
Filter Functions for Quantum Processes under Correlated Noise

Pascal Cerfontaine ,* Tobias Hangleiter , and Hendrik Bluhm
JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and

RWTH Aachen University, 52074 Aachen, Germany

(Received 3 March 2021; accepted 23 August 2021; published 18 October 2021)

Many qubit implementations are afflicted by correlated noise not captured by standard theoretical tools
that are based on Markov approximations. While independent gate operations are a key concept for
quantum computing, it is actually not possible to fully describe noisy gates locally in time if noise is
correlated on times longer than their duration. To address this issue, we develop a method based on the filter
function formalism to perturbatively compute quantum processes in the presence of correlated classical
noise. We derive a composition rule for the filter function of a sequence of gates in terms of those of the
individual gates. The joint filter function allows us to efficiently compute the quantum process of the whole
sequence. Moreover, we show that correlation terms arise which capture the effects of the concatenation
and, thus, yield insight into the effect of noise correlations on gate sequences. Our generalization of the
filter function formalism enables both qualitative and quantitative studies of algorithms and state-of-the-art
tools widely used for the experimental verification of gate fidelities like randomized benchmarking, even in
the presence of noise correlations.
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Introduction.—A key concept in gate-based quantum
computing is the composition of algorithms from a uni-
versal set of quantum gates. In real physical devices, gate
implementations are subject to noise that causes
decoherence and gate errors. If this noise is uncorrelated
on timescales larger than the gate duration, each gate can
still be described individually by a quantum operation
acting on density matrices. A closely related approach is the
use of a master equation in Lindblad form [1], which
governs the dynamics of density matrices under the
influence of Markovian noise (defined, here, as noise that
is uncorrelated on the time scale of the system dynamics).
However, the assumption of uncorrelated noise is often

unjustified. A prominent example is 1=f noise character-
istic for flux noise in superconducting qubits and electrical
noise in quantum dot qubits and ion trap qubits, which are
among the most important types of noise for solid state
qubits [2–5]. Hence, the standard tools for mathematically
describing gate operations are not suited for capturing
experimentally relevant effects that are important for
understanding the capabilities of quantum computing
systems. Furthermore, the process description of a gate
sequence can deviate from the concatenation of the
individual gates’ processes. For example, one may expect
the fidelity requirements for quantum error correction to be
more stringent for correlated noise as errors of different
gates can interfere constructively [6].
Here, we present an intuitive and computationally

efficient method based on the filter function (FF) formalism
]7–10 ] that overcomes these limitations for the purpose of

computing process descriptions for arbitrary sequences of

gate operations subject to correlated, classical Gaussian
noise. This makes our approach attractive for studying the
noise properties of quantum algorithms as we demonstrate
with a simple example. Because widely used tools for the
experimental verification of gate fidelities, such as gate set
tomography and randomized benchmarking, rely on gate
sequences, our approach can also shed light on the
applicability of these protocols in the presence of correlated
classical noise [11–13] which violates a core assumption of
standard derivations [14,15]. Furthermore, our approach
captures corresponding corrections in terms of FFs.
FFs were originally introduced to compute the decay of

phase coherence under dynamical decoupling sequences
[16–19] consisting of wait times and perfect π pulses. For
small noise strengths, they were perturbatively extended
to quantum gates [20–23] to compute gate fidelities
[21,22,24] and develop strategies for noise mitigation
[11,25–27]. Here, we build on these results to compute
quantum processes for gates and gate sequences on an
arbitrary number of qubits and to analyze their concatena-
tion properties. Relevant quantities like fidelities, meas-
urement statistics, and leakage can be extracted from
process descriptions or directly from corresponding filter
functions. For ease of adoption, we also provide an easy-to-
use PYTHON software package [28,29].
Quantum processes.—We begin by deriving an approxi-

mate form of the average quantum process of a quantum
gate of duration τ in the presence of arbitrary classical
noise. Our approach builds on the fidelity calculations of
[20,21], which we briefly review and generalize in some
points. Concretely, we consider a system described by the
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Hamiltonian HðtÞ ¼ HcðtÞ þHnðtÞ. The arbitrary, time-
dependent control Hamiltonian HcðtÞ generates the desired
unitary evolution UcðtÞ. This evolution is perturbed by the
noise Hamiltonian HnðtÞ ¼

P
α bαðtÞBαðtÞ which contains

zero-mean, independent and identically distributed,
classical Gaussian noise variables bαðtÞ. We generalize
beyond earlier work by additionally allowing for a deter-
ministic time dependence of the noise operators BαðtÞ in
H̃n but, for simplicity, restrict ourselves to independent
noise sources α and refer to Ref. [28] for the straightfor-
ward extension to cross-correlated noise.
Next, we write the propagator for HðtÞ as UðtÞ ¼

UcðtÞŨðtÞwhere the unitary error propagator ŨðtÞ contains
the effect of a specific noise realization. We transformHn to
the interaction picture with respect to the control
Hamiltonian, H̃nðtÞ ≔ U†

cðtÞHnðtÞUcðtÞ, so that ŨðtÞ sat-
isfies i dŨðtÞ=dt ¼ H̃nðtÞŨðtÞ. Note that we set ℏ ¼ 1 and
denote operators in the interaction picture by a tilde
throughout this Letter. Ũðt ¼ τÞ≡ Ũ can be generated
by an effective Hamiltonian Heff without explicit time
dependence, Ũ ¼ expð−iHeffτÞ.
This effective Hamiltonian can be expanded using the

Magnus expansion (ME) Heff ¼
P∞

μ¼1 Heff;μ. Since the
ME preserves the algebraic structure of the expanded
quantity, Heff remains Hermitian even after truncating
the series, allowing us to neglect contributions from higher
orders. The first and second ME term are given by
Heff;1 ¼ 1=τ

R
τ
0 dtH̃nðtÞ and Heff;2 ¼ −i=2τ

R
τ
0 dt1

R t1
0 dt2

½H̃nðt1Þ; H̃nðt2Þ�, respectively [30,31]. Higher orders pro-
vide diminishing contributions if the noise strength
ξ ≔

P
α kBαkσατ ≪ 1, where σα ¼ hbαð0Þ2i1=2 is the stan-

dard deviation of the noise, because they include an
increasing number of factors of H̃n which we assumed
to be small [32]. This may be interpreted as the condition
that the angle by which a specific noise realization bαðtÞ
has rotated the (generalized) Bloch vector away from its
intended trajectory after time τ must be small.
We proceed beyond the works by Green et al. [20],

where Ũ was used to compute the gate fidelity, to compute
the full, noise-averaged quantum process ŨðρÞ ≔ hŨρŨ†i.
We expand the error propagator Ũ in a Taylor series,
keeping terms up to and includingOðξ2Þ, which yields (see,
also, Refs. [33,34]),

ŨðρÞ − ρ

τ
¼ −ih½Heff;2; ρ�i

þ τhHeff;1ρHeff;1 −
1

2
fH2

eff;1; ρgi þOðξ4Þ; ð1Þ

where square (curly) brackets denote the (anti-) commu-
tator and h•i represents averaging over noise realizations.
We have already dropped terms that vanish after perform-
ing the average either due to hHeff;1i ¼ 0 or because
correlation functions evaluated at an odd number of time

points vanish for zero-mean Gaussian noise. The form of
Eq. (1) is reminiscent of a master equation in Lindblad form
with Hamiltonian Heff;2 and jump operators Heff;1 with
associated decay rate τ. However, instead of a differential
equation governing the time evolution of ρ, it represents a
finite difference equation with dρ=dt → Δρ=τ that
describes the average evolution after the time τ at which
the gate has completed. For a single qubit,Heff;2 generates a
rotation, whereas the terms involvingHeff;1 correspond to a
deformation of the Bloch sphere into an ellipsoid.
While it is possible to evaluate both first and second

order ME terms, it is more computationally involved to
calculate the nested integrals contained in Heff;2 (see
Ref. [21] for an explicit treatment of higher orders).
However, we argue that these terms are of less interest
in typical use cases. First, they vanish under the trace and,
hence, do not contribute to the fidelity of the quantum
operation, F ∝ trŨ. Furthermore, second order ME terms
represent the unitary (Hamiltonian) part of Eq. (1) that can
be canceled to leading order by a unitary rotation as
commutators of Heff;1 and Heff;2 are Oðξ3Þ. Thus, it is
possible to calculate ŨðρÞ up to a unitary rotation just by
using first order ME terms. In many contexts, this is
sufficient since unitary errors are typically calibrated out
in experiments, using a variety of methods [15,35–39].
However, our work shows that, even if all individual gates
are perfectly calibrated, a sequence of gates might incur an
additional unitary error not removed by individual calibra-
tion. Moreover, calibration procedures using gate sequen-
ces may be affected by noise-induced coherent errors. To
study such effects, second order ME terms can be evaluated
following a procedure we lay out in Ref. [28]. Finally, we
note that truncating the expansion in Eq. (1) can, in
principle, lead to unphysical dynamics, in the sense that
the truncated map is not completely positive (CP) [40]. In
practice, this should not pose a relevant limitation because
ŨðρÞ differs from the true final state by terms of Oðξ4Þ,
leading to errors of the same order in measurement results.
Thus, unphysical errors should be small as long as the
perturbative expansion is well defined. We have verified
this hypothesis in (random) numerical experiments and
found negative Choi eigenvalues [41] to be comparatively
small in magnitude, should they occur at all.
For Gaussian noise, it is possible to go beyond our

perturbative treatment via an exact solution requiring only
first and second order ME terms by applying the method of
cumulant expansions to a stochastic Liouville equation
[28]. As it turns out, this solution is simply the matrix
exponential of the superoperator form of Eq. (1), so that the
latter takes on the role of the generator. Because Eq. (1) is in
Lindblad form, it follows that its exponential is a CP map
[42]. Thus, while the exact solution guarantees a physical
output state, one loses qualitative insight into contributions
from, for instance, different noise operators Bα because the
matrix exponential can, in general, only be evaluated
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numerically. Further details, including the evaluation of
second order ME terms, are given in our related work [28].
Here, we focus on the nonunitary part of the weak-noise
approximation Eq. (1) and, now, describe how to evalu-
ate it.
We turn to the FF formalism and express correlation

functions of noise variables by their power spectral density
and the evolution of the interaction picture noise operators
by their FFs in the Fourier domain. Expanding H̃nðtÞ ¼P

α bαðtÞB̃αðtÞ in a Hermitian and orthonormal operator
basis fσkgd2−1k¼0 satisfying σ†k ¼ σk and trðσkσlÞ ¼ δkl, we
obtain

H̃nðtÞ ¼
X
αk

bαðtÞB̃αkðtÞσk: ð2Þ

A simple choice for the σk is the n-qubit Pauli basis
f1; σx; σy; σzg⊗n which we use in the following. We
identify the coefficients of the expansion,

B̃αkðtÞ ¼ tr½B̃αðtÞσk� ¼ tr½U†
cðtÞBαðtÞUcðtÞσk�; ð3Þ

as the control matrix from Ref. [21] (which is related to the
Pauli transfer matrix representation of a quantum process).
Inserting Eq. (2) into the effective master equation Eq. (1)
and dropping second order ME terms as justified above, we
find

ŨðρÞ − ρ ≈
X
α

X
kl

Γα;kl

�
σkρσl −

1

2
fσkσl; ρg

�
; ð4Þ

with the matrix of decay amplitudes Γα with entries

Γα;kl ¼
Z

τ

0

Z
τ

0

dt1dt2hbαðt1Þbαðt2ÞiB̃αkðt1ÞB̃αlðt2Þ: ð5Þ

With this basis expansion, we have transformed the
effective master equation to a basis in which the jump
operators σk are time independent, and only the decay
amplitudes are functions of the internal dynamics of the
gate and the noise. Hence, we can carry out the integration
not on the operator level of the effective master equation,
but on the level of the decay amplitudes Γα. This allows us
to employ the FF formalism to evaluate Γα in Fourier space.
We define the two-sided noise spectral density SαðωÞ as the
Fourier transform of the autocorrelation function of the
noise variable bαðtÞ via

hbαðt1Þbαðt2Þi ¼
Z

∞

−∞

dω
2π

SαðωÞe−iωðt1−t2Þ; ð6Þ

where we assume that the noise is wide-sense stationary.
Inserting into Eq. (5) yields

Γα;kl ¼
Z

∞

−∞

dω
2π

SαðωÞB̃�
αkðωÞB̃αlðωÞ; ð7Þ

with B̃αkðωÞ ¼
R
τ
0 dtB̃αkðtÞeiωt. The generalized FF

Fα;klðωÞ ¼ B̃�
αkðωÞB̃αlðωÞ describes the sensitivity of the

decay amplitudes Γα;kl to noise source α at frequency ω.
Now, we can use Eq. (4) together with Eq. (7) to obtain the
quantum process ŨðρÞ generated by all noise sources up to
first order ME and second order in ξ.
Given Ũ, it is straightforward to calculate key figures of

merit for quantum gate operations like gate fidelity, leakage
(i.e., the probability to leave the subspace of valid computa-
tional states of a physical system whose Hilbert space is
often larger than the computational subspace), the diamond
distance to the identity, or expectation values of measure-
ments based on known relations, as we lay out in detail in
Refs. [28,43]. It is also possible to define specific FFs that
allow us to directly compute these quantities from the
spectral density. For example, consider the average gate
fidelity to the identity [49,50] given by F ¼ ðtrŨ þ
dÞ=dðdþ 1Þ for whose evaluation only first order
Magnus terms are relevant [cf. Eq. (1)]. We obtain

F ¼ 1 −
1

dþ 1

X
αk

Γα;kk; ð8Þ

where, in line with previous literature [20,21], we
can identify the fidelity FF up to first order ME as
FαðωÞ ¼

P
k jB̃αkðωÞj2 which captures the fidelity’s sus-

ceptibility to noise source α at frequency ω.
Filter functions of gate sequences.—Now, we show that

the interaction picture noise operators B̃α for concatenated
gates follow a simple composition rule that arises because
subsequent gates update the frame of reference for the
interaction picture. In the frequency domain, the total noise
operators can be described as linear combinations of the
single-gate noise operators, each multiplied with a phase
factor corresponding to the gates’ temporal positions. Since
filter functions are quadratic in the noise operators, there
arise correlation terms between FFs at different positions in
a gate sequence which constitute corrections to the FFs of
the separate gates. Our initial goal is to compute the decay
amplitudes Γα for a sequence of quantum gates, and later
on, we will use these results to single out corrections arising
from the concatenation alone.
We consider that the control UcðtÞ is implemented by

concatenating several gates Pg ≡Ucðtg; tg−1Þ, g ∈
f1; 2;…; Gg with t0 ≡ 0, tG ≡ τ. Accordingly, we define
the cumulative propagators Qg ¼ PgPg−1 � � �P0 with P0 ≡
1 such that the total control operation is given by Q≡QG.
Denoting by Qðg−1Þð•Þ ¼ Q†

g−1 •Qg−1 the superoperator
transforming to the interaction picture with respect to
Qg−1, we can write the interaction picture noise operators
at time t ∈ ðtg−1; tg� as
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B̃αðtÞ ¼ Qðg−1Þ½B̃ðgÞ
α ðt − tg−1Þ�; ð9Þ

where B̃ðgÞ
α ðtÞ are the noise operators in the interaction

picture of the gth gate. We obtain the Fourier transform of
B̃αðtÞ by splitting up the integral into the time intervals
ðtg−1; tg�,

B̃αðωÞ ¼
XG
g¼1

eiωtg−1Qðg−1Þ½B̃ðgÞ
α ðωÞ�; ð10Þ

with B̃ðgÞ
α ðωÞ ¼ RΔtg

0 dteiωtB̃ðgÞ
α ðtÞ and Δtg ¼ tg − tg−1

(cf. Ref. [21]). The terms B̃αkðωÞ ¼ tr½B̃αðωÞσk� can now
be used to calculate the generalized FFs Fα;klðωÞ. Thus,
Eq. (10) illustrates that generalized FFs of an entire
sequence of gates can be easily calculated if the noise

operators B̃ðgÞ
α ðωÞ of the single gates have already been

computed, for example, by following Ref. [20] or Ref. [28].
Correlation filter functions.—By combining Eqs. (4) and

(10), we find leading-order corrections to the quantum
process of a sequence of gates that arise solely from the
concatenation operation itself and, hence, allow valuable
insight into effects relevant for algorithms. We call these
corrections, which depend on the positions ðg; g0Þ of two
gates in a sequence with g ¼ g0 corresponding to the regular
FF of the gth gate, correlation filter functions (CFFs). We
explicitly show this relation for the well-known fidelity FF,
but as with regular FFs, one may also derive CFFs for other
quantities as linear combinations of generalized CFFs. We
use Eq. (8) together with Eqs. (7) and (10) to compute the
infidelity I ¼ 1 − F and find that

I ≕
XG
g¼1

�
I ðgÞ þ 1

dþ 1

X
α

XG
g0¼1

g0≠g

Z
∞

−∞

dω
2π

SαðωÞFðgg0Þ
α ðωÞ

�
;

ð11Þ

where I ðgÞ is the infidelity of the gth pulse alone and

Fðgg0Þ
α ðωÞ [51] is a FF describing correlation effects between

the pulses at positions g and g0 in the sequence due to noise
source α. By summing over all gates, the regular fidelity FF

FαðωÞ ¼
P

G
g;g0¼1

Fðgg0Þ
α ðωÞ can be obtained. Unlike FαðωÞ,

Fðgg0Þ
α ðωÞ is complex valued and not strictly positive (but

Hermitian in g and g0 so that the sum over all g, g0 is real).
Moreover, since second order ME terms are traceless,
Eq. (11) is exact up to Oðξ4Þ.
CFFs can, for example, capture the effect of dynamical

error suppression in spin echo experiments, which we can
view as a sequence of an idle pulse, a π pulse, and another
idle pulse. The regular FFs of each of these individual pulses,

that isFðggÞ
α ðωÞ for g ∈ f1; 2; 3g, are characterized by a finite

value at low frequencies as the idle pulses simply correspond

to free induction decays with FF ≃ sin2ðωtg=2Þ=ω2 [18].
The error cancellation for low frequency dephasing (σz)

noise then arises mainly from the CFF Fð1;3Þ
z ðωÞ ≃

−sin2ðωτidle=2Þ expðiωτidleÞ=ω2 between the two idle pulses
which we may interpret as destructive interference. As a
more involved example, consider a quantum Fourier trans-
form [52] on four qubits coupled via nearest neighbor
interactions [53]. Using our approach, we investigate the
effects of adding spin echos to idling qubits on the total
algorithm’s fidelity. We apply four πx pulses on the fourth
qubit, two before a controlled phase gate and two after-

ward [43] and compute the correlation infidelities I ðgg0Þ ¼
½1=ðdþ 1Þ�Pα

R
∞
−∞ðdω=2πÞSαðωÞFðgg0Þ

α ðωÞ between dif-
ferent pulses [the second term in Eq. (11)]. The results
are shown in Fig. 1 for 1=f noise on σy on the fourth qubit.
Certain pairs of gates have negative correlation infidelities
on the order of magnitude of individual gate infidelities,
indicating that they cancel errors to a large degree. Indeed, a
more than threefold reduction of the total infidelity is
observed. Repeating the analysis for white noise reveals
that the echo pulses do not change the fidelity significantly.
Conclusion and outlook.—In this work, we have shown

how to efficiently obtain process matrices on an arbitrary
number of qubits in the presence of correlated classical
noise. Many relevant quantities can easily be derived from
such a process description, including fidelity measures,
measurement statistics, and leakage. In addition, we have
introduced the concept of CFFs, which describe corrections
when sequences of gates are executed in the presence of
noise correlations. As such, CFFs are particularly relevant
for testing the notion of independent gates in quantum
computing applications, and can be used to calculate

FIG. 1. Correlation infidelities I ðgg0Þ for a four-qubit quantum
Fourier transform circuit without (a) and with (b) additional πx
pulses on the fourth qubit. We only consider σy noise on the
fourth qubit modeled by a 1=f spectral noise density. The indices
g, g0 ¼ 1;…; 16 indicate the gates’ temporal positions in the
circuit. Without the echo pulses, correlations in the noise give rise
to significant infidelity contributions for gate pairs up to ten clock
cycles apart. Incorporating echoes leads to negative correlation
infidelities between pulses, which, in turn, decreases the total
infidelity, given by

P
gg0 I

ðgg0Þ, by more than a factor of 3 for this
noise channel.
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correction terms when this is not the case. CFFs also
facilitate the analysis of larger circuits by recycling FFs
already computed for individual gates.
We also provide a user-friendly and computationally

efficient open source software package [29]. This package,
an extension to arbitrary bases, the calculation of several
derived quantities, computational efficiency improvements
including periodic driving Hamiltonians, and exact results
for Gaussian noise based on the cumulant expansion are
described in greater detail in Ref. [28]. The latter is
particularly relevant for dynamically corrected gates that
decouple to lowest order from correlated noise so that
second order terms can become dominant [20].
We expect our approach to be useful for analyzing and

improving the performance of experimental systems com-
prising several qubits, for example, by leveraging optimal
control approaches [54]. FFs can be more efficient than
Monte Carlo methods and directly allow further insight into
qualitative effects of different types of noise spectra.
Possible applications include the analysis and construction
of novel dynamical decoupling sequences, noise spectro-
scopy protocols, dynamically corrected gates, small
algorithms, and quantum error correction protocols. Our
results could also facilitate the development of more
realistic qubit benchmarking protocols, which fully take
noise correlations into account.
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