000904832 001__ 904832
000904832 005__ 20230123110548.0
000904832 0247_ $$2doi$$a10.1007/s10489-021-02808-2
000904832 0247_ $$2ISSN$$a0924-669X
000904832 0247_ $$2ISSN$$a1573-7497
000904832 0247_ $$2Handle$$a2128/31237
000904832 0247_ $$2altmetric$$aaltmetric:120256556
000904832 0247_ $$2WOS$$aWOS:000739280000001
000904832 037__ $$aFZJ-2022-00157
000904832 041__ $$aEnglish
000904832 082__ $$a004
000904832 1001_ $$0P:(DE-Juel1)177985$$aRüttgers, Mario$$b0$$eCorresponding author
000904832 245__ $$aA machine-learning-based method for automatizing lattice-Boltzmann simulations of respiratory flows
000904832 260__ $$bSpringer Science + Business Media B.V$$c2022
000904832 3367_ $$2DRIVER$$aarticle
000904832 3367_ $$2DataCite$$aOutput Types/Journal article
000904832 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1654063099_24166
000904832 3367_ $$2BibTeX$$aARTICLE
000904832 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904832 3367_ $$00$$2EndNote$$aJournal Article
000904832 520__ $$aMany simulation workflows require to prepare the data for the simulation manually. This is time consuming and leads to a massive bottleneck when a large number of numerical simulations is requested. This bottleneck can be overcome by an automated data processing pipeline. Such a novel pipeline is developed for a medical use case from rhinology, where computer tomography recordings are used as input and flow simulation data define the results. Convolutional neural networks are applied to segment the upper airways and to detect and prepare the in- and outflow regions for accurate boundary condition prescription in the simulation. The automated process is tested on three cases which have not been used to train the networks. The accuracy of the pipeline is evaluated by comparing the network-generated output surfaces to those obtained from a semi-automated procedure performed by a medical professional. Except for minor deviations at interfaces between ethmoidal sinuses, the network-generated surface is sufficiently accurate. To further analyze the accuracy of the automated pipeline, flow simulations are conducted with a thermal lattice-Boltzmann method for both cases on a high- performace computing system. The comparison of the results of the respiratory flow simulations yield averaged errors of less than 1% for the pressure loss between the in- and outlets, and for the outlet temperature. Thus, the pipeline is shown to work accurately and the geometrical deviations at the ethmoidal sinuses to be negligible.
000904832 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000904832 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x1
000904832 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904832 7001_ $$0P:(DE-HGF)0$$aWaldmann, Moritz$$b1
000904832 7001_ $$0P:(DE-HGF)0$$aSchröder, Wolfgang$$b2
000904832 7001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b3
000904832 773__ $$0PERI:(DE-600)1479519-X$$a10.1007/s10489-021-02808-2$$p9080–9100$$tApplied intelligence$$v52$$x0924-669X$$y2022
000904832 8564_ $$uhttps://juser.fz-juelich.de/record/904832/files/R%C3%BCttgers2022_Article_AMachine-learning-basedMethodF.pdf$$yOpenAccess
000904832 8767_ $$82937582368$$92021-12-03$$a1200177118$$d2022-06-01$$eAPC$$jZahlung erfolgt
000904832 909CO $$ooai:juser.fz-juelich.de:904832$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000904832 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177985$$aForschungszentrum Jülich$$b0$$kFZJ
000904832 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177985$$aInstitute of Aerodynamics and Chair of Fluid Mechanics, RWTH Aachen University $$b0
000904832 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177985$$a Jülich Aachen Research Alliance - Center for Simulation and Data Sciences$$b0
000904832 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Aerodynamics and Chair of Fluid Mechanics, RWTH Aachen University$$b1
000904832 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Jülich Aachen Research Alliance - Center for Simulation and Data Sciences$$b1
000904832 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aInstitute of Aerodynamics and Chair of Fluid Mechanics, RWTH Aachen University $$b2
000904832 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Jülich Aachen Research Alliance - Center for Simulation and Data Sciences$$b2
000904832 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b3$$kFZJ
000904832 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165948$$a Jülich Aachen Research Alliance - Center for Simulation and Data Sciences$$b3
000904832 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000904832 9141_ $$y2022
000904832 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904832 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000904832 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-02-03$$wger
000904832 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904832 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000904832 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-22$$wger
000904832 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000904832 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
000904832 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000904832 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-22
000904832 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000904832 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL INTELL : 2021$$d2022-11-22
000904832 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL INTELL : 2021$$d2022-11-22
000904832 920__ $$lno
000904832 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000904832 9801_ $$aFullTexts
000904832 980__ $$ajournal
000904832 980__ $$aVDB
000904832 980__ $$aUNRESTRICTED
000904832 980__ $$aI:(DE-Juel1)JSC-20090406
000904832 980__ $$aAPC