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Abstract

The neural underpinnings of individual identity reflected in cognition, behavior, and disease
remain elusive. Functional connectivity profiles have been used as a "fingerprint" with which
an individual can be identified in a dataset. These established functional connectivity
fingerprints generally show high accuracy but are still sensitive to mental states. A truly
unique, and especially state-independent, neural fingerprint will shed light on fundamental
intra-individual brain organization. Moreover, a fingerprint that also captures inter-individual
differences in brain-behavior associations will provide the necessary ingredients for the
development of biomarkers for precision medicine. With resting-state and task fMRI-data of
the Human Connectome Project and the enhanced Nathan Kline Institute sample, we show
that the local functional fingerprint, and especially regional homogeneity (ReHo), is 1) a
highly accurate neural fingerprint, 2) more stable within an individual regardless of their
mental state (compared to the baseline functional connectome fingerprint), and 3) captures
specific inter-individual differences. Our findings are replicable across parcellations as well
as resilient to confounding effects. Further analyses showed that the attention networks and
the Default Mode Network contributed most to individual "uniqueness". Moreover, with the
OpenNeuro.ds000115 sample, we show that ReHo is also stable in individuals with
schizophrenia and that its stability relates to intelligence subtest scores. Altogether, our
findings show the potential of the application of local functional fingerprints in precision
medicine.
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Introduction
Phenotypic traits exhibit population-level variability. Examples include physical and cognitive
abilities, as well as brain organization. Identifying the inter-individual variability in functional
brain organization that is predictive of cognitive and clinical properties at the individual level
is important for developing viable biomarkers for precision medicine and precision psychiatry
specifically (1). However, the highly dynamic and state-sensitive nature of brain function (2)
makes it challenging to find trait-like functional properties of individual brains. Consequently,
trait-like functional representations that are simultaneously stable within an individual and
capture inter-individual differences are prerequisites for biomarker discovery that remain
underdeveloped.

Whole-brain patterns of synchrony in fluctuations of the
blood-oxygen-level-dependent (BOLD) signal as measured with functional magnetic
resonance imaging (fMRI) - i.e. the functional connectome (FC) - is one of the most
commonly used representations of brain function. The FC is usually calculated as the
Pearson correlations between the time courses of all possible pairs of regions during
resting-state or a task. The FC of an individual is highly stable and sufficiently unique to
identify that individual across sessions or databases (3, 4), hence it has been termed a
“neural fingerprint”. This intra-individual stability satisfies one of the two critical requirements
for potential clinical utility of an fMRI fingerprint (5, 6). The second critical consideration is
whether a brain representation, such as the FC fingerprint, also captures inter-individual
differences. The FC fingerprint has indeed been shown to capture individual differences (7).
However, it has been argued that the two aspects - i.e. intra-individual stability and
individual-level prediction of behavior - do not rely on the same information from the FC (8).
Interestingly, the variation in the FC fingerprint measured across fMRI sessions, thus
reflective of (task-related) reconfiguration, is lower in individuals with higher intelligence (9).
Furthermore, the variability in the FC fingerprint has been associated with development,
aging, and psychiatric disorders (10–14). Importantly, it can be indicative of mental health
issues, e.g. schizophrenia, depression, or attention deficit disorder diagnoses (13). This
provides a promising framework for satisfying the two prerequisites for biomarker discovery;
representations of trait-like brain function whose reconfigurations, albeit subtle, could be
predictive of inter-individual differences. Taken together, a trait-like state-independent neural
fingerprint that captures inter-individual differences can shed light on fundamental brain
organization as well as facilitate translational applications.

So far, the FC has been the choice to investigate neural fingerprints. However, the
overall specificity of the FC fingerprint drastically drops when the mental state changes (15).
For instance, in the seminal study of Finn et al. (2015), the high identification accuracy of
94.4% between two resting-state (rs) fMRI sessions dropped to 54% when comparing
resting-state and task-based fMRI (3). This is not surprising as the FC is known to change
according to situational demands (2), i.e. it captures state-dependent variance which is likely
to differ between rest and task sessions. Here, we hypothesize that spatially restricted local
brain measures, as opposed to global measures of synchrony between spatially distant
regions, might be more state-independent and thus more stable within an individual. Good
reproducibility (i.e. test-retest reliability) of local measures have been shown in rs-fMRI, while
global measures performed poorly (16). So far, the prediction of subject identity has only
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been investigated with one local brain measure, namely region-specific variance in
BOLD-activation (BOLD-variability; BV) (17). The use of other local measures for
fingerprinting, such as regional homogeneity (ReHo), has not been investigated yet.
Therefore, here, we investigate this hypothesis using three local fingerprints; ReHo,
amplitude of low-frequency fluctuations (ALFF), and fractional ALFF (fALFF) within
predefined brain regions based on the 264 Power coordinates (18). These local fingerprints
were compared with the FC baseline. First, we quantified the intra-individual stability of these
four fingerprints using the resting-state and task fMRI data of the Human Connectome
Project. Importantly, in addition to using the conventional identification accuracies, we
employed several methods to quantify the performance of each fingerprint, including
identification in a forensic sense. So far identification studies have considered the most
similar fingerprint as a match, in effect ignoring the possibility of a “no-match”. We address
this issue by defining a machine learning framework to predict whether two fingerprints
match or not. We found near-perfect identification accuracies when using ReHo, followed by
ALFF, fALFF, and the FC. Extensive evaluations showed replicability of our findings across
parcellations and resilience against confounding effects. We then used a novel optimization
formulation to investigate the regional specificity of the ReHo fingerprint. Next, we tested the
intra-individual stability of fingerprints in a different clinical sample of individuals with
schizophrenia, the OpenNeuro.ds000115 sample. Then we investigated the ability of
fingerprint stability - i.e. invariance across mental states - to capture inter-individual variance
by 1) predicting crystallized and fluid intelligence in a machine-learning setup in the large
HCP sample, and 2) correlating stability with intelligence in individuals with schizophrenia
and matched healthy controls of the OpenNeuro.ds000115 sample. Last, to address the
question of neural origins of the BOLD signal (19), using data from the enhanced Nathan
Kline Institute (eNKI) sample, we compared fingerprints between rs-fMRI and breath-holding
scans that are known to capture cerebrovascular signals (20). Altogether, our findings
suggest that measures of local neural activity, and especially ReHo, show high specificity,
sensitivity, and robustness as a neural fingerprint.

Results
Analyses were performed using data of 399 unrelated subjects with two resting-state and
seven task-based scans, acquired within 2 days, from the S1200 release of the Human
Connectome Project (HCP) (21). The brain was parcellated into 264 spherical regions with a
3-mm radius around the Power coordinates (18) (as analyses showed that smaller regions of
interest (ROIs) yielded better identification accuracies - see Supplementary Fig. S1). The
global FC fingerprint was calculated as the Pearson correlations between the mean time
series of each pair of ROIs (3). Furthermore, three local fingerprints were calculated: 1)
ALFF: the averaged square root of the power in the 0.01-0.1 Hz frequency range averaged
across voxels within a ROI (22)), 2) fALFF: ALFF scaled by the total power in the full
frequency range averaged across voxels within a ROI (23)), and 3) ReHo: Kendall's
coefficient of concordance considering the time series of all the voxels within an ROI (24).
Thus, while the often-reported FC fingerprint reflects the similarity of the mean time series of
each pair of (spatially distant) ROIs, ReHo reflects the synchronization of the voxels' time
series within a ROI, and (f)ALFF reflects BOLD-fluctuations within a ROI. Next, identification
accuracies were calculated across all pairs of sessions. Iteratively, one subject's fingerprint
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was selected from one session ("base dataset" consisting of one fingerprint per subject) and
Spearman correlated with all fingerprints of another session ("target dataset"). This yielded
the similarity between the fingerprint of a subject in the "base dataset" with the fingerprints of
all the subjects in the "target dataset". Using a 1-nearest neighbor approach (3), the "base"
fingerprint was labeled with the subject identity of the most similar fingerprint in the "target"
dataset. If the subject labeling was correct, this counted as an accurate identification.
Identification accuracy was defined as the number of correctly labeled participants divided by
the total number of participants. This was conducted in an iterative manner such that each
session was used as the "base dataset" once. We observed near-perfect identification
accuracies, i.e. high individual specificity when using ReHo, followed by ALFF, fALFF, and
FC (Figure 1A). Next, we investigated whether our findings hold for several different ways of
quantifying identification performance.

Highly accurate individual identification based on local functional
fingerprints irrespective of identification performance quantification
Three additional ways to quantify identification performance were investigated. First, we
used the often-reported "Idiff" score, which is the difference between the average
within-subject and average between-subject similarity of a fingerprint; a higher Idiff indicates
a better fingerprint (12). Idiff scores were consistent with the accuracy results; highest Idiff
for ReHo, followed by ALFF, fALFF, and FC (Supplementary Fig. S2; for general interest
additional results using a second parcellation (Dosenbach) are also reported). Second, we
investigated the scenario in which there could be multiple fingerprints from the same subject
in the target database. To this end, taking advantage of the multiple scans available in the
HCP dataset, we defined a new score, called “ranking accuracy”, to quantify how a
fingerprint consistently ranks scans of different sessions of the same subject higher. This
stricter method yielded the same pattern of results (Figure 1B). Note that at rank 2 the
ranking accuracy is similar to the conventional identification accuracy where the FC
fingerprint performs relatively similar to the local fingerprints but the difference between them
becomes evident at higher ranks. Third, to simulate the scenario in which a subject’s
fingerprint might be missing in the database, we additionally calculated forensic
identification. We used the two resting-state sessions as training data and induced a logistic
regression model using a match-no-match dataset derived from 70% of the subjects. Each of
the 30% held-out subjects was probed against all the subjects as a reference to obtain
matches. The reference dataset was either the average of the two resting-state sessions or
one of the task sessions (emulating the privacy-preserving scenario where the training data
itself is not available). We tested two ways to derive features from the fingerprint pairs, (1) a
single feature of correlation distance, and (2) absolute difference between the fingerprint
elements. The results clearly demonstrate the superiority of the local fingerprints in forensic
identification. The nearly zero true-positive and false-positive rates of FC indicate that it
failed to match any of the test subjects (Fig. 1C).
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Figure 1: A) comparison of identification accuracies of functional fingerprints in the Human
Connectome Project (HCP) sample; B) comparison of identification accuracies based on the
ranking of functional fingerprints in the HCP sample; C) forensic identification performance
using fingerprint dissimilarity as a feature (LogReg) or the pattern of distances between the
fingerprint elements as features (LASSO). Abbreviations: ReHo = regional homogeneity;
ALFF = Amplitude of Low Frequency Fluctuations; fALFF = fractional Amplitude of Low
Frequency Fluctuations; FC = functional connectome; RS = resting state; LogReg = logistic
regression; TP = true positive rate; FP = false positive rate.

Better identification performance of local functional fingerprints is
replicable across parcellations and samples and resilient to confounding
effects
Also using the HCP dataset, we performed extensive evaluations to establish replicability
and specificity of our results obtained with the Power 3mm atlas. First, we tested three other
parcellations, namely Dosenbach (25), Shen (26), and Schaefer with 300 ROIs (27), which
also showed higher identification accuracies for the local fingerprints (Fig. S3). Similar to our
results with the Power spheres, the Dosenbach parcellation showed the highest identification
accuracies for ReHo, followed by ALFF, fALFF, and FC. With the Shen and Schaefer
parcellations, results followed a similar pattern with a slight difference in the order: highest
identification accuracies were found for ALFF, followed by ReHo, FC, and fALFF. Second,
we investigated the effect of removing confounds, i.e. sex, age, and total intracranial volume,
from the fingerprints. Removal of these confounds increased overall accuracy while retaining
the result pattern - highest accuracy with ReHo (Fig. S4). Last, replication on the smaller
Finn et al. (2015) HCP sample (n=125) showed similar results with some minor differences
(see Supplementary Materials for details; Fig. S5 & S6).
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Attention networks and the Default Mode Network contribute most to
individual uniqueness
Encouraged by these results, next, we investigated the contribution of each ROI in making
the ReHo profile individual-specific. We posed this as an optimization problem using the
weighted Pearson correlation coefficient to maximize the margin (i.e. the difference between
the correct fingerprint and the next best) resulting in an importance weight for each ROI (see
Supplementary Materials for details). We used the two resting-state sessions and the motor
task HCP data with subjects included in Finn et al. (3). The optimization was performed 100
times with randomly selected 50% of the sample to obtain the weights that were then
evaluated on the 50% hold-out sample. We observed that the margin increased substantially.
The average ReHo across subjects showed an inverse U-shaped relationship with the
weights (Fig. 2), indicating that ReHo values in the 0.2-0.25 range are most
individual-specific. The proportion of the ROIs in each of the seven Yeo networks (28) with
their weight above a certain threshold indicated the highly weighted individual-specific ROIs
to be mostly located in dorsal- and ventral-attention networks followed by the default mode
network, while the limbic network contained the fewest number of individual-specific ROIs
(Fig. 2; see details in Supplementary Materials).

Figure 2: contribution of regions of interest (ROIs) in making ReHo individual-specific. Left)
relationship between ReHo and averaged (across all optimization runs) importance weights
of ROIs. Right) proportion of ROIs in Yeo's networks. Abbreviations: ReHo = regional
homogeneity; RS1 = resting-state fMRI session day 1; RS2 = resting-state fMRI session day
2; Motor = fMRI motor task; prop = proportion; thr = threshold.

Local fingerprints are also stable within individuals of a clinical sample
In addition to the healthy population, neural fingerprints also need to be stable within clinical
samples for their use as clinical biomarkers. Therefore, next, we analyzed the
OpenNeuro.ds000115 dataset (29) including a clinical sample diagnosed with schizophrenia
(SZ; n=21) and healthy controls (n=20; see details in Supplementary Materials). fMRI data of
the 0- and 2-back tasks, obtained the same day, were used. Delayed stabilization (14) and
decreased stability of the FC fingerprint have been reported in schizophrenia (13). Studies
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have also shown local abnormalities in schizophrenia (30–32), but it is unclear whether
these abnormalities are stable within patients. Identification accuracies for ReHo and ALFF
were 100% for both controls and patients (analyzed separately) while they were lower in SZ
for fALFF (65% in SZ; 88% in HC) and FC (99% in SZ; 100% in HC). This suggests that the
ReHo and ALFF fingerprints are also stable in patients with schizophrenia.

Fingerprint stability predicts intelligence
Capturing inter-individual differences in behavior is a prerequisite of a biomarker. Therefore,
next, we investigated the use of the stability of the fingerprints in the prediction of intelligence
in the large HCP sample (n=399). To investigate this, we first calculated - for each individual
- the stability of the fingerprints as the average correlation of each session’s fingerprint with
the fingerprints of all other sessions resulting in a feature vector with nine values (i.e. two
resting state- and seven task fMRI sessions). This feature space was then employed to
predict individual-level crystallized and fluid intelligence in a 5 times repeated 5-fold
cross-validation setup using least absolute shrinkage and selection operator (LASSO)
regression (33). The variance due to age and total intracranial volume was removed from the
features in a cross-validation consistent manner (34). We chose to predict intelligence as it is
associated with task-related reconfiguration of brain networks, i.e. lower reconfiguration is
associated with higher intelligence (9). We observed that the stability of ReHo was highly
predictive of crystallized intelligence, ALFF stability predicted both crystallized and fluid
intelligence, while the stability of fALFF and FC was generally not predictive (Fig. 3A). A
closer inspection of the LASSO weights for the ReHo features for predicting crystallized
intelligence revealed that higher ReHo stability between resting state and the other sessions
is predictive of higher crystallized intelligence, while higher ReHo stability between the
language task and the other sessions is predictive of lower crystallized intelligence. In
addition, for the prediction of crystallized intelligence, high positive coefficients were
observed for ALFF stability of the motor, language, and gambling tasks. For fluid intelligence,
the motor and relational processing task’s ALFF stability received a high positive coefficient,
and the social cognition task stability a negative coefficient.

Next, we also investigated the association between the stability of the fingerprints
and intelligence in the schizophrenia sample and their matched healthy controls. Using the
OpenNeuro.ds000115 dataset, we correlated the stability of the fingerprints with the
Wechsler Adult Intelligence Scale (WAIS) Matrix Reasoning and Vocabulary subtest scores
in both the SZ and HC groups. Stability was calculated as the correlation between the
fingerprints of the 0-back and 2-back task sessions. Machine learning analysis was not
attempted here due to the small sample size. In the SZ group, stability of the ReHo, ALFF,
and FC fingerprints showed a high negative correlation with the WAIS Matrix Reasoning
subtest (all r < -0.50, Fig. 3B), while in the HC group only ALFF stability showed a positive
correlation with WAIS Vocabulary subtest scores (r = 0.48).
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Figure 3: A) Prediction of crystallized and fluid intelligence using the stability of fingerprints
in the nine sessions of the Human Connectome Project sample. Each boxplot shows the
prediction performance across five cross-validation runs; B) scatterplot between the WAIS
Matrix Reasoning scores and the stability of the task fingerprints in the SZ sample of the
OpenNeuro.ds000115 dataset. Abbreviations: ReHo = regional homogeneity; ALFF =
Amplitude of Low Frequency Fluctuations; fALFF = fractional Amplitude of Low Frequency
Fluctuations; FC = functional connectome.

ReHo represents a neural fingerprint
Altogether, thus far, our findings suggest that ReHo is most stable within an individual and
also captures brain-behavior associations. However, its high individual-specificity might be
driven by stable non-neural signals (i.e. artifacts, breathing, cardiovascular effects). Indeed,
earlier studies have shown high stability of motion and cardiac pulsatility, and that test-retest
reliability reduces after artifact removal (10). Therefore, as a follow-up analysis, we
investigated the contribution of vascular activity to local and global fingerprints. Previous
research showed that breath-holding is a reliable estimate of the influence of vascular
activity on BOLD signal (35) as it induces hypercapnia: an increase in carbon dioxide
causing increased cerebral blood flow. This was investigated with the resting-state and
breath-holding fMRI sessions (TR of 1400 ms) provided in the enhanced Nathan Kline
Institute dataset (eNKI; n=478; see Supplementary Materials for details) (36), as the HCP
does not provide breath-holding fMRI data. The breath-holding paradigm consists of
alternating breathing in, out, and breath-holding, causing a global change in oxygenation.
We observed the highest identification accuracies between resting-state and breath-holding
with ALFF (99%), followed by ReHo (87%), FC (72%), and fALFF (44%) (Fig. S9 & S10).
This suggests that the vascular signal in resting-state fMRI is captured with all fingerprints,
but especially with ALFF.

Discussion
Using four different ways for the quantification of identification performance, different
parcellations, and ROI sizes, our findings show highly accurate local functional fingerprints,
especially when using ReHo.
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Regional homogeneity is a highly accurate local fingerprint irrespective
of parcellation choice, sample size, and confounding effects
In addition to the results obtained with ROIs created with 3-mm spheres around the Power
coordinates, identification was also evaluated using three other parcellations (i.e.
Dosenbach, Shen, and Schaefer with 300 ROIs). While results with the Dosenbach
parcellation were the same, for the Shen and Schaefer parcellations, higher identification
accuracies were found for ALFF, followed by ReHo, FC, and fALFF (versus ReHo, ALFF,
fALFF, FC with Power and Dosenbach parcellations). This difference might be explained by
the fact that ROIs in the Power (264 ROIs; 3-mm radius) and Dosenbach (160 ROIs; 5-mm
radius) parcellations are compact spheres while the parcels of the Shen (268 ROIs) and
Schaefer (300 ROIs) are much larger. This explanation also holds for our finding that higher
identification accuracies were found for fALFF with the Power and Dosenbach parcellations,
while the FC performed better with the Shen and Schaefer parcellations. These larger ROIs
reflect more macroscopic organization, are impacted more by partial volume effects, and
averaging within these larger ROIs affects local fingerprints more. As we calculated ReHo for
each ROI as Kendall’s coefficient of concordance for all the voxel-wise time series within that
ROI, ReHo values are expected to converge to 0 with increasing parcel size, in effect
rendering the ReHo-fingerprint less specific and confirming the importance of spatial
resolution in ReHo calculation. Second, our finding of highly accurate local fingerprints was
resilient against confounding effects, as confound removal resulted in the same pattern of
identification accuracies, with ReHo yielding highest accuracies. Confound removal
benefited identification accuracies for FC the most and ALFF the least, suggesting higher
sensitivity of the FC and lower sensitivity of ALFF to confounding effects. Third, it is
expected that larger samples yield lower identification accuracies. Therefore, we first
replicated the results reported in Finn et al. (2015). Next, with the same sample of only 125
subjects, we also compared identification accuracies of the global fingerprint to those of local
fingerprints. We found that identification accuracies for the FC reduced most with larger
sample sizes, while local fingerprints, and especially ReHo, were affected the least. For the
Power and Dosenbach parcellations, our investigation on the smaller sample of 125 subjects
showed one difference compared to results in the larger HCP sample: identification accuracy
was higher for the FC than for fALFF. Altogether, our findings suggest that ReHo shows high
specificity, sensitivity, and robustness as a neural fingerprint.

Attention networks and the DMN contribute most to individual
"uniqueness"
Weighting ReHo features higher in some brain regions enhanced the fingerprint efficacy,
revealing brain regions that contribute more to individual uniqueness. We found that regions
in the dorsal- and ventral-attention networks and the default mode network contributed most
to identifiability, while the limbic network contributed the least. This is in line with previous
studies showing that higher-order cognitive systems, or frontoparietal regions, contribute to
identifiability, in contrast to limbic regions (37). However, it should be noted that limbic
regions are smaller than ROIs within the other networks, and therefore might be affected
more by normalization errors that induce noise.
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The stability of fingerprints captures inter-individual differences
Next, we predicted intelligence with the stability of the fingerprints across sessions. Our
results showed that the stability of ReHo could predict crystallized intelligence but not fluid
intelligence. On the other hand, ALFF stability could predict both crystallized and fluid
intelligence, while fALFF and the FC were not predictive. This discrepancy suggests that
different fingerprints and their stability or reconfiguration will be more appropriate for
predicting different targets.

Regional homogeneity (ReHo) is calculated as the synchronization of the time series
of voxels within a ROI. The stability of ReHo across states appears to reflect the existence of
regions that work relatively uniformly across mental states. Our findings suggest this might
be associated more with the more static form of intelligence that is conceptualized with
crystallized intelligence, than with the more dynamic ability to reason and solve new
problems referred to as fluid intelligence - which might be associated more with brain
dynamics. A closer inspection of the LASSO weights for the ReHo features for predicting
crystallized intelligence revealed that higher ReHo stability between resting state and the
other sessions is predictive of higher crystallized intelligence, while higher ReHo stability
between the language task and the other sessions is predictive of lower crystallized
intelligence. These observations suggest that reconfigurations of ReHo across states are
smaller in individuals with higher crystallized intelligence, but reconfigurations during a
language task are larger. This is in line with a study showing that the FC at rest was more
similar to the FC during several tasks in individuals with higher intelligence. This ability to
reconfigure networks efficiently based on task demands can be seen as a sign of high
intelligence (9).

Furthermore, for individuals with schizophrenia of the OpenNeuro.ds000115 dataset,
the higher stability of ReHo, ALFF, and FC fingerprints was associated with lower scores on
the Matrix Reasoning subtest. This subtest measures abstract problem solving and inductive
reasoning, which is considered part of fluid intelligence. Furthermore, the 0-back task
requires sustained attention, while the 2-back task additionally requires working memory.
Thus, ReHo, ALFF, and FC fingerprints are more stable between these two tasks in
individuals with schizophrenia and lower fluid intelligence, confirming differing demands of
these two tasks. However, this was not found in the matched HC of the
OpenNeuro.ds000115 dataset (all r < 0.02-0.1). In HC, only ALFF stability was associated
with scores on the Vocabulary subtest. Altogether, our findings suggest that even though the
ReHo and ALFF fingerprints are highly stable (Fig. 1), subtle variation due to mental states is
still informative.

ALFF is affected more by vascular signals than ReHo
Identification accuracies with the eNKI breath-holding fMRI-task and resting-state data
suggest that breathing, or vascular signal, is represented more in resting-state ALFF than in
resting-state ReHo. Indeed, previous research has shown that ALFF captures this signal
(38). Furthermore, our results are in line with the idea that fALFF, as a normalized ALFF, is
affected less by physiological signals from large blood vessels and CSF that affect the entire
frequency spectrum. Taken together, the high accuracy of ReHo in the HCP samples and its
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lower accuracy with breath-holding data suggests that ReHo captures neural signals more
than ALFF.

Limitations
This study has some limitations. First, the contribution of physiological signals to the BOLD
signal is unclear. We tested the contribution of vascular activity to the fingerprints, but other
sources of physiological signal might also contribute. Second, we created fingerprints based
on local brain function, while other studies have investigated fingerprints based on shape,
white matter fiber geometry, voxel-wise diffusion density, or combinations (39). Future
studies could investigate a multimodal fingerprint including ReHo. Third, we analyzed data
that was acquired within a short timespan (i.e. days), but the stability of fingerprints over
longer periods is unclear. Future work could examine the stability of local and global
fingerprints over months or years. Fourth, we checked fingerprint stability in one, relatively
small, clinical sample of individuals with schizophrenia. It is unclear whether our findings
generalize to other clinical samples.

Conclusion
Investigating associations between brain function and cognition, behavior, or disease
characteristics (e.g. progression or severity) requires within-individual stability (40).
Altogether, our results suggest that measures of local neural activity are more stable
fingerprints - i.e. more stable within an individual regardless of their mental state. This was
replicable across parcellations as well as resilient to confounding effects. The near-perfect
identification of the ReHo fingerprint between rest- and task-fMRI combined with its reduced
accuracy with breath-holding data suggests that it largely reflects neuronal signal and that it
can be indeed deemed a “neural fingerprint” - making it especially attractive for future
studies of brain-behavior relationship and clinical applications. As ReHo reflects the
synchronized activation of voxels within a parcel, the intraindividual stability of ReHo
supports the existence of regions that work uniformly across mental states. The FC, on the
contrary, captures dynamic and state-dependent interactions between regions and might be
less suitable for answering identifiability questions. While studies have shown ReHo
abnormalities across disorders such as autism (30) and schizophrenia (31), our findings
suggest that ReHo measures in schizophrenia are stable within an individual. Furthermore,
the use of weighted ROIs increases individuality and therefore identifiability. When
interpreted with recent findings (8), neural representations capturing both intra-individual
stability and inter-individual differences (both desired properties for clinical biomarkers),
remain enigmatic. Altogether, accurate fingerprints - such as the one we propose here based
on ReHo - provide an individual-specific neural signal and can help in this endeavor,
benefiting both basic and clinical investigations.
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Methods and Materials

Calculation of identification accuracy in Human Connectome Project
sample

Human Connectome Project (HCP) sample
Data collection was approved by the Institutional Review Board at Washington University in
St. Louis. The selection of subjects was done in R version 3.6.1 (R Core Team 2019).
Individuals were included in case of availability of 1) a T1-weighted scan, 2) at least two
resting-state fMRI scans (rfMRI_REST1 and rfMRI_REST2), 3) data on 58 behavioral
variables (41) and 4) all fMRI-tasks (working memory (tfMRI_WM), gambling
(tfMRI_GAMBLING), motor (tfMRI_MOTOR), language (tfMRI_LANGUAGE), social
cognition (tfMRI_SOCIAL), relational processing (tfMRI_RELATIONAL) and emotion
processing (tfMRI_EMOTION) (42). Subjects with reported issues according to the HCP data
release updates were excluded. From this sample, subjects were selected that were
unrelated (variable Family_ID) with a similar number of selected males and females
(Gender) that were matched on age (Age_in_Yrs), education (SSAGA_Educ), race (Race),
and BMI (BMI). This resulted in a sample of 399 subjects consisting of 195 females and 204
males. The mean age, education, and BMI were similar between males and females,
namely: 27.83 (sd=3.75) versus 29.68 (sd=3.69), 14.08 (sd=1.75) vs 15.01 (sd=1.86), and
27.03 (sd=4.38) vs 26.06 (sd=5.59). The distribution of races was also similar between
males and females: Asian/Nat. Hawaiian/Other Pacific Is. (11 vs 13), Black or African Am.
(28 vs 29), White (154 vs 145), unknown or not reported (4 vs 2), more than one (7 vs 6).
For all subjects, all available fMRI data (i.e. two resting-state fMRI-sessions and seven
fMRI-tasks) were used for the main analyses. Further details on the tasks and acquisition
parameters can be found in Barch et al., 2013 (42).

We used the preprocessed data provided by the HCP, which includes artifact
removal, motion correction, and registration to standard space. For the resting-state data,
the ICA-FIX noise components removed data were used. We also used the sample from
Finn et al. (3) (n=125) for replication and optimization analyses.

Preprocessing
Additional minimal preprocessing was done assuming no prior knowledge of the data,
therefore allowing the use of our preprocessing pipeline in a broad range of situations (i.e.
task- or resting-state data, variable scan parameters, etc.). This was done in MATLAB
release 2019b (MathWorks) and included: regressing out the 12 detrended motion
parameters (provided by HCP as Movement_Regressors_dt.txt), as well as mean time
courses of WM, CSF, and global signal, and filtering the time series with a bandpass filter of
0.01-0.1 Hz. Next, the fingerprints were calculated for both left-right (LR) and right-left (RL)
phase-encoding runs and consequently averaged.
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Local fingerprints
A local fingerprint for a subject consists of a vector of length N where N is the number of
ROIs.

Global fingerprint (whole-brain functional connectome)
A FC for a subject consists of a matrix of size NxN where N is the number of ROIs. We
extracted the lower triangle of this matrix and vectorized it to get the FC fingerprint as a
vector of length N x (N-1) / 2.

Idiff
The within-subject similarity of FCs ("Iself") is the average of main diagonal elements of the
identification matrix, while the between-subjects similarity of FCs ("Iothers") is the average of
the off-diagonal elements. Idiff is then calculated by taking the difference between Iself and
Iothers and multiplying it with 100 (12).

Ranking accuracy
All subjects in the target datasets are ordered based on their similarity with the subject's
fingerprint in the base dataset, and the number of correctly ranked subjects is counted for
each consecutive rank.

Forensic identification
The two resting-state sessions were used for training. First, we derived a match-no-match
dataset. The match part of this dataset contained the features derived from fingerprints of
the same subjects from the two sessions. The no-match data consisted of the features
derived using each subject in session 1 and their other closest match from session 2. We
tested two feature spaces, (1) a single feature as the correlation distance between a
fingerprint pair, and (2) absolute difference between the fingerprint elements providing a
feature space of the same size as the fingerprint. This provided a dataset with 2xN rows (N =
number of subjects) which together with class labels indicating match or no-match was used
to train a classifier. More specifically, we employed logistic regression with feature space 1
and LASSO with feature space 2. Given a reference fingerprint (with known identity) and a
test fingerprint (unknown identity), a trained model was used to predict whether they match
or not. A prediction was then obtained using each fingerprint in a reference database. Note
that predictions for a test case can contain one, multiple, or no matches. If the correct
subject was predicted as a match then it was counted as a true positive and if any other
subject was predicted as a match then this was counted as a false positive. A good classifier
should provide a high true-positive rate and a low false-positive rate. We randomly chose
70% of the subjects for training and used the rest for testing. This split was repeated 10
times. Ten times repeated 10-fold cross-validation was performed on the training data to
estimate the generalization ability. We tested two kinds of reference databases, the training
fingerprints (averaged across both sessions) or fingerprints from another session to emulate
the privacy-preserving scenario where only the classifier can be shared but not the training
data.
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Confound removal
Confounding signals due to age, sex, and total intracranial volume (ICV) were regressed out
from each column of each database (subjects x fingerprint) and the residuals were used for
identification.

References
1. B. S. Fernandes, et al., The new field of “precision psychiatry”. BMC Med. 15, 80

(2017).

2. M. G. Preti, T. A. Bolton, D. Van De Ville, The dynamic functional connectome:
State-of-the-art and perspectives. Neuroimage 160, 41–54 (2017).

3. E. S. Finn, et al., Functional connectome fingerprinting: identifying individuals using
patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

4. B. A. Seitzman, et al., Trait-like variants in human functional brain networks. Proc Natl
Acad Sci USA 116, 22851–22861 (2019).

5. M. P. Milham, J. Vogelstein, T. Xu, Removing the reliability bottleneck in functional
magnetic resonance imaging research to achieve clinical utility. JAMA Psychiatry
(2021) https:/doi.org/10.1001/jamapsychiatry.2020.4272.

6. P. Sorrentino, et al., Clinical connectome fingerprints of cognitive decline. BioRxiv
(2020) https:/doi.org/10.1101/2020.10.09.332635.

7. E. S. Finn, M. D. Rosenberg, Beyond fingerprinting: Choosing predictive connectomes
over reliable connectomes. Neuroimage 239, 118254 (2021).

8. M. Mantwill, M. Gell, S. Krohn, C. Finke, Fingerprinting and behavioural prediction rest
on distinct functional systems of the human connectome. BioRxiv (2021)
https:/doi.org/10.1101/2021.02.07.429922.

9. D. H. Schultz, M. W. Cole, Higher Intelligence Is Associated with Less Task-Related
Brain Network Reconfiguration. J. Neurosci. 36, 8551–8561 (2016).

10. S. Noble, D. Scheinost, R. T. Constable, A decade of test-retest reliability of functional
connectivity: A systematic review and meta-analysis. Neuroimage 203, 116157 (2019).

11. O. Miranda-Dominguez, et al., Connectotyping: model based fingerprinting of the
functional connectome. PLoS ONE 9, e111048 (2014).

12. E. Amico, J. Goñi, The quest for identifiability in human functional connectomes. Sci.
Rep. 8, 8254 (2018).

13. T. Kaufmann, et al., Stability of the brain functional connectome fingerprint in
individuals with schizophrenia. JAMA Psychiatry 75, 749–751 (2018).

14. T. Kaufmann, et al., Delayed stabilization and individualization in connectome
development are related to psychiatric disorders. Nat. Neurosci. 20, 513–515 (2017).

15. E. S. Finn, et al., Can brain state be manipulated to emphasize individual differences

15

https://sciwheel.com/work/bibliography/4531754
https://sciwheel.com/work/bibliography/4531754
https://sciwheel.com/work/bibliography/2985188
https://sciwheel.com/work/bibliography/2985188
https://sciwheel.com/work/bibliography/832405
https://sciwheel.com/work/bibliography/832405
https://sciwheel.com/work/bibliography/7631612
https://sciwheel.com/work/bibliography/7631612
https://sciwheel.com/work/bibliography/10296397
https://sciwheel.com/work/bibliography/10296397
https://sciwheel.com/work/bibliography/10296397
https://sciwheel.com/work/bibliography/9822853
https://sciwheel.com/work/bibliography/9822853
https://sciwheel.com/work/bibliography/11389761
https://sciwheel.com/work/bibliography/11389761
https://sciwheel.com/work/bibliography/10438203
https://sciwheel.com/work/bibliography/10438203
https://sciwheel.com/work/bibliography/10438203
https://sciwheel.com/work/bibliography/2989588
https://sciwheel.com/work/bibliography/2989588
https://sciwheel.com/work/bibliography/7456192
https://sciwheel.com/work/bibliography/7456192
https://sciwheel.com/work/bibliography/2539815
https://sciwheel.com/work/bibliography/2539815
https://sciwheel.com/work/bibliography/6041823
https://sciwheel.com/work/bibliography/6041823
https://sciwheel.com/work/bibliography/8182067
https://sciwheel.com/work/bibliography/8182067
https://sciwheel.com/work/bibliography/3391375
https://sciwheel.com/work/bibliography/3391375
https://sciwheel.com/work/bibliography/3930049


in functional connectivity? Neuroimage 160, 140–151 (2017).

16. Š. Holiga, et al., Test-retest reliability of task-based and resting-state blood oxygen
level dependence and cerebral blood flow measures. PLoS ONE 13, e0206583
(2018).

17. G. Gaut, et al., Predicting Task and Subject Differences with Functional Connectivity
and Blood-Oxygen-Level-Dependent Variability. Brain Connect. 9, 451–463 (2019).

18. J. D. Power, et al., Functional network organization of the human brain. Neuron 72,
665–678 (2011).

19. O. J. Arthurs, S. Boniface, How well do we understand the neural origins of the fMRI
BOLD signal? Trends Neurosci. 25, 27–31 (2002).

20. J. Pinto, M. G. Bright, D. P. Bulte, P. Figueiredo, Cerebrovascular reactivity mapping
without gas challenges: A methodological guide. Front. Physiol. 11, 608475 (2020).

21. D. C. Van Essen, et al., The WU-Minn Human Connectome Project: an overview.
Neuroimage 80, 62–79 (2013).

22. Y.-F. Zang, et al., Altered baseline brain activity in children with ADHD revealed by
resting-state functional MRI. Brain Dev. 29, 83–91 (2007).

23. Q.-H. Zou, et al., An improved approach to detection of amplitude of low-frequency
fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J. Neurosci. Methods 172,
137–141 (2008).

24. Y. Zang, T. Jiang, Y. Lu, Y. He, L. Tian, Regional homogeneity approach to fMRI data
analysis. Neuroimage 22, 394–400 (2004).

25. N. U. F. Dosenbach, et al., Prediction of individual brain maturity using fMRI. Science
329, 1358–1361 (2010).

26. X. Shen, F. Tokoglu, X. Papademetris, R. T. Constable, Groupwise whole-brain
parcellation from resting-state fMRI data for network node identification. Neuroimage
82, 403–415 (2013).

27. A. Schaefer, et al., Local-Global Parcellation of the Human Cerebral Cortex from
Intrinsic Functional Connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

28. B. T. T. Yeo, et al., The organization of the human cerebral cortex estimated by intrinsic
functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

29. G. Repovš, D. M. Barch, Working memory related brain network connectivity in
individuals with schizophrenia and their siblings. Front. Hum. Neurosci. 6, 137 (2012).

30. D. K. Shukla, B. Keehn, R. A. Müller, Regional homogeneity of fMRI time series in
autism spectrum disorders. Neurosci. Lett. 476, 46–51 (2010).

31. X. Zhao, et al., Abnormalities of regional homogeneity and its correlation with clinical
symptoms in Naïve patients with first-episode schizophrenia. Brain Imaging Behav. 13,
503–513 (2019).

32. P. Wang, et al., Amplitude of low-frequency fluctuation (ALFF) may be associated with
cognitive impairment in schizophrenia: a correlation study. BMC Psychiatry 19, 30

16

https://sciwheel.com/work/bibliography/3930049
https://sciwheel.com/work/bibliography/6513728
https://sciwheel.com/work/bibliography/6513728
https://sciwheel.com/work/bibliography/6513728
https://sciwheel.com/work/bibliography/6846608
https://sciwheel.com/work/bibliography/6846608
https://sciwheel.com/work/bibliography/382771
https://sciwheel.com/work/bibliography/382771
https://sciwheel.com/work/bibliography/846663
https://sciwheel.com/work/bibliography/846663
https://sciwheel.com/work/bibliography/11014164
https://sciwheel.com/work/bibliography/11014164
https://sciwheel.com/work/bibliography/1343608
https://sciwheel.com/work/bibliography/1343608
https://sciwheel.com/work/bibliography/4628947
https://sciwheel.com/work/bibliography/4628947
https://sciwheel.com/work/bibliography/3264150
https://sciwheel.com/work/bibliography/3264150
https://sciwheel.com/work/bibliography/3264150
https://sciwheel.com/work/bibliography/972665
https://sciwheel.com/work/bibliography/972665
https://sciwheel.com/work/bibliography/339143
https://sciwheel.com/work/bibliography/339143
https://sciwheel.com/work/bibliography/1312020
https://sciwheel.com/work/bibliography/1312020
https://sciwheel.com/work/bibliography/1312020
https://sciwheel.com/work/bibliography/4939207
https://sciwheel.com/work/bibliography/4939207
https://sciwheel.com/work/bibliography/302279
https://sciwheel.com/work/bibliography/302279
https://sciwheel.com/work/bibliography/5460192
https://sciwheel.com/work/bibliography/5460192
https://sciwheel.com/work/bibliography/8198642
https://sciwheel.com/work/bibliography/8198642
https://sciwheel.com/work/bibliography/8372279
https://sciwheel.com/work/bibliography/8372279
https://sciwheel.com/work/bibliography/8372279
https://sciwheel.com/work/bibliography/10266015
https://sciwheel.com/work/bibliography/10266015


(2019).

33. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, second
(2009).

34. S. More, S. B. Eickhoff, J. Caspers, K. R. Patil, “Confound removal and normalization
in practice: A neuroimaging based sex prediction case study” in Machine Learning and
Knowledge Discovery in Databases. Applied Data Science and Demo Track: European
Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020,
Proceedings, Part V, Lecture notes in computer science., Y. Dong, G. Ifrim, D.
Mladenić, C. Saunders, S. Van Hoecke, Eds. (Springer International Publishing, 2021),
pp. 3–18.

35. R. Yuan, et al., Regional homogeneity of resting-state fMRI contributes to both
neurovascular and task activation variations. Magn. Reson. Imaging 31, 1492–1500
(2013).

36. K. B. Nooner, et al., The NKI-Rockland Sample: A Model for Accelerating the Pace of
Discovery Science in Psychiatry. Front. Neurosci. 6, 152 (2012).

37. Y. Jo, J. Faskowitz, F. Z. Esfahlani, O. Sporns, R. F. Betzel, Subject identification using
edge-centric functional connectivity. BioRxiv (2020)
https:/doi.org/10.1101/2020.09.13.291898.

38. A. M. Golestani, L. L. Wei, J. J. Chen, Quantitative mapping of cerebrovascular
reactivity using resting-state BOLD fMRI: Validation in healthy adults. Neuroimage 138,
147–163 (2016).

39. K. Kumar, M. Toews, L. Chauvin, O. Colliot, C. Desrosiers, Multi-modal brain
fingerprinting: A manifold approximation based framework. Neuroimage 183, 212–226
(2018).

40. U. Tipnis, et al., Data Release and Assessment on Brain Fingerprints (2020).

41. R. Kong, et al., Spatial Topography of Individual-Specific Cortical Networks Predicts
Human Cognition, Personality, and Emotion. Cereb. Cortex 29, 2533–2551 (2019).

42. D. M. Barch, et al., Function in the human connectome: task-fMRI and individual
differences in behavior. Neuroimage 80, 169–189 (2013).

Acknowledgments and funding sources
This work was supported by The Helmholtz Portfolio Theme ‘Supercomputing and Modelling
for the Human Brain’ and the European Union's Horizon 2020 Research and Innovation
Programme (HBP SGA2; Grant No. 785907 to SBE). The authors would like to thank Dr.
Branislava Ćurčić-Blake for helpful discussions and Dr. Emily S. Finn for valuable comments
on a previous version of this manuscript.

17

https://sciwheel.com/work/bibliography/10266015
https://sciwheel.com/work/bibliography/11001694
https://sciwheel.com/work/bibliography/11001694
https://sciwheel.com/work/bibliography/10546046
https://sciwheel.com/work/bibliography/10546046
https://sciwheel.com/work/bibliography/10546046
https://sciwheel.com/work/bibliography/10546046
https://sciwheel.com/work/bibliography/10546046
https://sciwheel.com/work/bibliography/10546046
https://sciwheel.com/work/bibliography/10546046
https://sciwheel.com/work/bibliography/9976849
https://sciwheel.com/work/bibliography/9976849
https://sciwheel.com/work/bibliography/9976849
https://sciwheel.com/work/bibliography/1070587
https://sciwheel.com/work/bibliography/1070587
https://sciwheel.com/work/bibliography/10417504
https://sciwheel.com/work/bibliography/10417504
https://sciwheel.com/work/bibliography/10417504
https://sciwheel.com/work/bibliography/4067040
https://sciwheel.com/work/bibliography/4067040
https://sciwheel.com/work/bibliography/4067040
https://sciwheel.com/work/bibliography/5999050
https://sciwheel.com/work/bibliography/5999050
https://sciwheel.com/work/bibliography/5999050
https://sciwheel.com/work/bibliography/10206864
https://sciwheel.com/work/bibliography/5593204
https://sciwheel.com/work/bibliography/5593204
https://sciwheel.com/work/bibliography/845025
https://sciwheel.com/work/bibliography/845025

