisy spin bath in the diamond crystal enhances the coherence time of
the spin states.66 It also improves the sensitivity toward the targeted sig-
nal which is limited by the spin dephasing (T�2 ) and spin decoherence
(T2) times. For more information on the nature, usefulness, and applica-
tion of these DD-sequences and filter functions for quantum sensing,
the reader may refer to the extensive review on the topic by Degen
et al.45 QOC (Sec. IV) offers an alternative approach to enhance the
coherence time for systems with high frequency noise such as shallow
NV centers. In addition, the hard pulse approach (i.e., using rectangular
pulses) is subjected to cumulative errors with respect to the phase and
duration of the pulses that become significant for longer DD sequences.
QOC provides an elegant solution to avoid such errors, which is useful
for sensing applications as well as quantum information and computa-
tion applications (Sec. III B) that require high fidelity gate operations.

As an indirect application of magnetic field sensing, gyroscopic
measurements with NV centers have been performed.67,68

2. Electric field sensing

The coupling of the magnetic field to the NV spin is much stron-
ger than that of the electric field. Hence, electric field sensing techni-
ques69 are experimentally more challenging. However, the external
electric field directly influences the spin, as discernible from the
Hamiltonian in Eq. (1).

Comparing their coupling, the magnetic field’s effect (represented
by cnv) is of the order of a few GHz/T,20 whereas the analogous con-
stant of the electric field EI is of sub-Hz/(Vm–1)-order,69 making the
coupling very weak, as indicated in Sec. II B. Nevertheless, electric fields
are also detected quantitatively by the phase induced during the pulse
sequence. Hence, similar spin manipulation protocols as employed for
magnetic field sensing are used for detecting electric fields. As the sig-
nal is much weaker than that for magnetic fields, the challenge lies in
separating it from the effects of other strong undesirable interactions.

Dolde et al.70 exploited the interplay between magnetic Zeeman
effect, Stark effect, and crystal strain field in their carefully devised
experiment to suppress the magnetic field effects on the NV spin,
making the shifts in the electric field transitions more prominently
detectable via spin manipulation protocols (Fig. 10).

3. Thermometry

Unlike the electric and magnetic fields, temperature is not
directly coupled to the spin system (strictly speaking spin-phonon
coupling is still temperature dependent; however, temperature as a
parameter does not directly couple to the spin). Instead, temperature
fluctuations have a direct effect on the crystal field as they affect the
lattice constant of the crystal. This in turn influences the zero-field
splitting parameters discussed in Sec. II B. Acosta et al.71 reported the
dependence of the parameters D and E on temperature, demonstrating
that temperatures changes can be directly quantified from ODMR
spectra (Fig. 11). They found that the axial zero-field splitting parame-
ter is more sensitive to temperature changes than the nonaxial param-
eter. Neumann et al.76 utilized the D-Ramsey spin manipulation
protocol to suppress the effect of external magnetic fields, paving the
way to an enhanced measurement of temperature changes.

FIG. 8. AC field sensing: (a) Spin-echo pulse sequence for AC field sensing. Bk is
the magnetic field component along the NV axis which is under consideration, the
arrows on the top indicate the direction of the magnetic field vector during the given
period. As in Fig. 7, at the bottom, the red vector represents the state of the system.
The first pulse rotates the spin by 90� from the ground state into a superposition in
the equatorial plane (blue curve). During the free precession time s, the parallel
magnetic field component Bk induces a phase / (black curve). The p-pulse then
flips the direction of precession, proceeded by another phase accumulation over a
time period of equal length. Finally, a p

2-pulse rotates the spin again and the mag-
netic field strength can be inferred by projecting the spin along the quantization
axis. In the case of a DC field, the phase contributions are of opposite sign for the
two free precession periods and hence are subtracted. However, for fields oscillat-
ing with frequency xac ¼ p

s, the final projection gives a measurement of its ampli-
tude similar to the Ramsey sequence in Fig. 7. (b) Population in the state j0i after
applying spin-echo sequences with different precession times s. Whenever the fre-
quency of the external field satisfies the condition xac ¼ kp=s with odd k, the fidel-
ity is reduced. The overall envelope decay of the population depends on the
decoherence time T2. (a) Spin-echo pulse sequence and (b) state population vs
precession time.
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4. Pressure and strain sensing

Similar to the temperature, other physical quantities like pressure
and strain affect the crystal field. Changes in these quantities can be
studied by their coupling to the zero-field splitting parameter.

Doherty et al.75 reported the effect of hydrostatic pressure on the
ZPL and the ground state ODMR of NV centers at room temperature
in a hydrostatic pressure medium (Fig. 12). Crystal strain variations lead
to changes in the effective electric field as described in Sec. II B. The
reader is referred to Maze et al.20 for a theoretical description of the
effect of strain on the NV center’s electronic structure. Teissier et al.77

reported NV spin–strain coupling in diamond cantilever devices.

B. Quantum information and computation
applications

The same characteristics that make NV centers a promising sen-
sor also qualify them in the fields of quantum information and com-
putation.78 As described in Sec. IIA, the NV electron spin interacts
with the internal N nuclear spin of the NV center and 13C nuclear

spins in its close proximity (NV center cluster). Abobeih et al.79

showed that even a much more precise characterization is possible:
They imaged a 27-nuclear spin cluster using a single NV center.
Considering the surrounding nuclei, the resulting hyperfine structure80

(see Sec. II B and Appendix A) forms a more complex quantum
mechanical system than a single electronic qubit. In fact, the majority
of quantum computation applications can, in principle, be performed
with a nuclear spin qubit, using the NV center electron as a quantum
bus qubit for initialization and readout.42,81

This technique has led to various NV-based applications such as
quantum error correction (QEC),82–84 quantum algorithms,85,86 quan-
tum simulation,87,88 fault-tolerant quantum repeaters for long-
distance communication,89 and quantummemory.90–92

Entanglement between optical photons and the NV spin has also
been demonstrated experimentally.93 In rare cases, two NV centers
might be close enough to each other for dipole–dipole interaction.74

This provides another possible source of entanglement and is further
described in Appendix A. In the proceeding paragraphs, we describe
applications mainly regarding the use of NV centers as quantum

FIG. 9. Dynamical decoupling sequence: (a) the protocol consists of a train of p-pulses. The frequency that is measured depends on the spacing between the pulses. The modulation
function reflects the state of the NV center at every point of the sequence. By multiplying the signal with the modulation function, one gets the rectified signal, whose integral is propor-
tional to the phase accumulation. (b) The Fourier transform of the modulation function quantifies the weighing function for the detectable frequencies using the given sequence. Note
that the p-pulses are assumed to be instantaneous such that the phase variation during the pulse is negligible (hard pulses). The peaks (k) in the plot correspond to the different har-
monic orders of the filter function. Adapted and modified with permission from Degen et al., Rev. Mod. Phys. 89, 1 (2017). Copyright 2017, American Physical Society.

FIG. 10. Electric field sensing with NV centers: (a) careful alignment of the external magnetic field~B (orthogonal to the ẑ - and hence to the NV axis) is required to measure the
effect of the electric field. ~E ext represents the external electric field and ~E str the nonaxial crystal strain field. ~E eff indicates the resulting effective electric field experienced by
the spin. (b) The plots show the Stark effect shifting the resonant frequencies between the NV center spin states for different electric field strengths. For details on the experi-
ment, see Dolde et al (Ref. 70). Reprinted with permission from Dolde et al., Nat. Phys. 7, 459 (2011). Copyright 2011, Nature.
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registers, entangling gates with NV centers, and use of NV center
qubits to perform quantum error correction.

Quantum registers are at the heart of quantum computation
techniques (Fig. 13). They contain the coupled set of qubits, which are
used to perform quantum computations. The nuclear spins in the NV
center cluster exhibit long coherence times at room temperature,
which is an essential feature for spin system based quantum registers.
Recently, Bradley et al.94 presented a quantum register based on the
electron spin of an NV center together with nine nuclear spins
depicted in Fig. 13. To efficiently implement gates in such a large sys-
tem, they simultaneously used dynamical decoupling based gates on
the NV center electron spin and selective phase-controlled driving of
the nuclear spins. As a result, they saw coherence times from 10 s up
to a minute at room temperature. In a different approach, Neumann
et al.95 demonstrated the working concept of a diamond-based spin
register containing two optically addressable NV center spin qubits
coupled to each other in an ultrapure and isotopically engineered
CVD grown diamond. NV center-based spin registers have also been
used for quantum simulation of molecules.87

Similar to the way quantum registers form the underlying struc-
ture, entanglement generation enables the connections required for
any quantum information technology (entanglement also plays a vital
role in several quantum sensing applications; for moreinformation, the
reader is advised to refer to the study by Degen et al.45). For example,
Dolde et al.96 demonstrated NV–NV spin entanglement at room tem-
perature, while Neumann et al.97 demonstrated entangled two- and
three-particle quantum states with 13C nuclear spins in an NV center-
based quantum register.

Another essential concept for fault-tolerant quantum computa-
tion is QEC. As mentioned above, NV-based spin registers may pro-
vide systems with long coherence times and desired entanglement
properties. These are prerequisites to implement standard QEC

protocols. Taminiau et al.83 demonstrated error correction with a spin
register of nuclear spins from the NV center cluster, using the NV cen-
ter electron spin as the control qubit. In another work, Unden et al.98

demonstrated enhanced quantum sensitivity with metrology techni-
ques based on iterative quantum error correction. Casanova et al.99

performed a complete set of universal quantum gates with an NV
center-based spin register, providing a proof of principle for NV
center-based quantum computation.

To obtain better control over the qubit system, several QOC
based methods have been implemented so far. They helped to over-
come decoherence effects caused by the environment and to circum-
vent experimental limitations. We will review some of these works in
Sec. VB.

Furthermore, NV centers have been long known as a nonclassical
photon source,43,100 which was applied in single and two photon inter-
ference experiments.101,102 The NV center has also been used for Bell’s
inequality test related experiments.92

IV. OPTIMAL CONTROL THEORY

Without the ability to precisely manipulate quantum systems,
researching their properties and applying them for quantum technolo-
gies is almost impossible. QOC theory3,103 improves the shape of
dynamical controls (typically electromagnetic field pulses) to achieve a
certain goal to maximum precision. The section starts with the details
of defining a QOC problem in Sec. IVA followed by a description of
different numerical optimization tools in Sec. IVB and concluded by a
brief discussion of the limits of QOC (Sec. IVC). The first part is struc-
tured according to the schematic in Fig. 14.

In the field of NMR, pulse shaping has been used since the
1980s104 and many of the arguments for pulse shape optimization105

equally apply to NV centers, which we will focus on. In many cases,
the time scales defining the decay of NV centers are large compared to
the control time. In that case, it is sufficient to study closed system
dynamics. Indeed, specific open system techniques such as population
suppression and the exploitation of useful dissipation processes are
often not applicable to the problems considered in this review.106

Hence, we limit ourselves to a closed system description.

A. Defining a control problem

The principles of QOC theory derive from early extremization
problems such as Johann Bernoulli’s brachistochrone curve prob-
lem.107 Similarly, QOC problems are formulated through a system of
equations, which broadly defines three things: First, the system
dynamics, i.e., the theoretically obtained description reflecting the sys-
tem’s behavior, for example, given by the Hamiltonian. Alternatively,
this first equation might be replaced by a description through the
experiment itself. Second and third, the control objectives and control
space restrictions. The objectives on the one hand set the goal of the
optimization, like, e.g., high fidelity for the transfer to a target state.
The control space restrictions, on the other hand, limit the resources
that may be used to reach the desired goal. Together, the three aspects
are combined into a so-called control landscape. Each set of controls
will result in a different value of the “cost function” J, a measure for
how close the system is to reaching the objective. In the case of a mini-
mization (and throughout this review, we will always assume minimi-
zations, unless stated otherwise), each valley corresponds to a locally

FIG. 11. Thermometery with NV centers: (a) zero-field magnetic resonance spectra
for different temperatures (fit in solid red); (b) dependence of the nonaxial zero-field
parameter E on temperature; (c) dependence of the axial zero-field parameter D on
temperature; (d) temperature dependence of D and E vs the laser intensity used for
initialization and readout of the spin state. Adapted and modified with permission
from Acosta et al., Phys. Rev. Lett. 104, 070801 (2010). Copyright 2010, the
American Physical Society.
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FIG. 12. (a) Effect of external pressure on the ODMR spectrum of NV centers (dashed line: resonance frequency at normal atmospheric pressure); (b) shift of the ZPL vs exter-
nal pressure; (c) shift of the zero-field parameter D vs external pressure. Adapted and modified with permission from Doherty et al., Phys. Rev. Lett. 112, 047601 (2014).
Copyright 2014, the American Physical Society.
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optimal combination of controls. The goal of the optimization can
now be easily defined as reaching the lowest point in the landscape.

Next, we will discuss in more detail these three ingredients of QOC
problems as well as the initial guess, stopping criteria, and robustness.

1. System dynamics

One way to characterize the evolution of a closed quantum system
with time dependent controls is through Schr€odinger’s equation. The
system Hamiltonian is usually split into two parts: the drift Hamiltonian
Ĥ

d
, which is constant and cannot be manipulated, and the control

Hamiltonians Ĥ
c
i which are multiplied with time-dependent coefficients

uiðtÞ called “control pulses.” The full Hamiltonian then reads

Ĥ ¼ Ĥ
d þ

X
i

uiðtÞĤ
c
i : (5)

Note that system dynamics for control problems may also be defined
through Lindblad-operators and even for non-Markovian dynamics
(for a review on open systems QOC see Koch106).

Example 2.Drift and control Hamiltonian
As an example, let us consider a NV center, approximated as a

qubit with the ground state j0i and excited state j1i. In this simple
consideration, the goal will be to create a high-fidelity p

2

� �
x
-rotation

similar to the system by Frank et al.108

A static magnetic field Bk is applied in the z direction (the quanti-
zation/NV axis) and a circularly polarized microwave field~B? with an
amplitude B?ðtÞ, frequency xmw, and phase u is applied orthogonal
to Bk. Let us define the gyromagnetic ratio of the NV center as cnv.
The rotating frame of~B? then gives the Hamiltonian,

ĤRWA=�h ¼ DŝZ þ XðtÞ ŝX cosuðtÞ þ ŝY sinuðtÞð Þ
¼ DŝZ þ u1ðtÞŝX þ u2ðtÞŝY ; (6)

where D ¼ xnv � xmw is the detuning, xnv ¼ Bkcnv is the NV’s reso-
nant frequency, XðtÞ ¼ B?cnv is the Rabi frequency, and ~̂s are the
spin operators in the j0i; j1i basis. A derivation of this Hamiltonian
can be found in Appendix B.

We can easily identify the drift Hamiltonian Ĥ
d ¼ DŝZ . Let us

assume that both the Rabi frequency XðtÞ and the phase of the mag-
netic field uðtÞ can be manipulated dynamically. The control
Hamiltonians may then be identified as Ĥ

c
1 ¼ ŝX and Ĥ

c
2 ¼ ŝY and

the control pulses as u1ðtÞ ¼ XðtÞ cosuðtÞ and u2ðtÞ ¼ XðtÞ sinuðtÞ.

Once the system has evolved, it is time to test whether the goals
have been reached by checking the control objectives.

FIG. 13. Illustration of a 10-qubit spin register based on a NV center as demon-
strated by Brandley et al. (Ref. 94). The electron spin of a single NV center in dia-
mond acts as a central qubit along with one 14N and eight 13C nuclear spin qubits.
Adapted and modified with permission from Bradley et al., Phys. Rev. X 9, 031045
(2019). Copyright (2019), Author(s), licensed under the terms of the Creative
Commons Attribution 4.0 International License.

FIG. 14. Schematic drawing of a generic QOC optimization. The box on the left contains the elements that define a basic QOC problem with blue solid arrows connecting them
to the algorithm. The gray box at the center illustrates the optimization algorithm itself, with the dotted gray arrow indicating its iterative nature. The cost function J is calculated
from the controls uiðtÞ and used to update the controls. In parenthesis, the relevant sections in the review paper are indicated where applicable.
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It should be noted at this point that the rotating wave approxima-
tion (RWA), as presented in Appendix B, is widely used to simplify
the NV center’s Hamiltonian. While it is useful, when the Rabi fre-
quency is much lower than the NV center’s resonant frequency, it can
have a detrimental effect on a simulation’s accuracy, if the Rabi fre-
quency is of a similar scale to the qubit transition. In fact, Scheuer
et al.109 have shown how the inaccurate use of the RWA can affect the
outcomes of optimal control procedures designed for NV centers.

2. Control objective(s)

The cost function (or figure of merit) J defines what is minimized
in any QOC problem. This way it describes the goal of the optimiza-
tion (terminal cost) and optionally the control limits through penalty-
terms (running costs). The terminal costs are determined at the final
time of the system’s evolution. They quantify, for instance, the distance
between the final state and the desired goal state in the relevant
Hilbert space. The running costs are usually related to the restrictions
on the control pulses, for example, the limited power of a microwave
source. In this review, the cost function is defined to be zero, when all
objectives are met and to be greater than zero, when they are not met.
Note that the running costs have a similar role to the control space
restrictions that will be discussed in Sec. IVA3.

In the following, we will briefly describe some of the most rele-
vant cost functions found in relation to NV centers in the literature.
For more examples of NV center applications, refer to Sec. III. Section
V contains examples specifically combining NV centers with QOC.

a. State to state transfer (terminal cost). State to state transfer is
the most common optimization objective and has been used in many
papers.108,110–112 The infidelity is a measure for the distance between
two states j/ti and j/ðTÞi: If they are equal, it gives zero; if they are
orthogonal, it has a value of one. The infidelity can be used directly to
define the cost function Jstate,

Jstate ¼ 1� jh/t j/ðTÞij2; (7)

describing the distance between j/ðTÞi, the final state of the system at
time T, and j/ti, the target state. An alternative way to formulate the
transfer is fixing the global phase using Jstate ¼ 1�<fh/ðTÞj/tig.

b. Unitary gate optimization (terminal cost). To measure the dis-
tance between the unitary U(T) produced by the controls and the tar-
get gateUt, we define the cost function,

Jgate ¼ 1� 1
N2
0
jTrðU†

t UðTÞÞj
2

¼ 1� 1
N2
0

XN0

i¼1
hfijU†

t j/iðTÞi
�����

�����
2

: (8)

In the second line, the gate fidelity is defined through the N0 basis
states jfii of the initial system and their propagated version
j/iðTÞi ¼ UðTÞjfii. Similarly to Jstate, we can also define a global
phase dependent version of this cost function, Jgate ¼ 1� ð1=N0Þ
<fTrðU†

t UðTÞÞg. Examples for its application can be found in Refs.
113–116.

c. Sensitivity (terminal cost). In contrast to the previous examples,
the sensitivity does not directly contain information about the system.
Instead, it quantifies the amount of information about a parameter
h (e.g., the magnetic field) that may be derived from a set of
measurements.

The sensitivity may be defined as the variance ðDhÞ2 of the
parameter estimate h0 obtained from NM measurements. Each mea-
surement produces the expectation value of some positive-operator-
values measure (POVM)117 H. The probability to measure hðj/iÞ ¼ x
probing a wavefunction j/i is then given by the expectation value
pðxjhÞ ¼ h/jHj/i ¼ TrðqHÞ, with q ¼ j/ih/j.

The cost function should, however, not contain information
about the outcome of the measurement, but rather about its precision.
The lower bound of Dh is given by the Cram�er-Rao bound,

ðDhÞ2 	 1
NMFðh0Þ

; (9)

a value which is inversely proportional to the Fisher information FðhÞ,
calculated by

FðhÞ ¼
ð
dx

1
pðxjhÞ

@pðxjhÞ
@h

	 
2

¼
XNx

i

1
pðxijhÞ

@pðxijhÞ
@h

	 
2

; (10)

where the second line is specifically related to a discrete number of
possible measurement outcomes Nx.

One may interpret the Fisher information as the curvature of the
logarithmic probability distribution: If it is completely flat, hence giv-
ing no information, Fðh0Þ ¼ 0; if it is strongly peaked, indicating a
clear parameter estimate, Fðh0Þ 
 0.

The corresponding cost function may be defined as

JFisher ¼
1

NMFðhÞ
: (11)

Reviews introducing Fisher information in the context of quantum
sensing and metrology were written by Degen et al.45 and Pezze
et al.118 The original paper relating Fisher information and quantum
mechanics was published in 1994 by Braunstein and Caves.119

Applications of Fisher information as a part of optimal control can be
found in Refs. 120 and 121.

d. Limited power (running cost). The power of a control pulse is

typically calculated as Pi ¼
Ð T
0 juiðtÞj

2dt. To limit Pi to a reasonable
range Pi 2 ½0;Plim�, a penalty term can be introduced which adds a
high cost to J, if a certain limit is crossed,

Jpower ¼ jðPiÞ ¼ j
ðT
0
juiðtÞj2dt

 !
: (12)

The function jðPiÞ should give very little to no penalty, if the power is
within the acceptable range jðPi � PlimÞ ! 0 and a high penalty, if it
is out of range jðPi 
 PlimÞ ! 1. These criteria can be satisfied by a
wide variety of functions and it depends on the chosen system, which
one should be used. Examples can be found in a number of
references.105,122–124
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e. Limited bandwidth (running cost). There are a number of ways
to limit the bandwidth of the controls. One solution is to gently punish
any quickly oscillating solutions through

Jbandw ¼ �
ðT
0

@uðtÞ
@t

	 
2

dt; (13)

where � is some small factor.125 It should be noted that this expression
does not give strict bounds in terms of bandwidth. An alternative,
stricter approach is to punish fast oscillations, only if they lie outside a
predefined filter function as described by Sch€afer et al.126 and Kosloff’s
group.127,128 A completely different approach is to restrict the basis of
the control pulses. This is possible with certain algorithms of the
dressed chopped random basis algorithm [(d)CRAB] family including
gradient optimization using parametrization (GROUP) and gradient
optimization of analytic controls (GOAT) and will be further dis-
cussed in Sec. IVB.

There are many more possible terminal costs, each describing a
different control problem including partial state transfer, taking into
account the full density function, maximizing entanglement,129 or
adjusting a certain observable.130 Similarly, equally many different
running costs exist, e.g., to avoid populating fast decaying states.131

Example 3. Gate optimization
In the experiment by Frank et al.,108 the control objective was to

optimize a unitary defined as the Hadamard gate,

Ut ¼
1ffiffiffi
2
p 1 �i

�i 1

� �
:

Hence, the cost function may be defined as

J ¼ Jgate ¼ 1� 1
4
jTrðU†

t UðTÞÞj
2: (14)

We can see that this is a good cost function as it is minimal when
UðTÞ ¼ Ut at the final time T (up to a global phase). If we were to
also include a bandwidth limitation on the two control pulses u1ðtÞ
and u2ðtÞ, we may simply sum up different cost terms. The resulting
cost function, where �i are some small factors, would be

J ¼ Jgate þ Jbandw ¼ 1� 1
4
jTrðU†

t UðTÞÞj
2

þ�1
ðT
0

@u1ðtÞ
@t

	 
2

dt þ �2
ðT
0

@u2ðtÞ
@t

	 
2

dt: (15)

Running costs favor acceptable types of controls, as opposed to
physically impossible ones, but if stricter limits are required, control
space restrictions might be the more suitable mean of limitation.

3. Control space restrictions

While the running costs (see Sec. IVA2) can only passively pun-
ish controls, which lie outside the achievable frame, control space
restrictions actively change the controls to only allow what is experi-
mentally achievable. One might imagine them as a horizontal squeez-
ing and stretching of the control landscape or as the introduction of
hard walls (see Fig. 15), opposed to a vertical distortion induced by
running costs.

Example 4. Restricting the control amplitude
As an example, let us consider the amplitude of a control pulse

uiðtÞ that should be restricted to umax
i . The pulse could be cut off at the

beginning of each iteration according to

~uiðtÞ ¼
uiðtÞ if � umax

i < uiðtÞ < umax
i ;

umax
i if uiðtÞ 	 umax

i ;

�umax
i if uiðtÞ � �umax

i :

8><
>:

This form ensures maximum exploitation of the amplitude space but
is not differentiable; hence, it requires that the control pulse is cut off
during an extra step (Fig. 14) before the cost function and/or gradient
is evaluated.132

An alternative approach is mapping the control pulse to a
restricted subspace using a continuous function. For example, by
replacing it with ~uiðtÞ ¼ umax

i sin ðuiðtÞÞ.133
Another common example for the application of mapping are

shape functions. They restrict the overall shape of the pulse, which is
useful, if, e.g., the experiment requires a smoothly rising and falling
control pulse with Cð0Þ ¼ CðTÞ ¼ 0, such that u0iðtÞ ¼ CðtÞuiðtÞ.

4. Initial guess and stopping criterion

Numerical optimal control techniques are based on iterative algo-
rithms, which require a starting point (called “initial guess”) and a
clearly defined situation to stop at, i.e., the stopping criterion. The opti-
mization will in most cases find the closest local minimum to the ini-
tial guess (see examples in Fig. 15). Accordingly, it is often helpful to
try a number of initial guesses to find which one is closest to the global
minimum.

The stopping criterion is simpler to define: It might be based on
the maximum number of iterations (limited computation time or
experimental run time), a measure for convergence, or the clear defini-
tion of a goal.

FIG. 15. Example of a QOC landscape. Considering two control parameters, we
may represent the cost function J as a surface dependent on the set of controls.
The minima correspond to locally optimal control coordinates. Each black path rep-
resents a local optimization starting from a different initial guess.
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5. Robustness

Usually, there is some discrepancy between the theoretical model
and the experiment. In an optimization, this can be taken into account
to ensure that the optimized pulses will work in the presence of such a
discrepancy by averaging over cost functions for slightly different sys-
tems. Let us consider each system being described by the Hamiltonian
Ĥ i; then by taking into account Nrob different versions, the cost func-
tion becomes

Jrobust ¼
1

Nrob

XNrob

i¼1
JðHiÞ: (16)

Example 5. Robustness against detuning
The resonance line of the NV center has a finite width and can

be described by the normalized distribution f ðxÞ. Off-center NV cen-
ters can, however, still be described with the Hamiltonian Ĥ in Eq. (6)
by adjusting the static magnetic field Bjj and hence the detuning D.
One may average the cost over Ndet different detunings Di to get a
robust cost function,

J ¼ 1
Ndet

XNdet

i¼1
JðĤðDiÞÞf ðBjjcnv � DiÞ: (17)

We can see that this cost function will only reach zero, if all JðĤðDiÞÞ
are zero, ensuring robustness against the detuning. By including the
probability distribution f ðBjjcnvÞ, we ensure that the optimization
favors solutions centered on the average detuning.

Due to field inhomogeneities in B?, the Rabi frequency can also
have a finite distribution when considering an ensemble of NV centers.
In many optimizations, both detuning and Rabi errors are accounted
for simultaneously.123,134

B. Numerical QOC algorithms

Once the problem has been defined, an algorithm is required to
systematically test possible solutions minimizing the cost.3 In this
review, we will only describe numerical optimization algorithms as
they have produced promising results and a variety of packages exist
to implement them (see Sec. IVB 5 for more details).

There are, however, alternative strategies, such as geometrical
optimal control135,136 (GOC) and shortcuts to adiabaticity137,138

(STA). They usually rely on a deeper analytical analysis of the control
problem and hence access a smaller solution space than QOC, but can
nevertheless be effective. One example is the direct application of
Pontryagin’s minimum principle, which falls under the category of
GOC. It has been shown to provide time optimal evolution for NV
centers.139,140 Similarly, STA has been used to implement specific gates
on NV centers141 and protect them from decoherence.142

Section IVA started by mentioning the brachistochrone problem,
whose solution is usually obtained via an analytical variational
approach. In the case of quantum mechanical problems, however, one
would produce a set of nonlinear equations which, in most cases, can-
not be solved analytically. Instead, a variational approach combined
with numerical solving was introduced by Konnov and Krotov,143 and
Sklarz and Tannor144 and further adapted by Ohtsuki et al.145 Since

then, different attempts have been made to numerically solve this class
of problems.

In general, two families of QOC algorithms can be identified: gra-
dient-free146 and gradient-based.105 Gradient-based algorithms deter-
mine the derivatives of the cost function with respect to the control
pulses to find an improved solution. These methods are usually effi-
cient as they make use of all the available information. Gradient-free
methods, on the other hand, can be applied directly to experiments or
to complicated problems, where the gradients are not straightfor-
wardly calculated. In this review, the direct experimental implementa-
tion is referred to as closed-loop, while a purely simulation based
optimization is called open-loop.

We will start by looking at the working principle of gradient-
based optimization algorithms, before exploring their gradient-free
counterparts.

1. Gradient-based optimization

To understand how gradient-based algorithms work, let us first
consider the effect of a small change Du in some control u(t) on the
cost function JðuðtÞÞ (see Sec. IVA2). If the change Du is small
enough, we can approximate

JðuðtÞ þ DuÞ � JðuðtÞÞ þ Du
@J
@uðtÞ : (18)

We can now deduce that the properties Du should have to decrease J.
Indeed, it enables us to make small changes and update u(t) iteratively.
Consider Du ¼ ��½@J=@uðtÞ�, where � is a small positive factor. In
this case, the new cost function becomes

JðuðtÞ þ DuÞ � JðuðtÞÞ � � @J
@uðtÞ

	 
2

< JðuðtÞÞ; (19)

which is smaller than the previous value, implying an optimization.
In order to avoid functional derivatives and iteratively improve

the cost, the control function u(t) needs to be split up into time inde-
pendent control parameters uðkÞ. According to the simple updating
algorithm above, the new control parameters uðkÞ

0
become

uðkÞ
0 ¼ uðkÞ � � @J

@uðkÞ
: (20)

More advanced updating algorithms promise faster convergence.
Equation (18) could, for example, be extended to second-order.143,147

A popular method approximating the second-order term from the
first-order term is the limited-memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) quasi-Newton method algorithm.148,149

In the following, we describe the working principles of the gradi-
ent ascent pulse engineering (GRAPE) algorithm as an example for
the whole class of algorithms. It was originally designed for NMR105

but has since found various applications with NV centers. For another
comprehensive explanation, we refer to the study by Saywell et al.150

Example 6. GRAPE optimization of a state transfer
We start by defining an exemplary cost function J, where J¼ 0

implies that the target state /t is reached at a time T (also see Sec.
IVA2),
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J ¼ Jstate ¼ 1� jh/t j/ðTÞij2

¼ 1� jh/tjUðTÞj/0ij2; (21)

whereUðTÞ ¼ T̂ exp ð
Ð T
0 � i

�h ĤðtÞdtÞ:
The initial state is defined as j/ð0Þi ¼ j/0i and T̂ is the time

ordering operator.
In order to take the derivatives of J, we choose the piecewise con-

stant control basis, chopping up the control pulses into N small slices
uðkÞi of width Dt. This gives a new way to formulate the propagator
U(T),

UðTÞ ¼ T̂
Y
k

exp � iDt
�h

Ĥ
d þ

X
i

uðkÞi Ĥ
c
i

	 
 !
¼ T̂

Y
k

U ðkÞ :

(22)

It should be noted that this basis is not the only possible choice but
intrinsic to GRAPE (as well as to other gradient-based algorithms like
Krotov151). We can now reformulate the cost function as

J ¼ 1� jh/t jUðNÞU ðN�1Þ…Uð1ÞU ð0Þj/0ij2: (23)

We start by calculating the derivatives of h/t jT̂
Q

k U
ðkÞj/0i with

respect to the control parameters,

@

@uðkÞi
h/t jU ðNÞU ðN�1Þ : : : U ðkÞ : : : U ð1ÞU ð0Þj/0i (24)

¼ h/t jUðNÞU ðN�1Þ…Uðkþ1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hnðkÞj

@ U ðkÞ

@uðkÞi
Uðk�1Þ…U ð1ÞU ð0Þj/0i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

j/ðkÞi

(25)

¼ nðkÞ
@ U ðkÞ

@uðkÞi

�����
�����/ðkÞ

* +
;

@J

@uðkÞi
¼ 2< nðkÞ

@ U ðkÞ

@uðkÞi

�����
�����/ðkÞ

* +
:

(26)

We have defined the forward propagated state j/ðkÞi and the back-
ward propagated state hnðkÞj, which is usually referred to as the adjoint
state. They can both be easily calculated by solving Schr€odinger’s equa-
tion. A graphical representation is given in Fig. 16. We applied the
chain rule to find the gradient of J. In the case that the control pulses
are mapped to a restricted subspace (see Sec. IVA3), the chain rule
can be used again.

The last thing left to evaluate are the following directional
derivatives:

@ U ðkÞ

@uðkÞi
¼ @

@uðkÞi
exp � iDt

�h
Ĥ

d þ
X
i

uðkÞi Ĥ
c
i

	 
 !" #
: (27)

All in all, any gradient-based optimization algorithm relies on
calculating the first derivative of the cost function with respect to the
control parameters. On top of this specific example of GRAPE, we list
below the most commonly used gradient-based QOC algorithms and
their natural features (for an illustration of the terms “sequential” and
“concurrent”, see Fig. 17):

(1) GRAPE105,149 concurrently optimizes in the piecewise constant
basis.

(2) Krotov’s method116,143,144,147,151,152 sequentially optimizes one
control parameter after the other. It also relies on the piecewise
constant basis.

(3) GROUP153 is based on GRAPE combined with the chain rule
and optimizes concurrently. Its chopped basis (CB) is flexible
(also see “chopped random basis algorithm (CRAB)” in Sec.
IV B 3) but relies on an initial piecewise constant basis.

(4) GOAT133 is based on a system of equations of motion obtained
by differentiating the full propagator with respect to the control
parameters. The parameters are optimized concurrently and its
chopped basis is flexible (also see CRAB in Sec. IV B 3).

2. Gradient-free optimization

In an experiment, the gradients described above cannot be calcu-
lated analytically. Certain finite-difference methods help to find them
regardless.155–157 However, if the control landscape is not smooth, this
method might prove inefficient or very costly in terms of measure-
ments. This is where gradient-free optimization algorithms shine.
Even for certain open-loop optimizations, they can offer an alternative,
when their gradient-based counterparts fail: If, e.g., the dynamics of a
system are significantly more complicated than those described in Sec.
IVB1, the gradient of the cost function might be hard or impossible
to find analytically. One example for such a case is the CRAB algo-
rithm, described below, which was initially introduced to optimize
many-body problems using tensor networks to simulate the time
dynamics.146

The first step then is to choose an optimization basis. In the fol-
lowing, we will focus on the CRAB algorithm (see Sec. IVB3) and

FIG. 16. The principle of GRAPE optimization. A state j/ðtÞi was propagated for a
time T¼ 1.5 s according to the Hamiltonian in Eq. (6). The fidelity jh/ðtÞj/tij2 is
plotted as a function of time. The upper panel (a) shows the fidelities resulting from
the initial guess for the control pulse of a quantum process. The large gray area
indicates that the forward propagated state (dashed orange) and the adjoint state
(solid blue) do not match, i.e., the target state is not reached. By calculating the
derivatives with respect to the different time slices, an updated control pulse was
found using GRAPE producing the lower panel (b) with a clearly improved fidelity.
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consider the basis of trigonometric functions but it should be noted
that we could also use Slepians, Chebyshev polynomials, or indeed
piecewise constant elements. Broadly following Caneva et al.,122 the
expanded control pulses each take the form,

un ¼
XNbe

‘¼1
An
‘ sin ðx‘tÞ þ Bn

‘ cos ðx‘tÞ
� �

: (28)

Each pulse is composed of a sum of Nbe basis elements. Each basis ele-
ment is defined by a frequency x‘ and the control parameters
½An

‘ ;B
n
‘ �. The index n stands for the iteration number.
If the number of available basis elements is restricted (i.e., only a

certain region of frequency space is accessible), the basis is called
chopped. Especially in the case of bandwidth limitations, only optimiz-
ing in the accessible restricted control space can be a powerful tool to
avoid introducing distorting penalty terms (see Sec. IVA2).
Decreasing the number of parameters also shrinks the size of the
search space, potentially making the optimization a lot more efficient.

3. CRAB

The chopped random basis algorithm (CRAB)122,146 is defined
by the optimization of a random choice of basis elements taken from a
truncated function space. Intuitively, one might instead chose the basis
elements to coincide with the principal harmonics of the pulse.
However, Caneva et al.122 showed that randomness can be surprisingly
effective, especially if the energy scales of the system are not fully

known. Indeed, a larger function space is covered, if multiple optimi-
zations are done with different randomized bases. The elements that
make up the basis of our example in Eq. (28) are defined by the fre-
quencies x‘ and are illustrated in Fig. 18. These frequencies are chosen
according to

x‘ ¼
xmax

Nbe
‘þ r‘ �

1
2

	 

; (29)

where xmax is the maximum admissible frequency and ‘ ¼ f1;
2;…;Nbeg is an index, which selects the chunk of the frequency space
that x‘ is chosen from. Let us further choose the random numbers r‘
from an interval ½�0:5; 0:5�. Then the bandwidth of the control pulses
is automatically limited to ½0;xmax�, where a typical choice is xmax

¼ 2pNbe=T (T refers to the length of the pulse). By changingxmax, we
can change the bandwidth. Moreover, we can see that the available fre-
quency space has been split into Nbe regions permitting the optimiza-
tion to make use of the entire space. It also conditions the optimization
problem to have clearly distinct control parameters. It should be noted
that the number of basis elements should be dependent on the number
of degrees of freedom inherent to the system.145,158–160

During the optimization, the 2Nbe-dimensional landscape will be
followed using any updating algorithm (it could even be gradient-
based as in GOAT and GROUP). The most common choice is the
gradient-free Nelder-Mead algorithm161 (hence, the description of this
algorithm under gradient-free algorithms) but others such as covari-
ance matrix adaption evolution strategy (CMA-ES),162 genetic algo-
rithms, or reinforcement learning are possible.

FIG. 17. The difference between concur-
rent (a) and sequential (b) QOC algo-
rithms is illustrated. For concurrent
algorithms, the update is calculated at
once for the entire time grid. For sequen-
tial algorithms, the pulse’s basis compo-
nents, i.e., time slices are updated
sequentially, meaning that in each iteration
the forward propagated state is calculated
with the latest version of the pulse.
Adapted and modified with permission
from Machnes et al., Phys. Rev. A 84,
22305 (2011). Copyright 2011, the
American Physical Society.
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4. dCRAB

In the basic version of CRAB, the basis elements are fixed and
the local control landscape is explored for all Nbe frequencies simulta-
neously. This leads to a restriction in the number of frequencies that
can efficiently be optimized. Using the dressed chopped random basis
algorithm (dCRAB), much fewer basis elements with xd;‘ need to be
optimized at a time [NbeðdCRABÞ < NbeðCRABÞ]. Instead, when one
CRAB routine converges, we move on to xdþ1;‘. This enables the
method to include an arbitrarily large number of bases and to derive
the solutions without—whenever no other constraints are present—
being trapped by local optima. The extra iterations changing up the
basis after each CRAB-run are called superiterations and the index d
refers to the dth superiteration. Their effect is illustrated in Fig. 19. If
their number is fixed to NSI, the full description of the pulse can be
summed up at the end of the optimization uopt, with all optimized
parameters Aopt

d;‘ ;B
opt
d;‘ as

uopt ¼
XNSI

d¼1

XNbe

‘¼1
Aopt
d;‘ sin ðxd;‘tÞ þ Bopt

d;‘ cos ðxd;‘tÞ
h i

: (30)

In each superiteration, only the parameters with corresponding index
d are optimized. By repeatedly changing the basis, dCRAB does not
get caught in local minima for most control problems and thus allows
retaining this advantageous property of unconstrained control algo-
rithms in a parametrized (e.g., bandwidth limited) setting. Rach
et al.158 explored the improvement from CRAB to dCRAB in detail
considering the random Ising model. They found that convergence
may be achieved by taking enough parameters to fix the degrees of
freedom present in the optimization problem. The underlying algo-
rithm used for both CRAB and dCRAB performed best for a basis
with 10–20 parameters. This allowed dCRAB to outperform CRAB as
it requires less optimization parameters per optimization (i.e.,
superiteration).

All in all, dCRAB promises faster convergence with respect to
CRAB as fewer parameters are optimized in parallel and instead, new
basis elements are chosen sequentially. An example for its experimen-
tal application to NV centers, among others, can be found in the work
of Frank et al.108 where a Hadamard gate was optimized.

5. Optimal control packages

In the past years, a number of QOC algorithms were imple-
mented in ready-to-use software packages. In this section, we present
four of these packages that we deem to be closest to applications with
NV centers. An overview over some of their distinguishing features is
given in Table II. Nevertheless, more solutions exist.

RedCRAB (Refs. 163 and 164) is a python based program, aiming
to remotely optimize any experiment or simulation with gradient-free
methods. It can be linked to the experimental setup via MATLAB, python,
terminal, or simple file transfer and is, hence, very versatile. RedCRAB
makes use of the dCRAB alogithm and provides pulse updates. As it does
not require any knowledge about the quantum system itself, it is compat-
ible even with more complicated many-body systems and tensor-
network simulations. RedCRAB is available from the authors on request.

FIG. 18. Illustration of the chopped random basis. A frequency space is segmented
into Nbe parts. In each part ‘, a frequency x‘ is randomly selected according to
Eq. (29). Two corresponding parameters, A‘ and B‘, are optimized. They are
defined as in Eq. (28) and represented in this plot by black and blue crosses.

FIG. 19. By changing the basis of the optimization from (a) to (b), the landscape is
transformed. The prior minimum (red circle) is relocated, making it possible to
escape local minima and reduce the convergence time.
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DYNAMO (Ref. 154) was originally developed as a GRAPE (and
Krotov) implementation in MATLAB. It allows the user to choose their
own Hamiltonian and dissipator terms as well as one of the available
figures of merit. Hence, it combines simulation and optimization for
certain problems dealing with small quantum systems. It allows for the
optimization of robust pulses and includes a large number of exam-
ples. The full version is available on GitHub.

QUTIP (Refs. 165 and 166) is an open source python library for
simulating quantum systems. One of its features is a quantum optimal
control implementation. As such, it offers limited optimization techni-
ques with GRAPE and CRAB. Conveniently, the optimization settings
are defined with the usual QUTIP structure. The library is available, for
example, via pip or Conda.168

The Krotov package167 is an open source python library built on
top of QUTIP. As such, it offers optimization via Krotov’s method. It
includes an extended range of settings in comparison to QUTIP’s own
QOC implementation. The library is available, for example, via pip
and Conda.

Other QOC packages include SPINACH
169 and SIMPSON,170 which

focus on NMR applications, as well as QEngine,153,171 which includes
a GROUP implementation designed especially for ultracold atom
physics. GRAPE was also recently implemented in the grape-tensor-
flow python package,172 using methods known from machine learning
to calculate the gradients.

C. Limits of control: Controllability and the QSL

Whether or not a QOC problem is (approximately) solvable is
not always simple to answer. However, by examining a number of
characteristics of the Hamiltonian, some general predictions can be
made.

First of all, one may ask whether the control objective is in princi-
ple reachable. This can be addressed by examining the controllability
of the system.173 The drift and control Hamiltonians define a certain
state (and also gate) space that is reachable. A system is called control-
lable when all states (gates) in the Hilbert space are accessible in finite
time. It has been shown that if the rank of the dynamical Lie algebra
generated by the different terms of the Hamiltonian corresponds to
the rank of the control space (and fulfills certain symmetry criteria),
the system is fully controllable. Alternatively, the question of state-
controllability can be examined via a geometric approach based on
graph theory, which can be more convenient to check, especially for
larger systems.174 For more information on controllability, please refer

to the following books.173,175 For open quantum systems, the deleteri-
ous effect of the environment usually cannot be completely canceled
and only a subset of the whole set of states (gates) can be reached.106

If the controllability criteria are fulfilled, the question remains
whether the controls are complex and energetic enough to navigate
the Hilbert space to the specified target. In general, the quantum speed
limit (QSL), i.e., the smallest possible control time needed for a system
to reach its target, is influenced by two factors. First, the dynamical
equation determines how fast the system may change. This is usually
quantified by the so-called Schatten p-norm of the dynamical operator

TABLE II. Quantum optimal control packages. In this table four widely used optimal control software packages are presented, which implement some of the previously described
algorithms. Note that the list is not exhaustive.

Name QOC algorithm Gradient required Access Specialty

RedCRAB (Refs. 163 and 164)a,b,c dCRAB No On request Allows connection directly to experiment
DYNAMO (Ref. 154)a GRAPE, Krotov Yes GitHub Many preprogrammed optimization options
QUTIP (Refs. 165 and 166)b GRAPE, CRAB Yes, no pip, Conda, etc. All-round quantum simulation
Krotov package (Ref. 167)b Krotov Yes pip, Conda, etc. Connects to QUTIP, many preprogrammed

optimization options

aEnvironment: MATLAB.
bEnvironment: python.
cEnvironment: command line.

FIG. 20. Detuning dependent excitation of NV spins: (a) and (b) show the excitation
of NV centers dependent on their detuning via pulsed MW spectroscopy using rect-
angular and optimally designed pulses, respectively. (c) shows the diamond scan-
ning probe based experimental setup. (d) and (e) show the simulated fluorescence
images for spectroscopy using the pulses from (a) and (b), respectively. Refer to
H€aberle et al. (Ref. 111) for details. Adapted and modified with permission from
H€aberle et al., Phys. Rev. Lett. 111, 170801 (2013). Copyright 2013, the American
Physical Society.
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FIG. 21. Smooth QOC for robust solid-state spin magnetometry: (a) shows a matrix plot of sensitivity against detuning (horizontal) and relative amplitude variation (vertical) for
rectangular (left) and optimized (right) MW control pulses. In the lower panels, the sensitivity of two sensing sequences (using rectangular and optimized pulses) is compared
for a range of detunings in (b), and relative control amplitudes in (c). For strong detuning, the optimized pulses show almost 2 order of magnitude enhancement in sensitivity.
Refer to N€obauer et al. (Ref. 124) for details. Adapted and modified with permission from N€obauer et al., Phys. Rev. Lett. 115, 190801 (2015). Copyright (2015) Author(s),
licensed under the terms of the Creative Commons Attribution 4.0 International License.
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(see Ref. 176 for details). Second, the exact distance between the initial
system and the objective needs to be taken into account.

Example 7.Quantum speed limit
The minimum time it takes to evolve a system into a target

state is mostly dependent on two things: The Hamiltonian Ĥ and
the distance between the initial and the target state h/0j/ti. For a
time-independent Hamiltonian, we obtain the Bhattacharyya-
bound,177,178

TQSL 	 DE�1arccosjh/0j/tij: (31)

The time TQSL is called the quantum speed limit (QSL). It can be inter-
preted as follows: If the Hamiltonian has a high energy variance calcu-

lated on the initial state DE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h/0jĤ

2j/0i � h/0jĤ j/0i2
q

, then any
other state is reached more quickly. It might be more intuitive to con-
sider the case that j/0i is an eigenstate of Ĥ ; hence, it will never
change and as DE ¼ 0, the speed limit will go toward infinity. The dis-
tance to the target state finally determines the exact time scale.

For a more general and complete picture of the QSL, the reader is
advised to refer to the following Refs. 176 and 178.

Similarly to the QSL, the information speed limit (ISL) can also
restrict the minimum length of the control pulse. Behind this is the
idea that the information encoded in the control pulse has to be suffi-
cient to steer the system to the target. For example, in the noiseless
case, the degrees of freedom in the control (the number of indepen-
dent frequencies in a bandwidth-limited control field or the number of
kicks in a bang-bang control179) should at least reflect the dimension
of the system.159 Note that in the presence of noise in the system or in
the controls, more degrees of freedom are required to transmit the
same amount of information.

V. QOC FOR NV CENTERS

We now take a look at various applications of QOC to NV
center-based systems including quantum sensing (Sec. VA), quantum
information, and quantum computation (Sec. VB).

A. Quantum sensing

The sensitivity of NV center-based sensors depends on the coher-
ence times (T2) of the spin states, which in turn are theoretically only
strictly limited by their lifetimes. Other limiting factors include effi-
cient and coherent spin manipulation, which is inherently subjected to
experimental imperfections and limitations. Several material synthesis
techniques14 have been developed to fabricate NV centers in ultrapure
host crystals with minimal noise due to paramagnetic impurities and
crystal field induced phenomena (strain) that diminish the coherence
time (T2) of the spin qubit. Additionally, dynamical decoupling proto-
cols discussed in Sec. IIIA 1 have shown promising results enhancing
the coherence time. Yet, the currently achieved sensitivities fall short
of the theoretical limits set by the spin state lifetimes.

A material independent approach, which is the focus of this
review, is to design specialized spin manipulation protocols that are
optimized for efficiency in consideration of noise and experimental
limitations/imperfections. The critical processes in the sensing techni-
ques discussed so far are spin state initialization, state-to-state transfer,
and spin state readout. All these steps require the system to evolve in a

specified way given a certain set of constraints. Broadly speaking, this
catches the essence of QOC theory, as described in Sec. IV. QOC tech-
niques have shown promising results in fields like NMR103,180 and
atomic physics related experiments.129,181 In the past decade, a number
of interesting results have been obtained by using optimal control for
NV spin systems.

H€aberle et al.111 showed that quantum limited sensitivities for
magnetic field sensing can be achieved using QOC based spectroscopy
techniques (Fig. 20). In this work, the team used a single NV qubit sys-
tem to image nanoscale magnetic fields with scanning probes. The aim
of the work was to obtain a wider dynamic range for the spectroscopic
MW pulses using QOC. An open-loop numerical optimization tech-
nique (GRAPE, see Sec. IVB 1 for more details) was used to obtain

FIG. 22. Optimal control for one-qubit quantum sensing. Illustration of the optimiza-
tion process in a two parameter (sensing time T and phase shift a) landscape (see
Fig. 15). The initial guess (see Sec. IVA 4) was chosen to be the CPMG (Ref. 184)
pulse sequence. It should be noted that in this figure E refers to the sensitivity.
Refer to Poggiali et al. (Ref. 121) for details. Adapted and modified with permission
from Poggiali et al., Phys. Rev. X 8, 021059 (2018). Copyright (2018) Author(s),
licensed under the terms of the Creative Commons Attribution 4.0 International
License.
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frequency selective, high bandwidth MW pulses for state transfer.
Their results showed photo-shot-noise limited sensitivities of around
4.5 lT=

ffiffiffiffiffiffi
Hz
p

and a dynamic range of more than 2.2mT, as well as
improved robustness against fluctuations in MW power.

N€obauer et al.124 exploited a Floquet theory182 based approach
for open-loop optimization limiting MW pulses to a certain frequency
domain (Fig. 21). They obtained pulses that were robust against MW
amplitude variation and frequency detuning. They first demonstrated
the working principle employing a single NV using different MW
detunings from the resonant frequency. They further concluded that
the optimized pulse is ideal for NV ensembles that require the same
spin manipulation pulse to be effective for a number of systems with
different resonant frequencies and hence detunings as seen in the
matrix plot in Fig. 21 shows the comparison of regular rectangular
control pulses and the optimized pulses, demonstrating two orders of
magnitude enhancement in sensitivity. This is demonstrated in a
proof-of-principle experiment with a spin echo sequence for magnetic
field sensing.

Poggiali et al.121 demonstrated a different approach (Fig. 22)
making use of a modified cost function based on the Fisher informa-
tion to enhance the sensitivity of NV centers to a wide range of AC
magnetic fields (Fig. 22). The Fisher information of the measurement
[see Sec. IVA2 specifically Eq. (10)] takes into account the signal of
interest as well as the noise. The sensitivity is related to the Fisher

information via Eq. (9). A gradient-free minimization technique (see
Sec. IVB 2) was used to find the optimal temporal distance between
pulses and adjust the initial phase of the signal. Finally, they experi-
mentally demonstrated enhanced sensitivity by up to a factor of two
for a single qubit system compared to CPMG (Ref. 183) pulse sequen-
ces (a type of dynamical decoupling sequence, see Sec. IIIA 1). Along
this line, M€uller et al.120 showed how optimal control-designed fre-
quency filter functions allow a speed-up of the measurement and fast
detection of fluctuating signals.

In another work, Scheuer et al.109 demonstrated a novel technique
for spin qubit control in the ultrafast driving regime beyond the rotat-
ing wave approximation (see Appendix B). When the Rabi frequency
of the drive becomes comparable to the transition frequency (in the
reference about 30MHz), the RWA breaks down and the system is no
longer described by Eq. (6). To overcome this artificial constraint on
the pulse duration, an optimal control pulse considering the counter-
rotating terms was designed. They used the CRAB algorithm (see Sec.
IVB3) to optimize standard p- and p

2-pulses in this regime and experi-
mentally demonstrated Ramsey and spin-echo sensing protocols.

Ziem et al.184 optimized resonance imaging of 19F nuclei using
GRAPE. The nuclei were part of patterned calcium fluoride on the dia-
mond surface. The optimized pulses significantly improved the robust-
ness of their DD protocol against variations in the driving field in
comparison to a standard XY16-N sequence.

FIG. 23. Robust and efficient quantum optimal control of spin probes in a complex (biological) environment: (a) working principle for the cooperative D-Ramsey pulse sequence
for temperature sensing based on the NV center ground state three level system. The sequence is sliced into three segments (seg1, seg2, and seg3), each separated in time
by s=2. uD and uB denote phases accumulated due to changes in the zero-field parameter D and due to the external magnetic field, respectively. Optimal control pulses are
used for spin projection to include cooperative design in the protocol to cancel out the undesired effects in phase accumulation. (b) The plot shows the measurements of tem-
perature fluctuations over time using this protocol. Refer to Konzelmann et al. (Ref. 110) for more details. Adapted and modified with permission from Konzelmann et al., New
J. Phys. 20 123013 (2018). Copyright (2018), Author(s), licensed under the terms of the Creative Commons Attribution 3.0 International License.
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Recently, Konzelmann et al.110 showed that QOC pulses can
enhance the robustness of temperature sensing for biological applica-
tions. They used nanodiamonds in an agarose matrix to demonstrate
enhanced signal quality for fast temperature fluctuation measurements
in dynamic biological media. For this purpose, a cooperative D-
Ramsey pulse sequence, specifically designed for temperature mea-
surements,185 was optimized using the MATLAB based DYNAMO package
that uses a GRAPE optimization algorithm (see Sec. IVB 5 for more
details). Here, the typical state-to-state transfer fidelity serves as the
cost function for the optimization (Fig. 23).

B. Quantum information and computation

The usefulness of QOC techniques has been demonstrated
repeatedly in the field of quantum information and computation. As
the basic theoretical protocols and experimental setup need to fulfill
similar fundamental demands as for the described sensing techniques,
similar optimization strategies come into play.188

Dolde et al.74 realized entanglement of two nuclear spins over a
distance of 25 nm by entangling them with one NV center each, which
in turn were coupled through dipole–dipole interaction. They used
GRAPE (see Sec. IVB1) to realize optimized PSWAP and NOT gates,
which worked despite the hyperfine interactions that interfere with

standard controls. The optimized pulses allowed for 20 NOT gate rep-
etitions without significant loss of fidelity, while standard pulses
already showed poor performance after a single gate.

Waldherr et al.82 demonstrated three-qubit phase-flip error cor-
rection using three nuclear spins and the NV center as an ancilla.
While the system was entirely manipulated via the NV center spin, the
hyperfine couplings complicated its control. This was solved by apply-
ing microwave pulses of two different frequencies simultaneously,
finding their shape with a GRAPE-implementation.

In order to construct optimal p=2—as well as spin-inversion
pulses—Frank et al.108 designed and experimentally implemented
closed-loop optimization for single NV centers (Fig. 24). Their dCRAB
implementation autonomously found an optimal solution for the desired
goals within the experimental error. Their techniques are translatable to
a number of quantum computing applications as p=2-pulses form the
building blocks of most common quantum gates. In the case of moderate
detuning, the closed-loop pulses outperformed any open-loop-generated
sequences. More details on the algorithm can be found in Sec. IVB4.

Said et al.113 compared different strategies to entangle a NV cen-
ter with a 13C nuclear spin, namely sequential pulses, composite
pulses, and numerically optimized pulses (GRAPE). They concluded
that the optimized pulse, did not only outperform the others in robust-
ness but was also faster than the composite pulse.

Tsurumoto et al.112 utilized a GRAPE algorithm to optimize a
state-to-state transfer pulse applied to a NV center, which was utilized
to transfer photon polarization to a nuclear spin qubit.

Recently, Chen et al.186 proposed a QOC technique based on a
combination of open-loop and closed-loop optimization to demon-
strate the working principle of a NV-based quantum processor.

VI. CONCLUSION

NV centers are a valuable platform for a whole family of quan-
tum applications. As the boundaries of existing implementations of
different quantum sensing and quantum computation schemes are
being explored, QOC offers a route to transverse these limits. We have
reviewed a number of existing applications of QOC to NV center-
based systems and provided a recipe for the application of QOC with a
special focus on NV centers. It has been shown that QOC methods
can increase the precision in qubit control and manipulation, espe-
cially in the presence of environmental factors such as surrounding
nuclei. These advantages have also been exploited to improve NV-
based sensors. Their versatility in combination with QOC shows to be
especially effective when the limiting factor is defined by the experi-
mental constraints and/or limited knowledge of the system. Enhanced
control also provides a mean to efficiently implement quantum algo-
rithms in NV center-based quantum registers. All combined, QOC
enhances the capabilities that are crucial to building a NV center-
based quantum computer. QOC methods provide the boost that may
lead diamond-based quantum systems into the realm of commercial
quantum technologies.
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APPENDIX A: SPIN HAMILTONIAN

In a solid state system, spin interactions are mostly mediated
through magnetic fields. In general, the spin interaction energies are
very small in comparison to electronic interaction energies (Fig. 3)
for systems like diamond crystal. The energy of the system E can
be expanded as

E ¼ E0 þ
X
n

@E

@ ŝn
ŝn þ

1
2

X
n;m

@2E

@ŝn@ŝm
ŝnŝm þ � � � : (A1)

E0 represents all the nonspin-interaction energies and ŝn are
the relevant spin bases (i.e., of different atoms, the NV center itself,
etc.). The Hamiltonian for such spin interaction energies is called
the spin Hamiltonian. For a NV centerlike system, the spin
Hamiltonian can be obtained in terms of spin operators for the cor-
responding singlet spin state basis,

ŜX ¼
1ffiffiffi
2
p

0 1 0

1 0 1

0 1 0

0
BB@

1
CCA; ŜY ¼

1ffiffiffi
2
p

0 �i 0

i 0 �i
0 i 0

0
BB@

1
CCA;

ŜZ ¼
1ffiffiffi
2
p

1 0 0

0 0 0

0 0 �1

0
BB@

1
CCA: (A2)

Terms of different order in the expansion (A1) represent different
kinds of spin interactions. For our purposes, it suffices to consider
the terms up to second-order. Consequently, all the different types
of interactions can be formalized in the same way through interac-
tion tensors and spin operators. We now look into the details of
these different types; for simplicity, �h is assumed to be equal to 1 in
the following equations.

1. Linear terms

These terms mainly represent the interaction of the spin with
external fields, whose origin may also lie within the crystal

Ĥ li ¼ ~̂S
>
� Z �~B ¼ ðŜX ŜY ŜZÞ

ZXX ZXY ZXZ

ZYX ZYY ZYZ

ZZX ZZY ZZZ

2
64

3
75 BX

BY

BZ

0
B@

1
CA; (A3)

where ~̂S is the spin operator, ~B is the magnetic field, and Z is the
Zeeman interaction tensor. In the Hamiltonian discussed in Sec.
II B, the magnetic interaction term is of this nature. The coupling
tensor in that case is a diagonal matrix multiplied with the gyro-
magnetic ratio of the NV center.

2. Bilinear terms

These terms represent spin–spin interactions such as dipolar
coupling, exchange interactions, and hyperfine couplings

Ĥbl ¼~̂S
>
�N �~̂I ¼ ðŜX ŜY ŜZÞ

N XX N XY N XZ

N YX N YY N YZ

N ZX N ZY N ZZ

2
4

3
5 Î X

Î Y
Î Z

0
B@

1
CA; (A4)

where ~̂I is the nuclear spin operator vector and N is the hyperfine
coupling tensor. In the Hamiltonian presented in Eq. (1) in Sec.
II B, the interaction of the NV spin with other spins is bilinear in
nature. In this case, the hyperfine coupling tensor may be simplified
and described by the two main contributing interactions; the axial
coupling constant N axial and the transverse coupling constant N tran

N ¼
N tran 0 0

0 N tran 0

0 0 N axial

2
64

3
75: (A5)

Note that the Fermi contact interaction term is given by187

fN ¼
N axial þ 2N tran

3
; (A6)

and the dipole interaction term is given by

dN ¼
N axial �N tran

3
; (A7)

fN is an order of magnitude larger than dN for the 14N and 15N
nuclei.187

We may specifically consider the interaction between two dif-
ferent NV center spins. The Hamiltonian for these dipole–dipole
interactions can be written as

ĤNV�NV ¼
l0

4p
cnv
~r 3

~̂S 1 �~̂S 2 � 3ð~̂S 1 �~rÞð~̂S 2 �~rÞ

 �

; (A8)

where Ŝ1 and Ŝ2 are the spin operators for the respective NV
centers and~r is the spatial vector, which joins them. This inter-
action is relatively weak in comparison to other spin interac-
tions. Nevertheless, NV–NV interactions have been a matter of
interest in several works in the literature (for example, see Dolde
et al.74).

3. Quadratic terms

These terms usually represented the interaction of spin with
itself, although the source of the interaction can indirectly be due to
an external field. Nuclear quadrupole interaction in NMR and elec-
tron zero-field splitting terms are of this nature. They are repre-
sented as

H ¼ ~̂S
>
� D �~̂S ¼ ðŜX ŜY ŜZÞ

DXX DXY DXZ

DYX DYY DYZ

DZX DZY DZZ

2
64

3
75 ŜX

ŜY
ŜZ

0
BB@

1
CCA; (A9)

where D is the quadrupole coupling tensor. D is in good approxi-
mation a symmetric matrix. The zero-field splitting terms for the
Hamiltonian in Eq. (1) in Sec. II B are of this nature. For a NV cen-
ter, this tensor can, to a good approximation,37 be written on the
basis of spin matrices as
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D ¼

þD
3

0 E

0 � 2D
3

0

E 0
D
3

2
6666664

3
7777775; (A10)

where D is the zero-field splitting and E is the nonaxial zero-field
parameter. For most practical purposes, one can consider E � 0.

The effect of an electric field on the spin is rather more com-
plicated and for a solid state system, it depends on symmetry condi-
tions. For a C3v symmetry system like the NV center, the effect of a
linear electric field can be described by the following approximate
Hamiltonian:69,188

Ĥ elec ¼EX �P11ðŜX ŜY þ ŜY ŜXÞ þ P15ðŜY ŜZ þ ŜZ ŜY
� �

þEY P11ðŜ
2
X � Ŝ

2
YÞ þ P15ðŜX ŜZ þ ŜZ ŜXÞ

h i
þEZP31 Ŝ

2
Z �

1
3
SðSþ 1Þ

	 

;

where Ei are the components of the effective electric field. External
strain/pressure is manifested as a crystal strain electric field and is
incorporated in the effective electric field. Pij are the components of
a third rank coupling tensor.188 These coupling constants can be
determined by electron paramagnetic resonance experiments. In
practice, P15 arises from the mixing of the ms ¼ 61 and ms¼ 0
spin states188 and is negligible with respect to the other coupling
terms.

APPENDIX B: THE ROTATING WAVE
APPROXIMATION

In the following, the approximate Hamiltonian for a NV qubit
is derived using the RWA. It is a simplified version of the second
term of Eq. (1).

First, let us consider a single NV center in a magnetic field.
The magnetic field is composed of two parts: The static component
Bk points along z and a microwave field with amplitude 2B? oscil-
ates along x with a frequency xmw and phase u. The magnetic field
~B can thus be written in a slightly odd form, the usefulness of which
will become apparent in the following steps:

~B ¼
2B? cos ðxmwt þ uÞ

0

Bk

0
B@

1
CA

¼
B?ðcos ðxmwt þ uÞ þ cos ðxmwt þ uÞÞ
B?ðsin ðxmwt þ uÞ � sin ðxmwt þ uÞÞ

Bk

0
B@

1
CA: (B1)

The splitting of the energy levels of the NV center ground state due
to the static magnetic field allows the description as a two level sys-
tem only considering j0i and j1i. ~̂r are the Pauli matrices used to
describe the corresponding spin operators which are denoted with
~̂s ¼ ð�h=2Þ~̂r to distinguish them from the three level system ~̂S and
generic ~̂s spin operators. The resulting Hamiltonian reflects the
interaction between the field and the NV spin

ĤNV�B ¼ cnv~B �~̂s
¼ cnvðB?ðcos ðxmwt þ uÞŝX þ sin ðxmwt þ uÞŝYÞ
þB?ðcos ðxmwt þ uÞŝX � sin ðxmwt þ uÞŝYÞþBk ŝZÞ
¼ cnvðÂþ þ Â� þ Bk ŝZÞ; (B2)

with Âþ ¼ B?ðcos ðxmwt þ uÞŝX þ sin ðxmwt þ uÞŝYÞ and
Â� ¼ B?ðcos ðxmwt þ uÞŝX � sin ðxmwt þ uÞŝYÞ.

In the rotating frame of the microwave field with the transfor-
mation U ¼ expðixmw ŝZt=�hÞ, this Hamiltonian becomes

~HNV�B ¼ UĤNV�BU
† � i�hU _U

†

¼ cnv UÂþU
† þ UÂ�U

† þ UBk ŝZU
†


 �
� i�hU _U

†
: (B3)

Using the following relations, the corresponding spin operators
may be determined,

U ŝXU
† ¼ cos ðxmwtÞŝX � sin ðxmwtÞŝY ;

U ŝYU
† ¼ sin ðxmwtÞŝX þ cos ðxmwtÞŝY ;

U ŝZU
† ¼ ŝZ ;

U _U
† ¼ � i

�h
xmw ŝZ : : (B4)

The different terms in the rotating frame, after some algebra and
trigonometric identities, can be written as

UÂþU
† ¼ B?ðcos ððxmw � xmwÞt þ uÞŝX
þ sin ððxmw � xmwÞt þ uÞŝYÞ;

UÂ�U
† ¼ B?ðcos ððxmw þ xmwÞt þ uÞŝX
� sin ððxmw þ xmwÞt þ uÞŝYÞ;

UBk ŝZU
† ¼ Bk ŝZ ;

�i�hU _U
† ¼ �xmw ŝZ : (B5)

One may notice that the terms in UÂ�U† are of much higher fre-
quency than the rest. Hence, in the rotating wave approximation, it
is assumed that they average out and their contribution is negligible.
Under this approximation, the Hamiltonian in the rotating frame
depends only on the Rabi frequency X ¼ cnvB?, the detuning
D ¼ xnv � xmw, with the NV center’s resonant frequency
xnv ¼ cnvBk, and the phase u,

ĤRWA � ~HNV�B

¼ DŝZ þ X cos ðuÞŝX þ sin ðuÞŝYð Þ: (B6)
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