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Polymer Additives for Crude Oils & Diesels
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Energy Conversion via Fuel Cells
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Fuel Cells (FC)
- convert chemical energy to electricity
- economical benefits (alternative to oil & coal)
- environmental benefits (less CO2)
- proton-exchange membranes (PEM) or anion-

exchange membranes (AEM) – polymers

Toyota

PEM FC (acidic medium)
- in limited use
- but they need Platinum (Pt)

AEM FC (alkaline medium)
- do not need precious metals
- but the durability is still low

How to increase durability of AEM?



Nanocarriers for mRNA Therapies
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Lipid Nanoparticles (LNP) à since
recently in clinical development to
encapsulate, protect, carry and
deposit the mRNA

How to optimize the composition of LNPs and
increase the biological activity? 

mRNA encodes a 
multitude of different 

proteins à in-vitro 
transcribed mRNA can

regulate the aberrant or
missing protein function



The Mesoscopic Lenght Scale
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Neutron Scattering – Structural Analysis
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explore matter (structure) in 
reciprocal space

wave-vector transfer Q („scattering
vector“) – inverse yardstick
- large Q – small sizes – wide-angle 

neutron difraction (ND or WANS)
- small Q – large sizes – small-angle 

neutron scattering (SANS)

we need to know (define) l - monochromatic beam



Neutron Diffractometers
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SANS diffractometers – optimized for measurements at small angles
- long flight paths (collimated beam), typically 40m (D11 at ILL – 80m!)
- long wavelengths (l > 4 Å), cold neutrons!
- aim at 10 Å – 1µm length scale

neutron diffractometers (WANS) –
optimized for measurements at high 
angles
- compact instruments
- short wavelengths (l ~ 1-2Å), 

thermal neutrons!
- aim at 1-10 Å length scale



Pinhole Scattering Method
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Nanostructures investigated by SANS 5.7

Fig. 5.5: The principle of a pin-hole camera transferred to the pin-hole SANS instrument. Top:
The pin-hole camera depicts the original image (here consisting of three numbers). For sim-

plicity, the three points are represented by three rays which meet in the pin-hole, and divide

afterwards. On the screen, a real space image is obtained (upside down). Bottom: The pin-hole

SANS instrument consists of an entrance aperture which is depicted on the detector through the

pin-hole (same principle as above). The sample leads to scattering. The scattered beams are

shown in green.

The classical SANS instruments are also called pin-hole instruments. Historically, pin-hole
cameras were discovered as the first cameras. They allowed to picture real sceneries on blank
screens – maybe at different size, but the image resembled the original picture. The components
of this imaging process are depicted in Fig. 5.5. Let’s assume the following takes place with
only one wavelength of light. The original image is then a monochromatic picture of the three
numbers 1, 2 and 3. The corresponding rays meet in the pin-hole, and divide afterwards. On
the screen, the picture is obtained as a real-space image, just appearing upside down. From
experience we know that the screen may be placed at different distances resulting in different
sizes of the image. The restriction of the three beams through the pin-hole holds for the right
space behind the pin-hole. In front of the pin-hole the light propagates also in other directions
– it is just absorbed by the wall with the pin-hole.

So far, we would think that nothing special has happened during this process of reproduction.
But what did happen to the light in the tiny pin-hole? We should assume that the size of the pin-
hole is considerably larger than the wavelength. Here, the different rays of the original image
interfere and inside the pin-hole a wave field is formed. The momentum along the optical z-axis
indicates the propagation direction, and is not very interesting (because is nearly constant for
all considered rays). The momenta in the x-y-plane are much smaller and indicate a direction.
They originate from the original picture and remain constant during the whole process. Before
and after the pin-hole the rays are separated and the directions are connected to a real-space
image. In the pin-hole itself the waves interfere and the wave field looks more complicated.
The information about the original scenery is conserved through all the stages. That means that

Magic of a pinhole camera for scattering



Pinhole Scattering Method
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• I(Q); Q = 4p/l sinq /2
• variable detection distance ® wide 

angular range ® wide Q-range
• typical Q-range pinhole SANS: 

1x10-3Å-1 ≤ Q ≤ 0.3Å-1

• use of several detection distances 
(typically, three) and one l
(typically, 5Å)

• LD and l – can be 
varied for reaching 
the scientific goal

0.2°

0.01°



The SANS Monochromators
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l & Dl/l are defined by rotor parameters
à tilting to the beam axis ® shift of l, Dl/l

w

a

L
b

n

KWS-2

tilting angle 0°-10° +10°

polychromatic
beam (before

selector)

02.01.22

SANS – low resolution technique: high flux achieved
by large Dl/l à mechanical monocromators –
velocity selectors (with twisted boronated lamellae)

Astrium GmbH

Nuclear Reactions for Neutron Detectors 

• n + 3He Æ 3H + 1H + 0.764 MeV  (Vc = 5330 barns @1.8 Å)  

• n + 6Li Æ 4He + 3H + 4.79 MeV  (Vc = 937 barns @1.8 Å) 

• n + 10B Æ 7Li* + 4He Æ7Li + 4He +2.31 MeV+ gamma (0.48 MeV)   (93%) 

                 Æ 7Li + 4He +2.79 MeV   ( 7%) 

      (Vc = 3840 barns @1.8 Å) 

• n + 14N Æ 14C + 1H + 0.626 MeV   (Vc = 1.8 barns @1.8 Å) 

• n + 157Gd Æ Gd* Æ gamma-ray spectrum + conversion electron spectrum (~70 keV) 

• n + 235U Æ xn + fission fragments + ~160 MeV (<x> ~ 2.5) (Vc = 698 barns @1.8 Å) 

Natural isotopical fraction 
10B: 19.8%    6Li: 7.6%    157Gd: 15,7% 

For thermal neutrons, Vc increases linearly with l 



KWS-2 SANS @ MLZ, Garching, Germany
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… and�part�of�dreams�got�shape!

in construction in operation



The Neutron Detector
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sample position – space for
large equipment (cryostats, 

magnets, etc.) 

2D position sensitive detector – 3He tubes
array; movable between 1 m and 20 m after 
the sample; beam-stop in the middle (B4C)

Nuclear Reactions for Neutron Detectors 

• n + 3He Æ 3H + 1H + 0.764 MeV  (Vc = 5330 barns @1.8 Å)  

• n + 6Li Æ 4He + 3H + 4.79 MeV  (Vc = 937 barns @1.8 Å) 

• n + 10B Æ 7Li* + 4He Æ7Li + 4He +2.31 MeV+ gamma (0.48 MeV)   (93%) 

                 Æ 7Li + 4He +2.79 MeV   ( 7%) 

      (Vc = 3840 barns @1.8 Å) 

• n + 14N Æ 14C + 1H + 0.626 MeV   (Vc = 1.8 barns @1.8 Å) 

• n + 157Gd Æ Gd* Æ gamma-ray spectrum + conversion electron spectrum (~70 keV) 

• n + 235U Æ xn + fission fragments + ~160 MeV (<x> ~ 2.5) (Vc = 698 barns @1.8 Å) 

Natural isotopical fraction 
10B: 19.8%    6Li: 7.6%    157Gd: 15,7% 

For thermal neutrons, Vc increases linearly with l 

3He 
gas



Scattering Principle
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Scattering basics: Huygens-Fresnel principle
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Debye equation (1915)

Glatter and Kratky (1982)
Small Angle X-ray scattering (Academic Press)
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Diffraction – neutrons recorded only as a function of the wave-vector transfer !



The Scattering Length Density

02.01.22 14

V(r⃗	)=	(2π	ℏ2 )/mn b δ (r⃗	)
b – the scattering length

Fermi pseudopotential

sum over all nuclei

Nanostructures investigated by SANS 5.15

Fig. 5.8: The concept of the scattering length density. On the left the atomic structure of a

polyethylene oxide polymer (PEO) is depicted. For small angle scattering the wavelength is

much larger than the atomic distance. So for SANS the polymer appears like a worm with a

constant scattering length density inside.

So, for each molecule we consider all nuclei and normalize by the overall molecule volume. Of
course different materials have different scattering length densities ρ. The initial equation 5.13
reads then:

dΣ

dΩ
(Q) =
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(5.18)

The single amplitude is now interpreted as a Fourier transformation of the scattering length
density ρ(r) which we simply indicate by ρ(Q). The amplitude simply is defined by:

ρ(Q) =

∫

V

d3r ρ(r) exp(iQr) (5.19)

Again, equation 5.17 loses the phase information due to the modulus. While we focused on the
scattering experiment so far, another view on this function will provide us with further insight.
We define the correlation Γ as follows:

Γ(Q) =
1

V

∣

∣

∣
ρ(Q)

∣

∣

∣

2
=

1

V
ρ∗(Q)ρ(Q) =

1

V
ρ(−Q)ρ(Q) (5.20)

The modulus is usually calculated via the complex conjugate ρ∗(Q) which in turn can be ob-
tained by changing the sign of the argument Q. Now the correlation function is a simple product
of two Fourier transformed functions. They can be interpreted on the basis of a convolution in
real space:

Γ(r) =
1

V
ρ(r)⊗ ρ(r) =

1

V

∫

V

d3r′ ρ(r+ r′) · ρ(r′) (5.21)

The underlying correlation function Γ(r) arises from the convolution of the real space scattering
length density with itself. The mathematical proof is carried out in Appendix A. For imagining

When the length scales in question are much larger than atomic dimensions and it is 
easier to think in terms of material properties à the scattering length density r(r⃗)

5.14 H. Frielinghaus

immediately obtain a sum over all nuclei:

dΣ
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bj exp(iQ · rj)
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∣

∣

2

(5.13)

This expression is normalized to the sample volume V because the second factor usually is pro-
portional to the sample size. This simply means: The more sample we put in the beam the more
intensity we obtain. The second factor is the square of the amplitude because we measure inten-
sities. While for electromagnetic fields at low frequencies one can distinguish amplitudes and
phases (without relying on the intensity) the neutrons are quantum mechanical particles where
experimentally such details are hardly accessible. For light (and neutrons) for instance holo-
graphic methods still remain. The single amplitude is a sum over each nucleus j with its typical
scattering length bj and a phase described by the exponential. The square of the scattering
length b2j describes a probability of a scattering event taking place for an isolated nucleus. The
phase arises between different elementary scattering events of the nuclei for the large distances
of the detector. In principle, the scattering length can be negative (for hydrogen for instance)
which indicates an attractive interaction with a phase π. Complex scattering lengths indicate
absorption. The quadrature of the amplitude can be reorganized:

dΣ

dΩ
(Q) =

1

V

∑

j,k

bjbk exp
(

iQ(rj − rk)
)

(5.14)

Here we find then self-terms with identical indices j and k without any phase and cross terms
with phases arising from distances between different nuclei. Here it becomes obvious that only
relative positions of the nuclei matter which is a result of the quadrature. The overall phase of
the sample does not matter because of the modulus in eq. 5.13. We will use this expression for
the polymer scattering.

Apart from this detailed expression a simplified view is allowed for small angle scattering ex-
periments. Firstly, we know that the wavelength is typically 7Å which is much larger than
the atom-atom distance of ca. 1.5Å. Secondly, the SANS experiment aims at structures at the
nanoscale. So the scattering vector aims at much larger distances compared to the atomistic
distances (i.e. 2πQ−1 " 1Å). This allows for exchanging sums by integrals as follows:

∑

j

bj · · · −→
∫

V

d3r ρ(r) · · · (5.15)

Such methods are already known for classical mechanics, but reappear all over physics. The
meaning is explained by the sketch of Figure 5.8. The polymer polyethylene oxide (PEO)
contains many different nuclei of different species (hydrogen, carbon and oxide). However, the
SANS method does not distinguish the exact places of the nuclei. The polymer appears rather
like a homogenous worm. Inside, the worm has a constant scattering length density which
reads:

ρmol =
1

Vmol

∑

j∈{mol}

bj (5.16)

coherent term



The Scattering from Single Particles
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small angle scattering à inhomogeneities in scattering length density r(r⃗) 

Q and z-direction

5.18 H. Frielinghaus

transformation is done. For this we also have a look on Fig. 5.10. Starting from the real space
structure ρ(r), the Fourier transformation can be done immediately. After this, only the quadra-
ture needs to be taken. This is, of course, the simplest way of calculating the scattering function
dΣ/dΩ = Γ(Q). The alternative is taking the convolution in real space first, i.e. ρ(r) ⊗ ρ(r),
that will be Fourier transformed afterwards. Either way, there is one Fourier transformation to
be done. In the simpler case, there remains a quadrature, and otherwise there is the convolution.

For the reverse way, one wants to measure the scattering function that leads to a real space
structure. We have already mentioned that there is a phase problem in principle. Again, we have
a look on Fig. 5.11 first. The simplest way of the forward direction now appears hardest, because
we need to take the square root of the scattering function. In principle the solution can be written
as: ρ(Q) =

√

dΣ/dΩ · exp(iφ(Q)) with an arbitrary phase function φ. So here, we get stuck
already at the first stage, and only high degrees of particle symmetry might solve the problem
further. The other way around, there needs the Fourier transformation to be done first (inverse
and direct Fourier transformations are nearly the same). For this step, there exist programs in
the literature [4, 5]. The second step of the deconvolution still bares a principal phase problem.
The functions now can be considered as real functions, but for the deconvolution, the areas of
differing signs can be highly complicated – at least in theory. Practical solutions of finding real
space structures are nonetheless given by programs of Svergun [6]. Here, the phase problem
was overcome by other practical assumptions about proteins.

5.3.1 Spherical colloidal particles

In this section we will derive the scattering of diluted spherical particles in a solvent. These
particles are often called colloids, and can be of inorganic material while the solvent is either
water or organic solvent. Later in the manuscript interactions will be taken into account.

One important property of Fourier transformations is that constant contributions will lead to
sharp delta peaks at Q = 0. This contribution is not observable in the practical scattering
experiment. The theoretically sharp delta peak might have a finite width which is connected
to the overall sample size, but centimeter dimensions are much higher compared to the largest
sizes observed by the scattering experiment (∼µm). So formally we can elevate the scattering
density level by any number −ρref :

ρ(r) −→ ρ(r)− ρref leads to ρ(Q) −→ ρ(Q)− 2πρrefδ(Q) (5.26)

The resulting delta peaks can simply be neglected. For a spherical particle we then arrive at the
simple scattering length density profile:

ρsingle(r) =

{

∆ρ for |r| ≤ R

0 for |r| > R
(5.27)

Inside the sphere the value is constant because we assume homogenous particles. The reference
scattering length density is given by the solvent. This function will then be Fourier transformed
accordingly:

homogeneous particle

the form factor

renv
rsph



The Form Factor F(Q)
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Nanostructures investigated by SANS 5.19

ρsingle(Q) =

2π
∫

0

dφ

π
∫

0

dϑ sinϑ

R
∫

0

dr r2 ∆ρ exp
(

i|Q| · |r| cos(ϑ)
)

(5.28)

= 2π ∆ρ

R
∫

0

dr r2
[

1

iQr
exp

(

iQrX
)

]X=+1

X=−1

(5.29)

= 4π ∆ρ

R
∫

0

dr r2
sin(Qr)

Qr
(5.30)

= ∆ρ
4π

3
R3

(

3
sin(QR)−QR cos(QR)

(QR)3

)

(5.31)

In the first line 5.28 we introduce spherical coordinates with the vector Q determining the z-
axis for the real space. The vector product Qr then leads to the cosine term. In line 5.29 the
azimutal integral is simply 2π, and the variable X = cosϑ is introduced. Finally, in line 5.30
the kernel integral for spherically symmetric scattering length density distributions is obtained.
For homogenous spheres we obtain the final result of eq. 5.31. Putting this result together for
the macroscopic cross section (eq. 5.18) we obtain:

dΣ

dΩ
(Q) =

N

V
·
∣

∣

∣
ρsingle(Q)

∣

∣

∣

2
= (∆ρ)2 φspheres Vsphere F (Q) (5.32)

F (Q) =

(

3
sin(QR)−QR cos(QR)

(QR)3

)2

(5.33)

We considered N independent spheres in our volume V , and thus obtained the concentration
of spheres φspheres. Furthermore, we defined the form factor F (Q), which describes the Q-
dependent term for independent spheres (or the considered shapes in general). The function is
shown in Figure 5.12. The first zero of the form factor is found at Q = 4.493/R. This relation
again makes clear why the reciprocal space (Q-space) is called reciprocal. We know the limit
for small scattering angles is F (Q→ 0) = 1 − 1

5Q
2R2. So the form factor is normalized to 1,

and the initial dependence on Q2 indicates the size of the sphere. For large scattering angles the
form factor is oscillating. Usually the instrument cannot resolve the quickest oscillations and
an average intensity is observed. The asymptotic behavior would read F (Q→∞) = 9

2(QR)−4.
The obtained power law Q−4 is called Porod law and holds for any kind of bodies with sharp
interfaces. So, sharp interfaces are interpreted as fractals with d = 2 dimensions, and the
corresponding exponent is 6− d. The general appearance of the Porod formula reads then:

dΣ

dΩ
(Q) = P ·Q−4 (5.34)

The amplitude of the Porod scattering P tells about the surface per volume and reads P =
2π(∆ρ)2Stot/Vtot. Apart from the contrast, it measures the total surface Stot per total vol-
ume Vtot. For our shperes, the Porod constant becomes P = 2π(∆ρ)24πR2/(4πR3/(3φ)) =
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We considered N independent spheres in our volume V , and thus obtained the concentration
of spheres φspheres. Furthermore, we defined the form factor F (Q), which describes the Q-
dependent term for independent spheres (or the considered shapes in general). The function is
shown in Figure 5.12. The first zero of the form factor is found at Q = 4.493/R. This relation
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The amplitude of the Porod scattering P tells about the surface per volume and reads P =
2π(∆ρ)2Stot/Vtot. Apart from the contrast, it measures the total surface Stot per total vol-
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The SANS Experimental Results
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Units:   (m/m3)2 1         m3 1     

incoherent, solvent



The Instrumental Resolution
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Nanostructures investigated by SANS 5.11
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∣

∣

∣

∣

incoh

(5.6)

We therefore tend to subtract the incoherent scattering. It is well determined at large Q when
the coherent scattering becomes small. The origin of the incoherent scattering is the spin-
dependent scattering length. Especially for hydrogen 1H the neutron spin and the nuclear spin
form a singlet or triplet state with different scattering lengths. The average scattering length
of these two states contributes to the coherent scattering. The variance of the scattering length
gives rise to the incoherent scattering. Here, each of the nuclei appears as an independent point
scatterer which in reciprocal space means a Q-independent scattering signal. The dependence
of the scattering on the neutron spin means that neutron spin polarization and analysis yields
another method to determine the incoherent scattering independently from the coherent signal.

5.2.6 Resolution

The simple derivatives of equation 5.2 support a very simple view on the resolution of a small
angle neutron scattering experiment. We obtain:

(

∆Q

Q

)2

=

(

∆λ

λ

)2

+

(

2∆θ

2θ

)2

(5.7)

The uncertainty about the Q-vector is a sum about the uncertainty of the wavelength and the
angular distribution. Both uncertainties result from the beam preparation, namely from the
monochromatization and the collimation. The neutron velocity selector selects a wavelength
band of either ±5% or ±10%. The collimation consists of an entrance aperture with a diameter
dC and a sample aperture of a diameter dS . The distance between them is LC .

One property of eq. 5.7 is the changing importance of the two contributions at small and large
Q. At small Q the wavelength spread is nearly negligible and the small terms Q and θ dominate
the resolution. This also means that the width of the primary beam is exactly the width of the
resolution function. More exactly, the primary beam profile describes the resolution function
at small Q. Usually, the experimentalist is able to change the resolution at small Q. At large
Q the resolution function is dominated by the wavelength uncertainty. So the experimentalist
wants to reduce it – if possible – for certain applications. This contribution is also an important
issue for time-of-flight SANS instruments at spallation sources. The wavelength uncertainty is
determined by the pulse length of the source and cannot be reduced without intensity loss.

A more practical view on the resolution function includes the geometrical contributions ex-
plicitely [3]. One obtains:

(

σQ

Q

)2

=
1

8 ln 2

(

(

∆λ

λ

)2

+

(

1

2θ

)2

·
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(

1
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+
1
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)2

+

(

dD
LD

)2
])

(5.8)

Now the wavelength spread is described by ∆λ being the full width at the half maximum. The
geometrical terms have contributions from the aperture sizes dC and dS and the spatial detector

5.12 H. Frielinghaus

resolution dD. The collimation length LC and detector distance LD are usually identical such
that all geometric resolution contributions are evenly large (dC = 2dS then). This ideal setup
maximizes the intensity with respect to a desired resolution.

The resolution function profile is another topic of the correction calculations. A simple approach
assumes Gaussian profiles for all contributions, and finally the overall relations read:
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∣

∣

∣
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∞
∫
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dQ R(Q− Q̄) ·
dΣ(Q)
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∣
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theo

(5.9)

R(Q− Q̄) =
1√
2πσQ

exp

(

−
1

2

(Q− Q̄)2

σ2
Q

)

(5.10)

The theoretical macroscopic cross section is often described by a model function which is fit-
ted to the experimental data. In this case the computer program only does a convolution of
the model function with the resolution function R(∆Q). Alternatively, there are methods to
deconvolute the experimental data without modeling the scattering at first hand.

The here described resolution function is given as a Gaussian. This is true for relatively narrow
distributions. The reason for using a Gaussian function although the original distributions of λ
and θ are often triangular is: The central limit theorem can be applied to this problem because
we have seen from eq. 5.8 that there are four contributions to the resolution function, and the
radial averaging itself also smears the exact resolution function further out. Thus, the initial
more detailed properties of the individual distributions do not matter anymore. Equations 5.9
and 5.10 are a good approximation for many practical cases.

We now want to describe the connection between the resolution function and the coherence of
the neutron beam at the sample position. From optics we know about the transverse coherence
length:

%coh,transv =
λLC

2dC
is similar to ∆Q−1

θ =
λLC

πdC
(5.11)

It can be compared well with the geometric resolution contribution that arises from the entrance
aperture only. Small differences in the prefactors we can safely neglect. For the longitudinal
coherence length we obtain:

%coh,long =
1

4
λ

(

∆λ

λ

)−1

is similar to ∆k−1 =
1

2π
λ

(

∆λ

λ

)−1

(5.12)

This coherence length can be well compared to the wavevector uncertainty of the incoming
beam. If we look back on Figure 5.4 we see that the coherence volume exactly describes the
uncertainty of the incoming wave vector. The two contributions are perpendicular which sup-
ports the vectorial (independent) addition of the contributions in eq. 5.8 for instance. The co-
herence volume describes the size of the independent wave packages which allow for wave-like
properties such as the scattering process. So the coherence volume describes the maximum size
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• Dr2 – the contrast factor

• P(Q) – the form factor (single particle); P(Q)=F2(Q), 

FT of real-space density distribution

• S(Q) – the structure factor (inter-particle, FT of g(r))

• B – the background (incoherent & matrix)

low f

high f
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Δ" = "$%&'()*+ − "-%'&(.contrast factor:

difference in scattering length between
H (−3.74 × 10−15m) and D (6.67 × 10−15 m)

à unique advantage in case of
multicomponent hydrocarbon systems:     

soft-matter & biophysics

H-D diblock copolymer



SANS vs. SAXS

02.01.22 21

liposomes made of phospholipids in buffer solution: 
X-rays – more sensitive to the polar layer (P, N) 
neutrons – provide information on the hydrophobic layer

combining SAXS and
SANS (contrast variation) 
à full characterization of

complex materials
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02.01.22 22

     
      

SANS with contrast matching on model ternary 
systems: polymer additive + wax + solvent 

PE-PEP crystalline-amorphous 
copolymer: core-brush lamellar 
morphology

crystalline core – nucleation platform for wax 
crystallization at low temperature
amorphous brush – arrests the wax crystals growth

A. Radulescu et al., in Crude 
Oil Emulsions 2012

Infineum, ParaflowTM



Anion-Echange Membranes for Fuel Cells
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fabrication of AEMs via radiation
grafting technique

Department of Advanced Functional Materials 
Research, Takasaki Advanced Radiation 

Research Institute, Takasaki, Japan

OH− conductivity

long-term durability

on the way to neutrons (Garching, Germany)
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Hydrophilic phase:
grafts + water matching of

crystalline
correlations

matching of
amorphous
hydropobic

feedback to chemistry, for improving fabrication

Y. Zhao, K. Yoshimura et al., in 
Soft Matter 2021
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02.01.22 25

LNP + mRNA

+ rofleponide-C14 prodrug
→ anti-inflammatory
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the anti-inflammatory drug is located
at the edge à increased efficiency

SANS à information about
the optimal composition

M.Yanez Arteta et al., in Molecular 
Theraphy Nucleic Acids 2021

with AstraZeneca



Acknowledgement: KWS-2 Team

02.01.22 26

Marie-Sousai Georg Anastasiia

Jia-Jhen Aurel



02.01.22 27

Thank you for your attention!


