001     904794
005     20230522125343.0
024 7 _ |a 10.1016/j.jmmm.2021.168535
|2 doi
024 7 _ |a 0304-8853
|2 ISSN
024 7 _ |a 1873-4766
|2 ISSN
024 7 _ |a 2128/31121
|2 Handle
024 7 _ |a WOS:000710711300007
|2 WOS
037 _ _ |a FZJ-2022-00124
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Weßels, Teresa
|0 P:(DE-Juel1)171678
|b 0
|e Corresponding author
245 _ _ |a Quantitative imaging of the magnetic field distribution in an artificial spin ice studied by off-axis electron holography
260 _ _ |a Amsterdam
|c 2022
|b North-Holland Publ. Co.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1653287934_32304
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The magnetic state, including the stray fields, of a chiral pattern of interacting permalloy nanomagnets is studied using off-axis electron holography in the transmission electron microscope. The projected in-plane magnetisation of the nanomagnets is reconstructed from the experimental magnetic phase shift using model-based iterative reconstruction. The thickness and chemical composition of the nanomagnets are characterised in cross-sectional geometry. The average value of the magnetic polarisation of the permalloy through the thickness of the sample is measured to be 0.73 T. This value is lower than the bulk value of 1 T, likely as a result of a combination of the microstructure, composition and possible oxidation of the nanomagnets. The experimental results are compared to micromagnetic simulations to confirm the magnetic states and to understand the switching processes in the magnetic nanoislands.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kovács, András
|0 P:(DE-Juel1)144926
|b 1
|e Corresponding author
700 1 _ |a Gliga, Sebastian
|0 0000-0003-1729-1070
|b 2
700 1 _ |a Finizio, Simone
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Caron, Jan
|0 P:(DE-Juel1)157760
|b 4
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 5
773 _ _ |a 10.1016/j.jmmm.2021.168535
|g Vol. 543, p. 168535 -
|0 PERI:(DE-600)1479000-2
|p 168535 -
|t Journal of magnetism and magnetic materials
|v 543
|y 2022
|x 0304-8853
856 4 _ |u https://juser.fz-juelich.de/record/904794/files/Invoice_OAD0000153170.pdf
856 4 _ |u https://juser.fz-juelich.de/record/904794/files/1-s2.0-S0304885321007897-main-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904794
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144926
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0000-0003-1729-1070
910 1 _ |a Swiss Light Source
|0 I:(DE-HGF)0
|b 2
|6 0000-0003-1729-1070
910 1 _ |a Paul Scherrer Institute
|0 I:(DE-HGF)0
|b 2
|6 0000-0003-1729-1070
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157760
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-17
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21