000904691 001__ 904691
000904691 005__ 20230301071446.0
000904691 0247_ $$2doi$$a10.1007/s00429-021-02437-y
000904691 0247_ $$2ISSN$$a0044-2232
000904691 0247_ $$2ISSN$$a0340-2061
000904691 0247_ $$2ISSN$$a1432-0568
000904691 0247_ $$2ISSN$$a1863-2653
000904691 0247_ $$2ISSN$$a1863-2661
000904691 0247_ $$2Handle$$a2128/31167
000904691 0247_ $$2altmetric$$aaltmetric:127489423
000904691 0247_ $$2pmid$$apmid:34931262
000904691 0247_ $$2WOS$$aWOS:000731815800001
000904691 037__ $$aFZJ-2022-00040
000904691 082__ $$a610
000904691 1001_ $$0P:(DE-Juel1)176736$$aRapan, Lucija$$b0$$eCorresponding author
000904691 245__ $$aReceptor architecture of macaque and human early visual areas: not equal, but comparable
000904691 260__ $$aHeidelberg$$bSpringer$$c2022
000904691 3367_ $$2DRIVER$$aarticle
000904691 3367_ $$2DataCite$$aOutput Types/Journal article
000904691 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1652678658_21300
000904691 3367_ $$2BibTeX$$aARTICLE
000904691 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904691 3367_ $$00$$2EndNote$$aJournal Article
000904691 520__ $$aExisting cytoarchitectonic maps of the human and macaque posterior occipital cortex differ in the number of areas they display, thus hampering identification of homolog structures. We applied quantitative in vitro receptor autoradiography to characterize the receptor architecture of the primary visual and early extrastriate cortex in macaque and human brains, using previously published cytoarchitectonic criteria as starting point of our analysis. We identified 8 receptor architectonically distinct areas in the macaque brain (mV1d, mV1v, mV2d, mV2v, mV3d, mV3v, mV3A, mV4v), and their respective counterpart areas in the human brain (hV1d, hV1v, hV2d, hV2v, hV3d, hV3v, hV3A, hV4v). Mean densities of 14 neurotransmitter receptors were quantified in each area, and ensuing receptor fingerprints used for multivariate analyses. The 1st principal component segregated macaque and human early visual areas differ. However, the 2nd principal component showed that within each species, area-specific differences in receptor fingerprints were associated with the hierarchical processing level of each area. Subdivisions of V2 and V3 were found to cluster together in both species and were segregated from subdivisions of V1 and from V4v. Thus, comparative studies like this provide valuable architectonic insights into how differences in underlying microstructure impact evolutionary changes in functional processing of the primate brain and, at the same time, provide strong arguments for use of macaque monkey brain as a suitable animal model for translational studies.
000904691 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000904691 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000904691 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x2
000904691 536__ $$0G:(BMBF)01GQ1902$$a3D-MMA - Gradienten der Verteilung multipler Transmitterrezeptoren in der Hirnrinde als Grundlage verteilter kognitiver, sensorischer und motorischer Funktionen. (01GQ1902)$$c01GQ1902$$x3
000904691 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904691 7001_ $$0P:(DE-Juel1)171512$$aNiu, Meiqi$$b1
000904691 7001_ $$0P:(DE-Juel1)173031$$aZhao, Ling$$b2$$ufzj
000904691 7001_ $$0P:(DE-Juel1)181092$$aFunck, Thomas$$b3$$ufzj
000904691 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b4$$ufzj
000904691 7001_ $$0P:(DE-Juel1)131714$$aZilles, Karl$$b5
000904691 7001_ $$0P:(DE-Juel1)131701$$aPalomero-Gallagher, Nicola$$b6
000904691 773__ $$0PERI:(DE-600)2303775-1$$a10.1007/s00429-021-02437-y$$p1247–1263$$tBrain structure & function$$v227$$x0044-2232$$y2022
000904691 8564_ $$uhttps://juser.fz-juelich.de/record/904691/files/Rapan2022_Article_ReceptorArchitectureOfMacaqueA.pdf$$yOpenAccess
000904691 8564_ $$uhttps://juser.fz-juelich.de/record/904691/files/__Rapan_Niu_et_al_postprint.pdf$$yOpenAccess
000904691 8767_ $$d2022-12-13$$eHybrid-OA$$jDEAL
000904691 909CO $$ooai:juser.fz-juelich.de:904691$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000904691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176736$$aForschungszentrum Jülich$$b0$$kFZJ
000904691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171512$$aForschungszentrum Jülich$$b1$$kFZJ
000904691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173031$$aForschungszentrum Jülich$$b2$$kFZJ
000904691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181092$$aForschungszentrum Jülich$$b3$$kFZJ
000904691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b4$$kFZJ
000904691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131701$$aForschungszentrum Jülich$$b6$$kFZJ
000904691 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000904691 9141_ $$y2022
000904691 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000904691 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000904691 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-30$$wger
000904691 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904691 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000904691 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904691 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000904691 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000904691 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000904691 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000904691 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-17
000904691 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-17
000904691 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-17
000904691 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000904691 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000904691 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN STRUCT FUNCT : 2021$$d2022-11-17
000904691 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-17
000904691 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000904691 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000904691 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000904691 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000904691 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000904691 9801_ $$aFullTexts
000904691 980__ $$ajournal
000904691 980__ $$aVDB
000904691 980__ $$aUNRESTRICTED
000904691 980__ $$aI:(DE-Juel1)INM-1-20090406
000904691 980__ $$aAPC