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ABSTRACT
Field-theory simulation by the complex Langevin method offers an alternative to conventional sampling techniques for exploring the forces
driving biomolecular liquid–liquid phase separation. Such simulations have recently been used to study several polyampholyte systems.
Here, we formulate a field theory corresponding to the hydrophobic/polar (HP) lattice protein model, with finite same-site repulsion and
nearest-neighbor attraction between HH bead pairs. By direct comparison with particle-based Monte Carlo simulations, we show that com-
plex Langevin sampling of the field theory reproduces the thermodynamic properties of the HP model only if the same-site repulsion is not too
strong. Unfortunately, the repulsion has to be taken weaker than what is needed to prevent condensed droplets from assuming an artificially
compact shape. Analysis of a minimal and analytically solvable toy model hints that the sampling problems caused by repulsive interaction
may stem from loss of ergodicity.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0070412

I. INTRODUCTION

Advances over the past 15 years have identified liquid–liquid
phase separation (LLPS) as a driver of compartmentalization in liv-
ing cells.1,2 Through LLPS, membraneless droplets are formed, with
high concentrations of proteins and nucleic acids. In this process,
it has been found that intrinsically disordered proteins (IDPs) often
play a key role, and several such IDPs have been shown to phase
separate on their own.3–5

To gain insight into the forces driving IDP LLPS, a broad
set of theoretical and computational methods has been employed.
The Flory–Huggins6,7 and Voorn–Overbeek 8 mean-field methods
provide useful analytical estimates, which, however, are insensitive
to the ordering of the amino acids along the protein chains. By

using the random phase approximation,9,10 the sequence depen-
dence of polyampholytes can be explored without resorting to
extensive simulations, at the price of assuming Gaussian chains.
To be able to avoid approximations made in the above methods,
there have also been many studies of biomolecular LLPS based on
explicit-chain simulation.11–18 In particular, using various coarse-
grained models, the sequence determinants of polyampholyte LLPS
were elucidated.11–15 However, particle-based simulation (PBS),
with explicit chains, becomes computationally expensive for large
systems, even with coarse-grained models.

Another approach to dense polymer systems is to use field-
theory simulation (FTS),19,20 which has recently been applied
for the first time to biomolecular LLPS.21 Here, by means of a
Hubbard–Stratonovich transformation, the original polymer system
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is reformulated as a statistical field theory, which can be investigated
by simulation.19,21 This approach has the advantage of removing
direct interchain interactions, which makes it, at least formally,
easy to increase the number of chains in the simulations. A disad-
vantage is that the effective energy of the field theory is complex-
valued, which renders standard sampling techniques inadequate.
A potential solution to this problem is offered by the complex
Langevin method.22–24 Indeed, using this method, several investi-
gations of biomolecular LLPS in both one- and two-component
systems have been reported.21,25–29 In all these systems, phase sep-
aration was driven by Coulomb interactions, which are well suited
for field-theoretic treatment.

In this article, we test the FTS approach on a hydrophobic/polar
(HP) protein model, where phase separation is driven by short-
range hydrophobic attraction rather than electrostatics. Since the
FTS method requires the introduction of an auxiliary spatial grid,
we deliberately consider a lattice-based protein model. In this way,
it becomes possible to compare FTS and PBS results in a direct
fashion, without having to extrapolate FTS results to the limit of
vanishing lattice spacing. Specifically, we consider a variant of the
well-known HP lattice model for protein folding,30 with a finite
same-site repulsion strength, Λ. As will be shown below, this model
can be mapped onto a field theory with a simple structure. Note that
with a lattice-based protein model, particle densities are, by con-
struction, smeared. With this implicit smearing present, there is no
need for the explicit Gaussian smearing typically used in continuous
models.

The strength of the same-site repulsion, Λ, is a critically impor-
tant parameter. On physical grounds, Λ has to be sufficiently large
to prevent condensed clusters from collapsing to an artificially com-
pact shape. If, on the other hand, Λ is taken too large, it turns out
that the complex Langevin method breaks down. To elucidate these
two conflicting requirements, we simulate and analyze in some detail
a lattice gas, consisting of H particles rather than HP chains. Com-
paring FTS and PBS data, we find that the two Λ regions, where the
respective requirements are met, unfortunately, do not overlap. To
determine whether the sampling problems that we observe at large Λ
are a peculiarity of our particular model or a more general problem
associated with repulsive interactions, we construct a minimal toy
model, which can be solved analytically. In the presence of strong
repulsive interactions, we find that the complex Langevin method
fails in this toy model as well. Finally, we present some examples of
FTS results for systems of HP chains, which, again, are compared
with PBS data for the same systems.

II. METHODS
A. Biophysical model

We consider a system of N linear chains with M beads each,
on a simple cubic lattice with volume V and periodic boundaries
in all three directions. The beads can be either hydrophobic (H) or
polar (P). For simplicity, we assume that all N chains share the same
sequence, which we write as σ = (σ1, . . . , σM), where σm = 1 for an H
bead and σm = 0 for a P bead. Throughout the paper, we use dimen-
sionless values for energy and length, with the lattice spacing set to
unity.

The interaction potential is pairwise additive, U = ∑i<j uij,
where the sum runs over all pairs of beads, both intrachain and

interchain pairs. The pair potential uij has a repulsive part, which
assigns an energy penalty Λ > 0 to any pair of beads residing on the
same lattice site. In addition, there is an attractive nearest-neighbor
interaction, which is felt only by HH pairs. In total, thus, the pair
potential is given by

uij =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

Λ if beads i and j are on the same site,

−σiσj if beads i and j are nearest neighbors,

0 otherwise.

(1)

The full potential may, thus, be written as

U = Ur +Ua, (2)

where Ur = Λ × {number of same − site − pairs} and Ua = −{num-
ber of nearest-neighbor HH pairs}.

The thermodynamic behavior of the system at inverse temper-
ature β is determined by the partition function

Z = ∑
C

e−βU , (3)

where the sum runs over all possible configurations C of the N-chain
system.

To obtain a field theory representation of this particle-based
system, we first express the potential U in terms of bead counts
rather than bead positions. To this end, we consider the ansatz

Ubc =
Λ
2∑r

n(r)2
+

1
2∑r,μ̂

ñH(r, μ̂)2,

with
ñH = αnH(r + μ̂) − α∗nH(r), (4)

where r denotes a lattice site, μ̂ is one of the three lattice unit vectors,
α is a complex parameter, n(r) is the total number of beads at site r,
and nH(r) is the number of H beads at site r. The first sum is over
lattice sites, while the second is over links. Note that the second sum
does not have the common form∑r[∑r′Γ(r, r′)nH(r′)]2, where Γ is
a smearing matrix and the outer sum is over sites rather than links.
The link-based form in Eq. (4) makes it possible to avoid interactions
beyond the nearest-neighbor distance.

The bead counts n and nH can be written as

n(r) = ∑
i

δ(r, ri) and nH(r) = ∑
i

σiδ(r, ri), (5)

where ri and σi denote, respectively, the location and type of bead
i and δ is the Kronecker delta. Using Eq. (5), Ubc [Eq. (4)] can be
rewritten as a sum over bead pairs. One finds that the n-dependent
part of Ubc is equal to Ur plus a constant self-energy term, given
by NMΛ/2. All the results presented below are based on simula-
tions in the canonical ensemble, for which this shift is unimportant.
The ñH-dependent part of Ubc generally contains both same-site and
nearest-neighbor interactions. However, this mixing can be avoided
by choosing the parameter α = eiπ/4. With this α, this part of Ubc
becomes equal to Ua, which means that

Ubc = U +
NMΛ

2
. (6)

All numerical results presented below were obtained using α = eiπ/4.
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B. Field theory
It follows from above that, adding the constant self-energy term

to U, the partition function [Eq. (3)] can be expressed as

Z = ∑
C

e−βUbc , (7)

where Ubc [Eq. (4)] depends quadratically on both the site variables
n(r) and the link variables ñH(r, μ̂). These quadratic dependencies
can be linearized by introducing auxiliary fields, w(r) and φ(r, μ̂),
by means of the Hubbard–Stratonovich method. Note that since
ñH(r, μ̂) is associated with links, the corresponding field φ(r, μ̂) can
be seen as a discrete version of a vector field, living on the links of
the lattice.

The fields are introduced through the relations

exp(−
βΛ
2

n(r)2
) ∝ ∫ dw(r) exp(−

1
2βΛ

w(r)2
− iw(r)n(r)),

(8)

exp(−
β
2

ñH(r, μ̂)2
) ∝ ∫ dφ(r, μ̂) exp(−

1
2β

φ(r, μ̂)2

− iφ(r, μ̂)ñH(r, μ̂)).

An alternative approach for the attractive term, which has
proven useful for other interactions, would be to choose a version
of the Hubbard–Stratonovich transform with a site field φ(r) inter-
acting directly with the local H count nH(r). Then, the quadratic
self-interaction for the φ field would involve the inverse of the
nearest-neighbor stencil, which can be dealt with, e.g., by a diago-
nalizing discrete Fourier transform (DFT). However, as can be seen
from the DFT, the eigenvalues are given by a sum of three cosines,
which results in an abundance of zero and near-zero modes. The
zero modes make the nearest-neighbor stencil non-invertible but
could be handled, e.g., by clamping the corresponding field combi-
nations to zero. The near-zero modes, however, will severely slow
down the Langevin dynamics, by necessitating a small time step.
Hence, for the particular form of the attractive term used here, we
see no better choice than to use our link field approach.

The partition function for the fields then becomes

Z ∝ ZFT = ∫ ∏
r

dw(r)∏
r,μ̂

dφ(r, μ̂)e−H[w,φ], (9)

where the effective energy H[w, φ] is given by

H[w, φ] =
1
2ν∑r

w(r)2
+

1
2η∑r,μ̂

φ(r, μ̂)2
−N ln Q[w, φ], (10)

with ν = βΛ and η = β. Here, Q[w, φ] is a conditional single-chain
partition function, given by

Q[w, φ] = ∑
C1

exp
⎡
⎢
⎢
⎢
⎢
⎣

− i
M

∑

m=1
(w(rm)

+ σm∑
μ̂
[αφ(rm − μ̂, μ̂) − α∗φ(rm, μ̂)]

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

, (11)

where the outer sum is over single-chain configurations
C1 = (r1, . . . , rM), corresponding to a random walk on the
cubic lattice with M − 1 unit steps. The evaluation of Q, given w and
φ, can be conveniently organized by rewriting Eq. (11) in the form

Q[w, φ] = ∑
C1

M

∏

m=1
χσm(rm)

= ∑

r1 ,...,rM

χσM(rM) ⋅ ⋅ ⋅T(r3, r2)χσ2(r2)T(r2, r1)χσ1(r1), (12)

where T(r, r′) = 1 if r and r′ are nearest neighbors, T(r, r′) = 0
otherwise, and

χσ(r) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

e−iw(r) if σ = 0,

e
−iw(r)−i∑

μ̂
[αφ(r−μ̂,μ̂)−α∗φ(r,μ̂)]

if σ = 1.
(13)

C. Extracting polymer properties from the fields
In the field representation, the original bead count variables are

not readily available, but hidden in the conditional partition func-
tion Q. However, it is possible to derive useful identities between
bead count and field correlations.19 A whole series of such identities
can be derived by noting that the fields w(r) and φ(r, μ̂) [Eq. (8)]
can be expressed as

w(r) = u(r) − iνn(r),
φ(r, μ̂) = uH(r, μ̂) − iηñH(r, μ̂),

(14)

where u(r) and uH(r, μ̂) are auxiliary zero-mean Gaussian
fields with ⟨u(r)u(r′)⟩ = νδ(r, r′) and ⟨uH(r, μ̂)uH(r′, μ̂′)⟩
= η δ(r, r′)δ(μ̂, μ̂′). At the one- and two-point levels, one finds the
identities

⟨w(r)⟩ = −iν⟨n(r)⟩ (= −iνNM/V),
⟨φ(r, μ̂)⟩ = −iη⟨ñH(r, μ̂)⟩ (= 2η Im(α)NMH/V),

⟨w(r)w(r′)⟩ = νδ(r, r′) − ν2
⟨n(r)n(r′)⟩,

⟨φ(r, μ̂)φ(r′, μ̂′)⟩ = ηδ(r, r′)δ(μ̂, μ̂′) − η2
⟨ñH(r, μ̂)ñH(r′, μ̂′)⟩,

(15)
where MH denotes the number of H beads per chain. From the last
two of these identities, consequently,

⟨Ur⟩ +
NMΛ

2
=

V
2β
−

1
2β2Λ∑r

⟨w(r)2
⟩,

⟨Ua⟩ =
3V
2β
−

1
2β2∑

r,μ̂
⟨φ(r, μ̂)2

⟩.
(16)

The average particle-based total energy U = Ur +Ua [Eq. (3)], there-
fore, can be obtained as the field-theory average of the estimator,

UFT =
2V
β
−

NMΛ
2
−

1
2β2

⎡
⎢
⎢
⎢
⎢
⎣

1
Λ∑r

w(r)2
+∑

r,μ̂
φ(r, μ̂)2

⎤
⎥
⎥
⎥
⎥
⎦

. (17)

When studying phase separation, a common choice is to
use elongated simulation boxes, with volume V = LzL2, in which
droplets tend to be slab-like rather than spherical. Droplets
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can then be detected by determining the density profile ρ(z)
= L−2

∑x,y n(x, y, z). The simultaneous presence of two bulk phases
with different densities leads to a large spatial variance of ρ(z),
defined as

σ2
ρ =

1
Lz − 1

Lz

∑

z=1
(ρ(z) − ρ)2

=
1

Lz − 1
(

Lz

∑

z=1
ρ(z)2

− Lzρ2
), (18)

where ρ = NM/V denotes the total density. Using Eq. (15), it can be
easily verified that the ensemble average of this quantity, ⟨σ2

ρ⟩, can
be determined by using the field-theoretic estimator,

σ2
ρ,FT =

1
Lz − 1

(
Lz

L2βΛ
− Lzρ2

−
1

(βΛ)2∑
z

ρw(z)2
), (19)

where ρw(z) = L−2
∑x,y w(x, y, z).

D. Complex Langevin sampling
The statistical field theory defined by Eq. (9) has a complex-

valued effective energy H[w, φ] and, therefore, a complex weight
function e−H , which renders sampling techniques such as Markov
chain Monte Carlo inadequate. In principle, this problem can be
overcome by sampling the distribution e−ReH and using reweight-
ing methods. However, this approach typically requires estimating
rapidly fluctuating observables, which makes it inefficient. A poten-
tially useful alternative is to use Langevin dynamics,22–24 defined by

ẇ(r) = −
∂H

∂w(r)
+

√

2 Ξw(r, t),

φ̇(r, μ̂) = −
∂H

∂φ(r, μ̂)
+

√

2 Ξφ(r, μ̂, t),
(20)

where t is the Langevin time, a dot indicates the time derivative, Ξw is
the standard Gaussian noise with zero mean and correlations given
by ⟨Ξw(r, t)Ξw(r′, t′)⟩ = δ(r, r′)δ(t − t′), and similarly for Ξφ. In a
simulation, these continuous-time equations have to be discretized.
A simple discrete form is

w(r)k+1 = w(r)k − dt
∂H

∂w(r)
∣

k
+

√

2dt ξw(r, tk)

= (1 − ν dt)w(r)k + dt
N
Q

∂Q
∂w(r)

∣

k
+

√

2dt ξw(r, tk),

(21)

φ(r, μ̂)k+1 = φ(r, μ̂)k − dt
∂H

∂φ(r, μ̂)
∣

k
+

√

2dt ξφ(r, μ̂, tk)

= (1 − η dt)φ(r, μ̂)k + dt
N
Q

∂Q
∂φ(r, μ̂)

∣

k

+

√

2dt ξφ(r, μ̂, tk),

where dt is the time step and k is the time index, while ξw(r, tk)

and ξφ(r, μ̂, tk) are two sets of independent Gaussian random vari-
ables with zero mean and unit variance. In Eq. (21), it is possible and
potentially advantageous to use different time steps for the w and φ
fields, dtw and dtφ, depending on ν and η.31,32 However, throughout
this paper, we use the same dt for all degrees of freedom.

Due to the complex nature of H, the fields will not be restricted
to real values when evolving according to Eq. (21), but will wander
off into the complex plane. Thus, we will have a probability distribu-
tion over complex-valued fields or, equivalently, a joint probability
distribution over their real and imaginary parts. Under fairly general
conditions, the Langevin dynamics allows for this distribution over
complex fields to converge to one that mimics the formal, complex-
valued Boltzmann distribution over real fields, e−H , in the sense that
expectation values of analytic functions of the fields will converge to
the correct values. However, it is well-known that the success of the
method is system-dependent.33,34

E. Simulation details
We test the FTS method on systems consisting of H particles or

multiple copies of one of two different ten-bead HP chains. For com-
parison, we apply PBS techniques to the same systems, to generate
reference data.

The FTS results are time averages over Langevin trajectories,
generated using Eq. (21) with a fixed step size in the range 5 × 10−6

≤ dt ≤ 10−4. The simulations are started from randomly perturbed
uniform field configurations. Each run covers a total Langevin time
of 4 × 103 (H particles) or 5 × 103 (HP chains), the first 20% of which
is discarded for thermalization.

The PBS results are obtained using Monte Carlo methods.
For H particles, a single type of move is employed, namely, dis-
placement of individual particles to nearest-neighbor sites on the
lattice. A majority of the results are from fixed-temperature sim-
ulations with the Metropolis algorithm. All these runs are started
from random initial states, and 20% of each run is discarded for
thermalization. However, near the condensation/evaporation transi-
tion, this sampling method becomes inefficient, because transitions
between states with and without a droplet are rare. To over-
come this problem, some of our simulations use the Wang–Landau
algorithm,35–37 which, in particular, facilitates the determination of
the condensation/evaporation temperature.

The PBS results for HP chains are based on a set of three ele-
mentary moves. The first move alters the internal structure of a
random chain, by rotating one of its M − 1 bond vectors. The second
move is a rigid-body translation or rotation of an individual chain.
The third and final move is a rigid-body translation of a cluster of
chains. The construction of the cluster to be moved is stochastic, fol-
lowing a Swendsen–Wang type procedure.38,39 All three moves are
subject to a Metropolis accept/reject test.

III. RESULTS
Above, we gave a field-theoretic representation (Sec. II B) of the

HP lattice protein model with finite same-site repulsion (Sec. II A).
In this section, we evaluate to what extent simulation of this field
theory by the complex Langevin method (Sec. II D) reproduces the
thermodynamic properties of the HP model, using reference data
obtained by conventional particle-based Monte Carlo simulation.
First, we investigate in some detail the case of a lattice gas, where the
system consists of (one-bead) H particles. To shed some light upon
the findings for the lattice gas, we then introduce a minimal, analyt-
ically solvable toy model, whose behavior under Langevin dynamics
can be analyzed and understood. Finally, we present some results
from simulations with ten-bead HP chains.
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A. H particles

Throughout this subsection, we consider systems consisting of
64 H particles at fixed density ρ = N/V = 0.125. The lattice used is
either cubic (83) or elongated in one direction (32 × 42). In the latter
case, condensed droplets assume a slab-like rather than a spherical
shape. We study how the ability of the FTS method to reproduce
results obtained using conventional PBS techniques depends on the
two parameters of the model, the repulsion strength Λ, and the
inverse temperature β. Another important issue is how large Λ has
to be taken in order to prevent condensed droplets from becoming
artificially compact.

Figures 1(a) and 1(c) compare FTS and PBS data for the repul-
sive and attractive energies Ur and Ua, respectively, for different Λ at
fixed β = 0.3, on a cubic lattice. At this β, the system is in an uncon-
densed gas state for all Λ values considered. The FTS results are in
agreement with the PBS data for Λ ≲ 3, but deviations develop as
Λ is increased. That the FTS method suffers from sampling errors
at large Λ is underscored by the fact that the quantity Ur, which is
positive by construction, turns negative.

The corresponding data at β = 0.4 follow a similar pattern
[Figs. 1(b) and 1(d)], although the accuracy of the FTS method starts
deteriorating at a lower Λ in this case. At β = 0.4, we omitted the data

obtained for Λ = 0.5. The reason for this is that a condensation tran-
sition takes place as Λ is reduced from 1 to 0.5, which leads to Ur
and Ua values far outside the plotted ranges.

For fixed Λ = 0.5, the above results imply that a temperature-
induced condensation transition occurs as β is increased from 0.3
to 0.4. This transition is illustrated in Fig. 2(a), which shows both
PBS and FTS data for the total energy U = Ur +Ua. The curve rep-
resenting the PBS data is computed by using the Wang–Landau
algorithm, along with reweighting techniques. The condensation
transition occurs at βt ≈ 0.375, with βt defined by having the max-
imum heat capacity. For Λ = 0.5, the Wang–Landau method is
much more efficient than standard constant-temperature Monte
Carlo, which becomes slow in the vicinity of the condensation
transition, due to a strongly bimodal energy distribution, P(U)
[Fig. 2(b)]. The two peaks in P(U) correspond to states with
and without a droplet, respectively. At the transition tempera-
ture, the valley between the two peaks is statistically suppressed
by about eight orders of magnitude, despite the modest size of the
system.

Figure 2(a) also shows the FTS results for the same Λ, for four
different β, two on each side of the condensation transition. The
FTS data points fall close to the PBS curve, which shows that the
FTS method is able to describe the transition quite well. It is worth

FIG. 1. Λ-dependence of the repulsion and attraction energies Ur and Ua at β = 0.3 and β = 0.4, for a system of 64 H particles on an 83 lattice, as obtained using PBS
(red) and FTS (blue). Lines are drawn to guide the eye. (a) Ur at β = 0.3, (b) Ur at β = 0.4, (c) Ua at β = 0.3, and (d) Ua at β = 0.4.
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FIG. 2. Droplet condensation in a system of 64 H particles on an 83 lattice for Λ = 0.5. (a) β-dependence of the total energy U = Ur + Ua. The red curve represents PBS
data, obtained with the Wang–Landau algorithm.35 Blue symbols indicate the FTS results. (b) Energy distribution, P(U), using a logarithmic scale at β = 0.375 ≈ βt (thick
line) and β = 0.4 (thin line), based on the PBS data obtained with the Wang–Landau method. (c) Time evolution of the field-theoretic estimator UFT of U [Eq. (17)] in an FTS
run at β = 0.4.

noting that all the FTS runs are started from random initial field
configurations. Therefore, for β > βt, the Langevin dynamics has to
bring the system from a random state to field configurations corre-
sponding to a droplet-containing state. Figure 2(c) shows the time
evolution of the field-theoretic energy estimator UFT [Eq. (17)] in
a run at β = 0.4 ≈ 1.07βt. At this β, the energy distribution P(U)
remains bimodal [Fig. 2(b)]; the low-energy peak dominates, but a
high-energy peak is still present. Consistent with this, the FTS run
is initially trapped in a high-UFT state [Fig. 2(c)]. However, the sys-
tem is able to escape to a state in which UFT matches well with the
position of the low-energy peak in P(U).

Next, we investigate the droplet condensation transition in
some more detail for three values of Λ (0.5, 2.0, and 5.0), using an
elongated simulation box (32 × 42). To this end, we first consider
the longitudinal distribution of particles, ρ(z) = L−2

∑x,y n(x, y, z).
In particular, we compute the spatial variance of this distribu-
tion, σ2

ρ [Eq. (18)], and its field-theoretic estimator, σ2
ρ,FT [Eq. (19)].

The formation of a dense droplet in a dilute background leads to
an increased spatial variance σ2

ρ . Figure 3(a) shows PBS and FTS
data for σ2

ρ and σ2
ρ,FT, respectively, in the vicinity of the inverse

transition temperature, βt, for all three choices of Λ. As in Fig. 2(a),

the FTS data agree quite well with the PBS data for Λ = 0.5. By con-
trast, but not surprisingly given the data in Fig. 1, the FTS method
fails to properly describe the condensation transition for Λ = 2.0 and
Λ = 5.0.

The change in σ2
ρ near βt is abrupt and large for Λ = 0.5, while

becoming less drastic as Λ is increased [Fig. 3(a)]. The abruptness
of the transition for small Λ is linked to the collapse of con-
densed droplets, which leads to artificially low energies for droplet-
containing configurations. Figure 3(b) shows the total number of
lattice sites hosting at least one of the 64 particles in the system. For
Λ = 0.5, it can be seen that this number, ns, drops from ≈60 to ≈10
upon droplet condensation. By contrast, for Λ = 5.0, ns stays above
63 throughout the β range studied, 0.93 ≤ β/βt ≤ 1.07.

In summary, in the lattice gas studied here, in order for the
FTS sampling errors to stay small, the repulsion strength Λ must
not be too large. At the same time, in order to prevent the for-
mation of artificially compact droplets, Λ must not be too small.
Unfortunately, at least with the standard Langevin scheme used
here, the Λ regions where these two requirements are met do
not overlap, as is illustrated by the results for Λ = 2.0 in Fig. 3.
This Λ is too large to avoid large sampling errors [Fig. 3(a)],
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FIG. 3. Droplet condensation in a system of 64 H particles on a 32 × 42 lattice for three values of Λ (0.5, 2.0, and 5.0), studied using PBS (red) and FTS (blue). For each
Λ, data were acquired for six values of β/βt (0.93, 0.96, 0.99, 1.01, 1.04, and 1.07), where βt is the inverse transition temperature, defined as the heat capacity maximum.
Lines are drawn to guide the eye. (a) Spatial variance of the density ρ(z), calculated using Eq. (18) (PBS) or Eq. (19) (FTS). (b) The number of lattice sites hosting at least
one particle, ns, with its maximal value (64) indicated by the horizontal line.

but still too small to prevent condensed droplets from collapsing
[Fig. 3(b)].

B. Toy model
In this subsection, we turn to a minimal toy model to elucidate

how increased repulsion strength can cause sampling problems in
the FTS approach.

Thus, we consider a single particle (or a gas of N identical ones)
on a lattice with only two sites, labeled 1 and 2, respectively, with
two possible types of same-site pair interactions, of either repul-
sive or attractive nature. The repulsive interaction gives a penalty
of ν ≥ 0 for each same-site pair, while the attractive one instead gives
a reward η ≥ 0, as expressed by the respective interaction energies,

βUr =
ν
2
(n2

1 + n2
2),

βUa = −
η
2
(n2

1 + n2
2).

(22)

In a similar way as for the main model, these systems can be trans-
formed into field theories, with the respective effective energies,

Hr(w1, w2) =
1
2ν
(w2

1 + w2
2) −N log Qr,

Ha(φ1, φ2) =
1

2η
(φ2

1 + φ2
2) −N log Qa.

(23)

Here, w1, w2 and φ1, φ2 are the site fields for the repulsive and
attractive cases, respectively, while Qr and Qa are the conditional,
single particle partition functions, given by Qr = e−iw1

+ e−iw2 and
Qa = e−φ1

+ e−φ2 .
Conveniently, H in each case separates in terms of the sum

and difference of the fields on the two sites, given by W = w1 + w2,
w = w1 − w2 for the repulsive case, and Φ = φ1 + φ2, φ = φ1 − φ2 for
the attractive one. The quadratic terms then become (W2

+ w2
)/4ν

and (Φ2
+ φ2
)/4η, respectively, while the conditional partition

functions factorize as, respectively, Qr = e−iW/2
(e−iw/2

+ eiw/2
) and

Qa = e−Φ/2
(e−φ/2

+ eφ/2
).

As a result, the summed fields, W or Φ, have quadratic effective
energies,

hr(W) =
W2

4ν
+ iN

W
2

,

ha(Φ) =
Φ2

4η
+NΦ,

(24)

and become simple Gaussian variables with rather trivial Langevin
dynamics. Neglecting these, we can focus on the non-trivial
difference fields, w or φ, with the effective energies,

Hr(w) =
w2

4ν
−N log cos(

w
2
),

Ha(φ) =
φ2

4η
−N log cosh(

φ
2
).

(25)

Applying conventional (complex) Langevin dynamics to the
original fields leads to the following dynamics for the difference
fields:

ẇ = −
w
ν
−N tan(

w
2
) + 2 Ξr,

φ̇ = −
φ
η
+N tanh(

φ
2
) + 2 Ξa,

(26)

where Ξr is a standard Gaussian noise with zero mean and
⟨Ξr(t)Ξr(t′)⟩ = δ(t − t′), and similarly for Ξa. As before, the
continuous-time evolution in Eq. (26) has to be approximated by
discrete time equations.

As it turns out, the dynamics differs significantly between the
two cases, and we will, therefore, consider them separately.
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1. Repulsive case
For the repulsive case, the target distribution on the real w line,

determined by Hr [Eq. (25)], reads

P(w) ∝ e−w2/2ν cosN
(w/2), (27)

which is real on the real line, but with a varying sign, at least for
odd N, due to the cosine factor. Henceforth, we will assume N = 1.
Figure 4 illustrates the drift in the complex w plane for two values
of ν.

The zeros of the cosine at odd multiples of π define poles of
H, at which the drift term in the Langevin equation for w diverges
[Eq. (26)]. This leads to wild behavior, unless regulated, e.g., with
a dynamical time step. Between the poles, the drift is smooth and
leaves the real line an invariant manifold that attracts the motion.
On the real w line, the poles at odd multiples of π are repulsive under
the drift and alternate with attracting fixed points. The noise term,
however, spreads out the trajectories.

Thus, it is clear that the real line acts as an attractor for
the Langevin dynamics. In computer simulation with a finite time
step, trajectories will be trapped on the real line, in the intervals
between consecutive poles, and only occasionally pass to a neigh-
boring interval. Within each interval, the resulting distribution will
be proportional to ∣P(w)∣, but with different random normalization
constants in the different intervals, in a manner that depends on the
particular simulation details.

Due to the Gaussian factor in P, for small enough repulsion
strength, ν≪ 1, the distribution is dominated by the central peak
around the fixed point at w = 0, and the error in the Gaussian tail
can be neglected. Hence, we would expect essentially correct long-
term averages from computer simulations of the Langevin dynamics
for small enough ν, while they would deteriorate for larger ν.

2. Attractive case
For the attractive case, on the other hand, the target distribution

on the real φ line, determined by Ha [Eq. (25)], reads

P(φ) ∝ e−φ2/2η coshN
(φ/2), (28)

which is real and positive on the entire real line. For simplicity, we
again focus on the case N = 1. Figure 5 illustrates the drift in the
complex φ plane for two values of η.

In Eq. (28), the cosine of Eq. (27) is replaced by a cosh, which
means that P(φ) instead has zeroes on the imaginary axis. These
zeroes again correspond to poles of H, but are less disturbing, being
away from the real φ line. As in the w case, the real line is invari-
ant, but the drift term now is smooth there [Eq. (26)]. However, the
dynamics close to the real line depends on the size of the attraction
strength η.

For η < 2, the real line is everywhere attracting, and the drift has
a single attractive fixed point there, φ = 0, with a basin of attraction
containing the whole real line. This indicates that a numerical sim-
ulation of the Langevin dynamics [Eq. (26)] will result in long-term
averages consistent with P(φ).

At η = 2, the system undergoes a pitchfork bifurcation, where
the central fixed point at φ = 0 turns unstable, while a previously
repelling pair of fixed points on the imaginary line have closed in
on the origin and instead becomes a pair of attracting fixed points
on the real line, on either side of the origin.

For η > 2, the real line locally attracts only outside a pair of
points lying inside the new attracting fixed points; however, a strip
around the real line, ∣Im φ∣ < π, is attracting. Within this strip,
there are no sampling barriers in the real direction, indicating that
Langevin sampling may not suffer from the same problems as in the
repulsive case.

FIG. 4. Drift in the complex w plane of the repulsive toy model with N = 1, for (a) ν = 1 and (b) ν = 3. The arrows are normalized and indicate only the direction of the
drift. The magnitude of the drift is indicated by the background color. Red symbols indicate attractive fixed points (filled circles) and poles (plus signs). The latter are
repelling/attracting in the real/imaginary direction, respectively.
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FIG. 5. Drift in the complex φ plane of the attractive toy model with N = 1, for (a) η = 1 and (b) η = 3. The arrows are normalized and indicate only the direction of the drift.
The magnitude of the drift is indicated by the background color. Red symbols indicate attractive fixed points (filled circles), repulsive fixed points (open circles), and poles
(plus signs). The latter are repelling/attracting in the real/imaginary direction, respectively.

3. Numerical results and implications
We have performed a set of simulations to probe the perfor-

mance of the complex Langevin method for both the repulsive and
the attractive toy model, using N = 1. Figure 6(a) shows the second
moment of w for the repulsive model, as compared to the correct
value ⟨w2

⟩ = 2ν − ν2. Likewise, Fig. 6(b) shows the second moment
of φ for the attractive model, as compared to the correct value
⟨φ2
⟩ = 2η + η2. The simulations, indeed, confirm that the method

significantly deteriorates in the repulsive case for ν ≳ 0.5, while no

notable deviation from the correct values is seen in the attractive
case.

This toy model illustrates how the Langevin dynamics yields
correct results for an attractive pair interaction, but deteriorates for
a strong enough repulsive one, due to loss of ergodicity, in this case
caused by poles on the real line. This behavior is qualitatively similar
to what we observe in the larger model, where the complex Langevin
dynamics fails to yield correct results when the repulsive part of the
interaction is too large as compared to the attractive part.

FIG. 6. Simulation data (red symbols) vs theoretical results (blue lines) for the toy model with N = 1. (a) Repulsive case: the second moment of w as a function of ν.
Simulation data are well behaved for small ν, but deteriorate at ν ≈ 0.5. This erratic behavior will only become worse for higher ν values and is conjectured to be due to loss
of ergodicity. (b) Attractive case: the second moment of φ as a function of η. Simulation data follow the theoretical curve over the whole range.
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The similarity in behavior suggests that also for the larger
model, the problems might be due to loss of ergodicity. Note that the
zeros of Q form pole manifolds of H with a complex codimension
one, corresponding a real codimension two. Normally, this should
not jeopardize ergodicity. However, if there exists an attractor in the
field space of codimension one or more – such as the real line in the
repulsive toy model—ergodicity could be destroyed.

We speculate that the failure of the complex Langevin algo-
rithm for strong repulsion might be due to a bifurcation to a
situation with a codimension-one attractor, inside which the pole
manifold may have a real codimension one. This would be enough
to block trajectories and destroy ergodicity for the exact continuum
version of the complex Langevin dynamics. In computer simulations
with a finite time step, trajectories may actually jump over the pole
blockage, but in a way leading to erroneous probabilities.

C. HP chains
We now return to the HP lattice model, with repulsion strength

Λ. In the lattice gas (Sec. III A), we saw that Λ = 2 was too small
to prevent condensed droplets from collapsing, whereas this prob-
lem was significantly alleviated when using Λ = 5. In this subsection,
we present some simulation results for two ten-bead HP sequences,
obtained with Λ = 5. We wish to explore how the FTS method
performs when applied to chain systems at this Λ.

The two HP sequences considered are the alternating sequence
(HP)5, called A, and the block sequence H5P5, called B, which share
the same composition. These two sequences have previously been
studied using a coarse-grained continuous model,40,41 where cluster
formation was found to set in at a higher temperature for sequence
B than for sequence A. However, the clusters formed by sequence
B were micelle-like and, therefore, did not represent a bulk phase.
By contrast, sequence A did phase separate.40,41 These findings are
consistent with the results obtained using a related model.42,43

Here, we consider systems consisting of 64 copies of either the
A or the B sequence, on an elongated 36 × 122 grid. Figure 7 shows
the β-dependence of the longitudinal bead density distribution, ρ(z),
using PBS data obtained with the Wang–Landau algorithm. Here,
before averaging over snapshots, the distribution ρ(z) in a given

TABLE I. Estimates of the energy U obtained with FTS and PBS for the ten-bead HP
sequences A and B at β = 0.5 and β = 1.0, for Λ = 5 and 64 chains on a 36 × 122

lattice.

Sequence A Sequence B

β = 1.0 β = 0.5 β = 1.0 β = 0.5

FTS −4558 ± 16 −2992 ± 15 −7858 ± 14 −6253 ± 12
PBS − 102 ± 15 − 12 ± 9 − 549 ± 15 − 22 ± 15

snapshot is shifted, in such a way that if a single droplet is present,
then its center of mass ends up close to the center of the box (in the z
direction). From Fig. 7, it can be seen that cluster formation, indeed,
sets in at a lower β for sequence B than for sequence A, as in previ-
ous work.40,41 We estimate that βt ≈ 0.77 ± 0.01 for sequence B and
βt ≈ 1.31 ± 0.03 for sequence A.

We test the FTS method using β = 0.5 and β = 1.0. Table I com-
pares the FTS data for the energy estimator UFT [Eq. (17)] with the
PBS data for the energy U. The βt estimates above imply that a large
cluster is present in only one of the four systems studied, namely,
for sequence B at β = 1.0. Therefore, the energy U is much lower in
this system than in the other three. In all four cases, we find that
the FTS method severely underestimates U, which is not unexpected
given that Λ = 5 (cf. Fig. 1). Now, it may be argued that the energy
is a model-dependent quantity and, therefore, less interesting than
basic structural properties, such as the presence or absence of large
clusters.

In Fig. 8, we, therefore, also compare bead density profiles,
ρ(z), obtained using FTS and PBS, respectively, at the same two β
values. As expected, the PBS profiles show that a large droplet is
present for sequence B at β = 1.0, but not in any of the other three
systems studied. In sharp contrast, the FTS data erroneously indicate
that a large cluster is present in all four systems. Thus, in the systems
studied, there is clear tendency for FTS sampling errors to cause a
bias toward cluster formation. We also note that the maximal (aver-
aged aligned) densities ρ(z) from the FTS runs tend to be high, with

FIG. 7. Heat maps showing the temperature (1/β)-dependence of the bead density profile ρ(z), for (a) sequence A and (b) sequence B. At a given β, ρ(z) is either clearly
unimodal, indicating the presence of a single dominant droplet, or weakly bimodal. In the latter case, the system tends to exhibit two main clusters. The data are from PBS
simulations with the Wang–Landau algorithm.35 The simulated systems consist of 64 chains on a 36 × 122 lattice, for Λ = 5.
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FIG. 8. Bead density profiles, ρ(z), calculated using FTS (blue) and PBS (red) for sequences A (dotted) and B (dashed), for (a) β = 0.5 and (b) β = 1.0. The profiles are
either clearly unimodal, indicating the presence of a single dominant droplet, or weakly bimodal. The latter systems tend to exhibit two main clusters. The FTS results for
ρ(z) are obtained using a field-theoretic estimator derived from Eq. (15). The simulated systems consist of 64 chains on a 36 × 122 lattice, for Λ = 5.

values exceeding unity for sequence B. A value of unity corresponds
to one bead per site.

IV. DISCUSSION
FTS offers a new tool for investigating the mechanisms of

biomolecular LLPS, with potential advantages over traditional PBS.
The FTS approach has previously been used to investigate various
systems where phase separation is driven by electrostatics.21,25–29

In this paper, we have studied systems where phase separation is
driven by short-range hydrophobic attraction. In preliminary work,
we considered a continuous protein model similar to those in previ-
ous FTS studies,21,25–29 but with Coulomb interaction replaced by an
effective attraction between hydrophobic beads. For simplicity, we
decided, however, to focus on a lattice-based HP protein model, with
finite same-site repulsion and nearest-neighbor attraction between
HH pairs. We showed that this model can be mapped onto a field
theory with a simple structure by using an unconventional link-
based form for the HH attraction. One advantage of choosing this
lattice-based protein model is that FTS results can then be directly
compared with PBS data, without having to extrapolate the FTS
results to the continuum limit.

For a protein model to be amenable to standard FTS tech-
niques, its excluded-volume repulsion has to be soft. However,
if this repulsion is made too soft, one risks affecting the phase
behavior.14,21,28 A previous FTS study found that the excluded-
volume strength affected the phase separation propensity in
one-component polyampholyte systems,21 in line with theoreti-
cal results.44 Using both FTS and PBS, another study found that
the excluded-volume strength affected demixing in two-component
polyampholyte systems.28

In this paper, we have investigated the ability of the FTS
method to accurately capture the thermodynamic behavior of the
HP lattice protein model, with same-site repulsion strength Λ. We
examined in some detail the special case of a lattice gas, consist-
ing of (one-bead) H particles. We asked whether, at a given Λ,
FTS remains accurate at sufficiently large β to permit the study

of droplet condensation. Unfortunately, we find that this holds
only for Λ values too small to prevent the formation of artificially
compact droplets (Fig. 3). For small Λ, the condensation transi-
tion is sharp, with a strongly bimodal energy distribution (Fig. 2),
which renders standard constant-temperature PBS inefficient. It is
therefore interesting to note from a sampling perspective that FTS
data describe the condensation transition quite well for Λ = 0.5
(Fig. 2).

To get an idea of the origin and generality of the FTS sam-
pling problems observed at large Λ in the lattice gas, we introduced
a minimal two-site toy model with either attractive or repulsive
interaction, which can be solved analytically. We find that this
model can be simulated using the complex Langevin method if
the interaction is attractive, whereas sampling problems arise if the
interaction is repulsive and strong. We, thus, observe the same
trends as in our lattice gas simulations. This similarity hints that
the FTS sampling problems might be of the same nature for the lat-
tice gas as in the toy model, where they can be linked to the loss of
ergodicity.

Finally, we also presented results from some simulations of HP
chains. Here, we wanted to explore the size and nature of the FTS
sampling errors in chain systems with significant same-site repul-
sion. We studied 64-chain systems for two ten-bead HP sequences
and observed a clear tendency for FTS sampling errors to cause a
bias toward droplet formation. In particular, using a temperature
at which both systems should be free from large clusters, FTS data
instead indicated the presence of a high-density droplet in both the
cases.

In summary, from our investigations of the HP lattice and
toy models and our preliminary studies of the above-mentioned
off-lattice model, we believe that the observed sampling problems
caused by too strong repulsion have some generality. At the same
time, we have certainly not fully explored alternative forms for the
Langevin dynamics24 or alternative time integration schemes.45 Fur-
thermore, in the HP model, the gap is not huge between the two
regions with acceptable FTS sampling errors and physically accept-
able repulsion strength, respectively. To determine whether this
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gap can be bridged by, for example, fine-tuning the FTS approach,
further investigation is needed.
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