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Filter-function formalism and software package to compute quantum processes
of gate sequences for classical non-Markovian noise
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Correlated, non-Markovian noise is present in many solid-state systems employed as hosts for quantum
information technologies, significantly complicating the realistic theoretical description of these systems. In
this regime, the effects of noise on sequences of quantum gates cannot be described by concatenating isolated
quantum operations if the environmental correlation times are on the scale of the typical gate durations. The
filter-function formalism has been successful in characterizing the decay of coherence under the influence of such
classical, non-Markovian environments, and here we show it can be applied to describe unital evolution within
the quantum operations formalism. We find exact results for the quantum process and a simple composition
rule for a sequence of operations. This enables the detailed study of effects of noise correlations on algorithms
and periodically driven systems. Moreover, we point out the method’s suitability for numerical applications
and present the open-source Python software package filter_functions. Amongst other things, it facilitates
computing the noise-averaged transfer matrix representation of a unital quantum operation in the presence of
universal classical noise for arbitrary control sequences. We apply the presented methods to selected examples.
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I. INTRODUCTION

In the circuit model of quantum computing, computations
are driven by applying time-local quantum gates. Any algo-
rithm can be compiled using sequences of one- and two-qubit
gates [1]. Ideal, error-free gates are represented by unitary
transformations, so that simulating the action of an algorithm
on an initial state of a quantum computer amounts to simple
matrix multiplication. Real implementations are subject to
noise that causes decoherence resulting in gate errors. If the
noise is uncorrelated between gates, its effect can be described
by quantum operations acting as linear maps on density ma-
trices, even when several gates are concatenated. A closely
related approach is the use of a master equation in Lindblad
form [2], which governs the dynamics of density matrices
under the influence of Markovian noise with a flat power
spectral density.

Yet many physical systems used as hosts for qubits do
not satisfy the condition of uncorrelated noise. One example
frequently encountered in solid state systems is that of 1/ f
noise, which in principle contains arbitrarily long correlation
times. It emerges for instance as flux noise in superconduct-
ing qubits and electrical noise in quantum dot qubits [3–6].
Whereas simple approaches exist to treat for example qua-
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sistatic noise, which corresponds to perfectly correlated noise
(i.e., a spectrum with weight only at zero frequency), they
cannot be applied to 1/ f noise because of the wide distri-
bution of correlation times it contains. Thus, there is a gap
in the mathematical descriptions of gate operations for noises
with arbitrary power spectra that exist between the extremal
cases of perfectly flat (white) and sharply peaked (quasistatic)
spectra. To capture experimentally relevant effects important
to understand the capabilities of quantum computing systems,
a universally applicable formalism is hence desirable. For ex-
ample, one may expect the fidelity requirements for quantum
error correction to be more stringent for correlated noise as
errors of different gates can interfere constructively [7]. On
the other hand, it might also be possible to use correlation
effects to one’s benefit, attenuating decoherence by cleverly
constructing the gate sequences in algorithms.

As experimental platforms begin to approach fidelity limits
set by employing primitive pulse schemes [5,8,9] and detailed
knowledge about noise sources and spectra in solid-state sys-
tems becomes available [10–12], control pulse optimizations
tailored towards specific systems will be required to further
push fidelities beyond the error correction threshold [13,14].
This calls for flexible and generically applicable tools as a
basis for the numerical optimization of pulses as well as the
detailed analysis of the quantum processes they effect. In or-
der to obtain a useful description also for gate operations that
decouple from leading orders of noise, such as dynamically
corrected gates (DCGs) [15], beyond leading order or exact
results are required.

In an accompanying publication [16], we presented a
formalism based on filter functions (FFs) and the Magnus
expansion (ME) that addresses these needs and limitations of
the canonical master equation approach for correlated noise.
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Specifically, we showed how process descriptions can be ob-
tained perturbatively for arbitrary classical noise spectra and
derived a concatenation rule to obtain the filter function of
a sequence of gates from those of the individual gates. This
paper extends these results.

Filter functions were originally introduced to describe the
decay of phase coherence under dynamical decoupling (DD)
sequences [17–20] consisting of wait times and perfect π -
pulses. The formalism facilitated recognizing these sequences
as band-pass filters that allow for probing the environmen-
tal noise characteristics of a quantum system through noise
spectroscopy [12,21–23] or optimizing sequences to suppress
specific noise bands [24–27]. It can also be extended to fideli-
ties of gate operations for single [28,29] or multiple [30,31]
qubits using the ME [32,33] as well as more general DD
protocols [34]. The works by Green et al. [29] and Clausen
et al. [35] also introduced the notion of the control matrix as a
quantity closely related to the canonical filter function that is
convenient for calculations. In this context, the formalism’s
capability to predict fidelities of gate implementations has
been identified and experimentally tested [26,29,36,37]. Re-
cently, it has also proved useful in assessing the performance
requirements for classical control electronics [38].

While analytic approaches allow for the calculation of FFs
of arbitrary quantum control protocols in principle, it is in
practice often a tedious task to determine analytic solutions
to the integrals involved if the complexity of the applied wave
forms goes beyond simple square pulses or extends to multiple
qubits. Moreover, one does not always have a closed-form
expression of the control at hand, such as is the case for
numerically optimized control pulses. This calls for a numer-
ical approach which, while giving up some of the insights an
analytical form offers, is universally applicable and eliminates
the need for laborious analytic calculations.

Here we build and extend upon our accompanying work
of Ref. [16] and that of Ref. [29] to show that the formalism
can be recast within the framework of stochastic Liouville
equations by means of the cumulant expansion [39,40], which,
for Gaussian noise, entails exact results for the quantum
process of an arbitrary control operation using only first-
and second-order terms of the ME [32]. Moreover, due to
the fact that the ME retains the algebraic structure of the
expanded quantity [33] we are able to separate decoherent
and coherent contributions to the process. We give explicit
methods to evaluate these terms for piecewise-constant con-
trol pulses. Moreover, we show that the formalism naturally
lends itself as a tool for numerical calculations and present the
filter_functions Python software package that enables
calculating the filter function of arbitrary, piecewise constant
defined pulses [41]. On top of providing methods to handle
individual quantum gates, the package also implements the
concatenation operation as well as parallelized execution of
pulses on different groups of qubits, allowing for a highly
modular and hence computationally powerful treatment of
quantum algorithms in the presence of correlated noise. Given
an arbitrary, classical noise spectral density, it can be used to
calculate a matrix representation of the error process. From
this matrix one can extract average gate fidelities, transition
probabilities, and leakage rates as we derive below. To sim-
plify adaptation, the software’s API is strongly inspired by

and compatible with QuTiP [42] as well as qopt [43]. This
allows users to use these packages in conjunction. Assessing
the computational performance, we show that our method
outperforms Monte Carlo (MC) simulations for single gates.
New analytic results applicable to periodic Hamiltonians and
employing the concatenation property make this advantage
even more pronounced for sequences of gates. To highlight
the main software features, we show example applications
below.

We provide this package in the expectation that it will
be a useful tool for the community. Besides recasting and
expanding on our earlier introduction of the formalism in
Ref. [16], the present paper is intended to provide an overview
of the software and its capabilities. It is structured as follows:
In Sec. II we derive an exact expression for unital quantum
operations in the presence of non-Markovian Gaussian noise
and lay out how it may be evaluated using the filter-function
formalism. We review the concatenation of quantum opera-
tions shown in Ref. [16] and furthermore adapt the method
by Green et al. [29] to calculate the filter function of an
arbitrary control sequence numerically. We will specifically
focus on computational aspects of the formalism and lay out
how to compute various quantities of interest. Moreover, we
classify its computational complexity for calculating average
gate fidelities and remark on simplifications that allow for
drastic improvements in performance in certain applications.
In Sec. IV we introduce the software package by outlining
the programmatic structure and giving a brief overview over
the API. Last, in Sec. V we show the application of the
software by means of four examples that highlight various
features of the formalism and its implementation. Therein, we
first demonstrate that the formalism can predict average gate
fidelities for complex two-qubit quantum gates in agreement
with computationally much more costly MC calculations.
Next, we show how it can be applied to periodically driven
systems to efficiently analyze Rabi oscillations. We finally
establish the formalism’s ability to predict deviations from
the simple concatenation of unitary gates for sequences and
algorithms in the presence of correlated noise by simulating a
randomized benchmarking experiment as well as assembling
a quantum Fourier transform (QFT) circuit from numeri-
cally optimized gates. We conclude by briefly remarking on
possible future application and extension of our method in
Sec. VI.

Throughout the paper we will denote operators by italic
font, e.g., U , and quantum operations and their representations
as transfer matrices by calligraphic font, e.g., U , which we
also use for the control matrix B̃ to emphasize its innate
connection to a transfer matrix. For consistency, a unitary
quantum operation will share the same character as the cor-
responding unitary operator. An operator in the interaction
picture will furthermore be designated by an overset tilde, e.g.,
H̃ = U †HU with U the unitary operator defining the comov-
ing frame. Definitions of new quantities on the left and right
side of an equality are denoted by := and =:, respectively. We
use a central dot (·) as a placeholder in some definitions of
abstract operators such as the Liouvillian, denoted by L :=
[H, ·], which is to be understood as the commutator of the
corresponding Hamiltonian H and the operator that L acts
on. The identity matrix is denoted by 1 and its dimension
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always inferred from context. Furthermore, we will use Greek
letters for indices that correspond to noise operators in or-
der to distinguish them clearly from those that correspond
to basis or matrix elements. Last, we work in units where
h̄ = 1.

II. FILTER-FUNCTION FORMALISM FOR UNITAL
QUANTUM OPERATIONS

We begin the theoretical part of this article by showing how
a superoperator matrix representation of the error process, the
“error transfer matrix,” of a unital quantum operation can be
computed from the control matrix of the pulse implementing
the operation. The control matrix relates the operators through
which noise couples into the system to a set of basis oper-
ators in the interaction picture and we detail how it can be
calculated in a relatively efficient manner for two different sit-
uations. First, we consider a sequence of gates whose control
matrices have been precomputed. Second, we lay out how the
control matrix can be obtained from scratch under the assump-
tion of piecewise constant control, which is often convenient
for approximating continuous pulse shapes. Other wave forms
can be dealt with analogously by solving the corresponding
integrals. We then move on to show how several quantities of
interest can be extracted and present optimized strategies for
computing the central objects of the formalism.

A. Transfer matrix representation of quantum operations

1. Brief review of quantum operations and superoperators

The quantum operations formalism provides a general
framework for the description of open quantum systems
[44,45]. It forms the mathematical basis for quantum process
tomography (QPT) [46,47] as well as gate set tomography
(GST) [48,49] and has also been extensively employed in the
context of randomized benchmarking (RB) [50,51]. Several
different representations of quantum operations exist. While
all of them are equivalent, one typically chooses the most con-
venient for the problem at hand. For an overview of the most
commonly used representations see Ref. [49] and for ma-
trix representations in particular Ref. [52] and the references
therein. In this work we employ the Liouville representation,
to the best of our knowledge first formalized by Fano [53], to
profit from its simple properties under composition. It is also
known as the transfer matrix representation and we will use
the terms interchangeably below. We now briefly review the
concept and refer the reader to the literature for further de-
tails. Concretely, the Liouville representation of an operation
E : ρ → E (ρ) acting on density operators in a Hilbert space
H of dimension d is given by

Ei j
.= tr(C†

i E (Cj )) (1)

with an operator basis C = {C0,C1, . . . ,Cd2−1} for the space
of linear operators over H , L(H ), orthonormal with respect
to the Hilbert-Schmidt product 〈A, B〉 := tr(A†B). In the case
that the operator basis corresponds to the Pauli matrices,
Eq. (1) is known as the Pauli transfer matrix (PTM). The op-
eration E is thus associated with a d2 × d2 matrix in Liouville
space L that describes its action as the degree to which the
jth basis element is mapped onto the ith. On L one can iden-

tify a set of basis kets {|Ci〉〉}d2−1
i=0 = {|i〉〉}d2−1

i=0 isomorphic to the
operators Ci (and correspondingly bras 〈〈i| to the adjoint C†

i ) as
well as the inner product 〈〈i| j〉〉 = 〈Ci,Cj〉. As the vectors |i〉〉
form an orthonormal basis, any operator on H can be written
as a vector on L , |A〉〉 = ∑

i |i〉〉〈〈i|A〉〉, whereas a superopera-
tor on H becomes a matrix on L ; see Eq. (1). It can then
be shown that density operators represented by vectors are
propagated by transfer matrices so that the action of a quan-
tum operation E on a density operator ρ is given by |E (ρ)〉〉 =
E |ρ〉〉 = ∑

i j |i〉〉〈〈i|E | j〉〉〈〈 j|ρ〉〉. Thus, the composition of two
operations E1 and E2 corresponds to matrix multiplication
in Liouville space, [E2 ◦ E1]ik = ∑

j[E2]i j[E1] jk , a property
which makes the representation particularly attractive for se-
quences of operations. Although from a numerical perspective
the computational complexity scales unfavorably with the sys-
tem dimension d (cf. Sec. III D), we will employ the Liouville
representation for its transparent interpretation and concise
behavior under composition in the following analytical con-
siderations. Last, we note that for C0 ∝ 1, trace preservation
and unitality are encoded in the relations E0 j = δ0 j and
E j0 = δ j0, respectively.

2. Liouville representation of the error channel

We will now derive an expression for the quantum process
of a quantum gate in the presence of arbitrary classical noise.
As a single realization of a classical noise generates strictly
unitary dynamics, we will be interested in the expectation
value of the dynamics over many such realizations, which will
lead to a quantum process including decoherence. If the noise
is additionally Gaussian, these results are exact and therefore
apply without restrictions to arbitrarily large noise strength
as well as to gates that partially decouple from noise. For
such DCGs or DD sequences [15,20] higher-order terms can
become dominant. In the case that the environment is not
strictly Gaussian, our approach becomes perturbative and we
recover the results presented in Ref. [16]. As most of our dis-
cussion later on in this article will focus on the leading order
approximation, readers not interested in the full generality
may refer to that publication for a less general but perhaps
more accessible derivation and skip ahead to Sec. II B.

The difference is that in Ref. [16], the ME is applied
to the solution of the Schrödinger equation, whereas the
approach presented here is based on the theory of stochastic
Liouville equations and the cumulant expansion [39,40].
In the filter function context, the cumulant expansion has
been used to express the decay of the off-diagonal terms of
a single-qubit density matrix in Ref. [20]. More recently,
Paz-Silva and Viola [34] employed it in conjunction with the
ME to obtain the matrix elements of the perturbed density
operator after a time T of noisy evolution. In Ref. [54] the
authors made use of the cumulant expansion and stochastic
Liouville equations for the purpose of gate optimization.
Here we combine different aspects of these works and
make the connection to the quantum operations formalism
by determining the noise-averaged error propagator in the
Liouville representation. This form completely characterizes
the error process and hence allows for detailed insight into
the decoherence mechanisms of the operation.
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Concretely, we consider a system described by the stochas-
tic Hamiltonian

H (t ) = Hc(t ) + Hn(t ), (2)

Hn(t ) =
∑

α

bα (t )Bα (t ). (3)

Hc(t ) is implemented by the experimentalist to generate the
desired control operation during the time t ∈ [0, τ ] and Hn(t )
describes classical fluctuating noise environments bα (t ) ∈ R
that couple to the quantum system via the Hermitian noise
operators Bα (t ) ∈ L(H ). These may carry a general, deter-
ministic time dependence and without loss of generality, we
can require them to be traceless since any contributions pro-
portional to the identity do not contribute to noisy evolution in
any case [55]. The bα (t ) are random variables drawn from (not
necessarily Gaussian) distributions with zero mean that are
assumed to be independent and identically distributed (i.i.d.)
both with respect to repetitions of the experiment. Note that
this concept of independence does not preclude correlations
between different noise sources α �= β nor between one noise
source at different times t �= t ′, but serves only to obtain a
well-defined ensemble average. Last, to be able to later on
relate the correlation functions of the bα (t ) to their spectral
density, we require the noise fields to be wide-sense stationary,
meaning that their correlation function depends only on the
time difference.

For noise operators without explicit time dependence,
Eq. (3) constitutes a universal decomposition as can be seen
by choosing the Bα from an orthonormal basis for L(H ). To
motivate the time-dependent form of Eq. (3), assume the true

Hamiltonian is a function of a set of noisy parameters 
̃λ(t ) =

λ(t ) + 
δλ(t ) where 
δλ(t ) = vec({bα (t )}α ) are the stochastic
variables. Expanding the Hamiltonian in an orthonormal oper-

ator basis yields H (
̃λ(t )) = ∑
α fα (
λ(t ), 
δλ(t ))Bα . In general,

however, the expansion coefficients fα will be arbitrary
functions of both the deterministic parameters 
λ(t ) and the
stochastic noises 
δλ(t ), which prohibits a factorized form like
Eq. (3). We can address this problem by first expanding H
around 
λ(t ) for small fluctuations 
δλ(t ). Then, the Hamil-

tonian approximately becomes H (
̃λ(t )) ≈ H (
λ(t )) + 
δλ(t ) ·

∇λH (
λ(t )), where we can define the control Hamiltonian as
Hc(t ) := H (
λ(t )). Expanding the second term in the operator
basis now results in the form (3) for the noise Hamiltonian as
it is linear in 
δλ(t ) and the deterministic time dependence is
contained in 
∇λH (
λ(t )) alone.

This permits us to model complex relations between phys-
ical noise sources and the noise operators that capture the
coupling to the quantum system, arising for example through
control hardware or effective Hamiltonians obtained from,
e.g., Schrieffer-Wolff transformations. While the linearization
is in most cases an approximation, it does not impose signif-
icant constraints since the noise is typically weak compared
to the control [56]. As an example, we could capture a de-
pendence of the device sensitivity on external controls (see
also Ref. [30]). In a widely used setting, electrons confined in
solid-state quantum dots are manipulated using the exchange
interaction J that depends nonlinearly on the potential differ-

ence ε between two dots. Since the dominant physical noise
source affecting this control is charge noise, one could include
the effect on J (ε) to first order with sε (t ) = ∂J (ε(t ))/∂ε(t ) so
that Hn(t ) = bε (t )Bε (t ) = bε (t )sε (t )Bε for some operator Bε

which represents the exchange coupling.
We proceed in our derivation by noting that the control

Hamiltonian Hc gives rise to the noise-free Liouville–von
Neumann equation

dρ(t )

dt
= −i[Hc(t ), ρ(t )] = −iLc(t )ρ(t ) (4)

on the Hilbert space H with the Liouvillian superoperator
Lc(t ) representing the control. Analogous to the Schrödinger
equation we may also write this differential equation in
terms of time evolution superoperators (superpropagators),
dUc(t )/dt = −iLc(t )Uc(t ) where the action of Uc on a state ρ

is to be understood as Uc:ρ → UcρU †
c with Uc the usual time

evolution operator satisfying the corresponding Schrödinger
equation. This allows us to write the superpropagator for the
total Liouvillian L = Lc + Ln as U (t ) = Uc(t )Ũ (t ) where the
unitary error superpropagator Ũ (t ) contains the effect of a
specific noise realization in Eq. (3). Next, we transform the
noise Liouvillian Ln to the interaction picture with respect to
the control Liouvillian Lc so that Ũ (t ) satisfies the modified
Liouville equation

dŨ (t )

dt
= −iL̃n(t )Ũ (t ), (5)

L̃n(t ) = U†
c (t )Ln(t )Uc(t ). (6)

Equation (5) may be formally solved using the ME [32] so
that at time t = τ

Ũ (τ ) = exp(−iτLeff (τ )) (7)

with Leff (τ ) = ∑∞
n=1 Leff,n(τ ). A sufficient criterion for the

convergence of the expansion is given by Moan et al. [57]
as

∫ τ

0 dt‖L̃n(t )‖ < π where ‖·‖ = √〈·, ·〉 is the Frobenius
(Hilbert-Schmidt) norm. The first and second terms of the ME
are given by [32,33]

Leff,1(τ ) = 1

τ

∫ τ

0
dtL̃n(t ), (8a)

Leff,2(τ ) = − i

2τ

∫ τ

0
dt1

∫ t1

0
dt2[L̃n(t1), L̃n(t2)]. (8b)

The nth term of the expansion contains n factors of the noise
variables bα (t ) and scales with n factors of the control dura-
tion τ , suggesting that higher-order terms can be neglected
if their product is small. In the Bloch sphere picture this
corresponds to requiring that the angle by which the Bloch
vector is rotated away from its intended trajectory due to
the noise be small. Below, we will use the parameter ξ to
denote the magnitude of this deviation. It is properly defined
in Appendix D 1 where also bounds for the convergence of
the ME are discussed. Here we state only that Leff,n ∼ ξ n (see
also Ref. [29]).

We have suggestively written the ME in terms of an effec-
tive Liouvillian Leff = [Heff , ·] to interpret it as the generator
of a time-averaged evolution of a single noise realization up to
time τ . In order to obtain the ensemble-averaged evolution of
many realizations of the stochastic Hamiltonian in Eq. (3), we
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apply the cumulant expansion to Ũ (see also Refs. [58] and
[59]),

〈Ũ (τ )〉 = 〈exp[−iτLeff (τ )]〉 =: expK(τ ), (9)

with 〈·〉 denoting the ensemble average [60] and the cumulant
function [39]

K(τ ) =
∞∑

k=1

(−iτ )k

k!
〈Leff (τ )k〉c (10)

=
∞∑

k=1

(−iτ )k

k!

〈[ ∞∑
n=1

Leff,n(τ )

]k〉
c

. (11)

The notation 〈·〉c denotes the cumulant average which pre-
scribes a certain averaging operation. The first cumulant of
a set of random variables {Xi(t )}i is simply the expecta-
tion value, 〈Xi(t )〉c = 〈Xi(t )〉, whereas the second cumulant
corresponds to the covariance, 〈Xi(t )Xj (t )〉c = 〈Xi(t )Xj (t )〉 −
〈Xi(t )〉〈Xj (t )〉. Remarkably, third- and higher-order cumulants
vanish for Gaussian processes [40,61], making Eq. (11) exact
by truncating the sums already at k = 2 and n = 2. In this
case, the convergence radius of the ME becomes infinite. The
terms with k = n = 2 do not contribute as they involve fourth-
order cumulants. Since furthermore we assume that the noise
fields bα (t ) have zero mean, also the terms with k = n = 1
vanish and 〈Xi(t )Xj (t )〉c = 〈Xi(t )Xj (t )〉. We can hence write
the cumulant function succinctly as

K(τ ) = −iτ 〈Leff,2(τ )〉 − τ 2

2
〈Leff,1(τ )2〉. (12)

Equations (9) and (12) allow us to exactly compute the full
quantum process 〈Ũ〉:ρ → 〈Ũ (ρ)〉 for Gaussian noise with
arbitrary spectral density and power. For non-Gaussian noise
these expressions are approximate up to O(ξ 2) and higher-
order terms include both higher orders of the ME and the
cumulant expansion. Inspecting Eq. (12), we observe that
the first term is anti-Hermitian as it is a pure Magnus term
(remember that the ME preserves algebraic structure to every
order) and thus generates unitary, coherent time evolution.
Conversely, the second term is Hermitian and thus generates
decoherence [62]. The former is more difficult to compute
than the latter because the second order of the ME, Eq. (8b),
contains nested time integrals. Arguments can be made [16],
however, that for single gates in an experimental context the
coherent errors captured by this term can be calibrated out to a
large degree [63,64]. Moreover, many of the central quantities
of interest that can be extracted from the quantum process,
among which are gate fidelities and certain measurement
probabilities, are functions of only the diagonal elements of
K. By virtue of the antisymmetry of the second-order terms,
they do not contribute to these quantities to leading order as
we show in Sec. II D.

While we will also lay out how to compute the second
order, our discussion will therefore focus on contributions
from the incoherent term below. As it turns out, this term can
be computed using a filter-function formalism based on that
by Green et al. [29]. To see this, we insert the explicit forms
of the ME given in Eq. (8) and the noise Hamiltonian given in
Eq. (3) into Eq. (12). Together with [L,L′] = [[H, H ′], ·] and
LL′ = [H, [H ′, ·]], we find that

K(τ ) = −1

2

∑
αβ

(∫ τ

0
dt1

∫ t1

0
dt2〈bα (t1)bβ (t2)〉 [[B̃α (t1), B̃β (t2)], ·]

+
∫ τ

0
dt1

∫ τ

0
dt2〈bα (t1)bβ (t2)〉[B̃α (t1), [B̃β (t2), ·]]

)
, (13)

where B̃α (t ) = U †
c (t )Bα (t )Uc(t ) are the noise operators of

Eq. (3) in the interaction picture. 〈bα (t1)bβ (t2)〉 is the cross-
correlation function of noise sources α and β which we will
later relate to the spectral density. For now, we stay in the
time domain and introduce an orthonormal and Hermitian
operator basis for the Hilbert space H to define the Liouville
representation,

C = {Ck ∈ L(H ) : C†
k = Ck and tr(CkCl ) = δkl}d2−1

k=0 ,

(14)
where we choose C0 = 1/d1/2 for convenience so that the
remaining elements are traceless. In order to separate the
commutators from the time dependence and hence the integral
in Eq. (13), we expand the noise operators in this basis so that

B̃α (t ) =:
∑

k

B̃αk (t )Ck . (15)

The expansion coefficients B̃αk (t ) ∈ R are given by the inner
product of a noise operator in the interaction picture on the

one hand and a basis element on the other:

B̃αk (t ) = 〈B̃α (t ),Ck〉 = tr(U †
c (t )Bα (t )Uc(t )Ck ). (16)

In line with Green et al. [29], we call these coefficients the
control matrix (see also Refs. [65] and [35]). In the transfer
matrix (superoperator) picture we can take up the following
interpretation for the control matrix by virtue of the cyclicity
of the trace: it describes a mapping of a state, represented
by the basis element Ck and subject to the control opera-
tion Uc(t ):Ck → Uc(t )CkU †

c (t ), onto the noise operator Bα (t ).
That is, we can write the αth row of the control matrix as
〈〈B̃α (t )| = 〈〈Bα (t )|Uc(t ). In this connection lies the power of
the filter-function formalism as will become clear shortly;
we can first determine the ideal evolution without noise and
subsequently evaluate the error process by linking the unitary
control operation to the noise operators.

Having expanded the noise operators in the basis C, we
can already anticipate that upon substituting them, Eq. (13)
will separate into a time-dependent part involving on the one
hand the control matrix and cross-correlation functions and
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on the other a time-independent part involving commutators
of basis elements. This will simplify our calculations in the
following. To see this, we recall the definition of the Liouville
representation in Eq. (1) and apply it to the cumulant function
so that Ki j = tr(CiK[Cj]), where the notation K[Cj] means
substituting Cj for the placeholder 〈·〉 in the commutators
in Eq. (13) and we suppressed the time argument for legi-
bility. Finally, we insert the expanded noise operators given
by Eq. (15) and obtain the Liouville representation of the
cumulant function,

Ki j (τ ) =: −1

2

∑
αβ

∑
kl

( fi jkl�αβ,kl + gi jkl
αβ,kl ). (17)

Here we captured the ordering of the noise operators due to
the commutators in Eq. (13) in the coefficients fi jkl and gi jkl .
These are trivial functions of the fourth-order trace tensor [66]

Ti jkl = tr(CiCjCkCl ) (18)

given by

fi jkl = Tkl ji − Tlk ji − Tkli j + Tlki j and (19a)

gi jkl = Tkl ji − Tk jli − Tkil j + Tki jl . (19b)

Furthermore, we introduced the frequency (Lamb) shifts �

and decay amplitudes 
 which contain all information on the
noise and qubit dynamics as captured by the control matrix
B̃(t ):

�αβ,kl =
∫ τ

0
dt1

∫ t1

0
dt2〈bα (t1)bβ (t2)〉B̃αk (t1)B̄βl (t2), (20)


αβ,kl =
∫ τ

0
dt1

∫ τ

0
dt2〈bα (t1)bβ (t2)〉B̃αk (t1)B̄βl (t2). (21)

The frequency shifts � correspond to the first term in Eq. (12),
hence incurring coherent errors, i.e., generalized axis and
overrotation errors. They reflect a perturbative correction to
the quantum evolution due to a change of the Hamiltonian
at two points in time, and thus time ordering matters. Con-
versely, the decay amplitudes 
 correspond to the second
term and capture the decoherence. These terms are due to an
incoherent average that takes only classical correlations into
account, so that time ordering does not play a role. Note that
Eq. (17) together with Eq. (9) constitutes an exact version
(in the Liouville representation) of Eq. (4) from Ref. [16] for
Gaussian noise. The approximation of Ref. [16] is obtained by
expanding the exponential to linear order and neglecting the
second-order terms �.

For a single qubit and C the Pauli basis one can make
use of the simple commutation relations so that the cumulant
function takes the form (see Appendix A)

Ki j (τ ) =
{− ∑

k �=i 
kk if i = j,

−�i j + � ji + 
i j if i �= j,
(22)

for i, j > 0 and any α, β. As mentioned in Sec. II A the
cases j = 0 and i = 0 encode trace preservation and unitality,
respectively, and as such K0 j = Ki0 = 0 since our model is
both trace preserving and unital.

B. Calculating the decay amplitudes

In order to evaluate the cumulant function K(τ ) given by
Eq. (17) and thus the transfer matrix 〈Ũ (τ )〉 from Eq. (9)
for a given control operation, we solely require the decay
amplitudes 
kl and frequency shifts �kl since the trace tensor
Ti jkl depends only on the choice of basis and is therefore trivial
(although quite costly for large dimensions; cf. Sec. III C)
to calculate. In this section, we describe simple methods for
calculating 
kl using an extension of the filter-function for-
malism developed by Green et al. [29] that we introduced
in Ref. [16]. The central quantity of interest will be the
control matrix that we already introduced above. It relates
the interaction picture noise operators to the operator basis
and we will compute it in Fourier space in order to identify
the cross-correlation functions with the noise spectral density
in Eq. (21). We distinguish between a sequence of quantum
gates, as already presented in our related work [16], and a
single gate. In the first case the control matrix of the entire
sequence can be calculated from those of the individual gates,
greatly simplifying the calculation if the latter have been pre-
computed. This approach gives rise to correlation terms in the
expression for 
kl that capture the effects of sequencing gates.
In the second case, as was shown by Green et al. [29], one can
calculate the control matrix for arbitrary single pulses under
the assumption of piecewise constant control and we lay out
how to adapt the approach for numerical applications.

We start by noting that, because we assumed the noise
fields bα (t ) to be wide-sense stationary, that is to say the
cross-correlation functions evaluated at two different points
in time t1 and t2 depend only on their difference t1 − t2, we
can define the two-sided noise power spectral density Sαβ (ω)
as the Fourier transform of the cross-correlation functions
〈bα (t1)bβ (t2)〉,

〈bα (t1)bβ (t2)〉 =
∫ ∞

−∞

dω

2π
Sαβ (ω)e−iω(t1−t2 ). (23)

Note that the spectrum characterizes only the noise fully in
the case of Gaussian noise. For non-Gaussian components
in the noise, additional polyspectra have in principle to be
considered for higher-order correlation functions [67]. How-
ever, since we discuss only second-order contributions which
involve two-point correlation functions here, we need to take
only Sαβ (ω) into account. Inserting the definition of the spec-
tral density into Eq. (21), one finds


αβ,kl =
∫ ∞

−∞

dω

2π
B̃∗

αk (ω)Sαβ (ω)B̃βl (ω) (24)

with B̃(ω) = ∫ τ

0 dtB̃(t )eiωt the frequency-domain control ma-
trix. Note that B̃∗(ω) = B̃(−ω) because B̃(t ) is real. In the
above equation, the fourth-order tensor

Fαβ,kl (ω) := B̃∗
αk (ω)B̃βl (ω) (25)

is the generalized filter function that captures the suscepti-
bility of the decay amplitudes to noise at frequency ω. For
α = β, k = l , and by summing over the basis elements,

Fα (ω) =
∑

k

|B̃αk (ω)|2 = tr(B̃†
α (ω)B̃α (ω)), (26)
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and this tensor reduces to the canonical fidelity filter function
[28] from which the entanglement fidelity can be obtained;
see Sec. II D 1. Thus, if the frequency-domain control matrix
B̃αk (ω) for noise source α and basis element k is known, the
transfer matrix can be evaluated by integrating Eq. (24). More-
over, one can study the contributions of each pair of noise
sources (α, β ) both separately or, at virtually no additional
cost and to leading order, collectively by summing over them,

kl = ∑

αβ 
αβ,kl .

We now discuss how to calculate the control matrix B̃(ω)
in frequency space for a given control operation. We focus
first on sequences of quantum gates, assuming that the control
matrices B̃(g)(ω) for each gate g have been calculated before.

1. Control matrix of a gate sequence

For a sequence of gates with precomputed interaction pic-
ture noise operators, the approach developed by Green et al.
[29] based on piecewise constant control can be adapted to
yield an analytical expression for those of the composite gate
sequence that is computationally efficient to evaluate [16].
Here we review these results to give a complete picture of
the formalism. While our results are general and apply to any
superoperator representation, we employ the Liouville repre-
sentation here for its simple composition operation: matrix
multiplication. Computationally, this is not the most effi-
cient choice since transfer matrices have dimension d2 × d2

and thus their matrix multiplication scales unfavorably com-
pared to, for example, left-right conjugation by unitaries (cf.
Sec. III D). However, because the structure of the control
matrix B̃ is similar to that of a transfer matrix (remember
that it corresponds to a basis expansion of the interaction
picture noise operators), we will obtain a particularly concise
expression for the sequence in the following. For a perhaps
more intuitive description employing exclusively conjugation
by unitaries, we refer the reader to our accompanying publi-
cation Ref. [16].

A sequence of G gates with propagators Pg =
Uc(tg, tg−1), g ∈ {1, . . . , G} that act during the gth time
interval (tg−1, tg] with t0 = 0, tG = τ as illustrated in Fig. 1
is considered. The cumulative propagator of the sequence up
to time tg is then given by Qg = ∏0

g′=g Pg′ with P0 = 1 and
its Liouville representation denoted by Q(g). Furthermore, the
control matrix of the gth pulse at the time t − tg−1 relative to

FIG. 1. Illustration of a sequence of G gates. Individual gates
with propagators Pg start at time tg−1 and complete at time tg. The
total action from t0 to tg is given by Qg.

the start of segment g is

B̃(g)
αk (t − tg−1) = tr(U †

c (t, tg−1)Bα (t − tg−1)Uc(t, tg−1)Ck ).
(27)

We can now exploit the fact that in the transfer matrix pic-
ture quantum operations compose by matrix multiplication to
write the total control matrix at time t ∈ (tg−1, tg] as

B̃(t ) = B̃(g)(t − tg−1)Q(g−1). (28)

The Fourier transform of Eq. (28) can then be obtained by
evaluating the transform of each gate separately,

B̃(ω) =
G∑

g=1

eiωtg−1 B̃(g)(ω)Q(g−1), (29)

B̃(g)(ω) =
∫ �tg

0
dteiωt B̃(g)(t ), (30)

with �tg = tg − tg−1 the duration of gate g. Hence, calculat-
ing the control matrix of the full sequence requires only the
knowledge of the temporal positions, encoded in the phase
factors eiωtg−1 , and the total intended action Q(g−1) of the indi-
vidual pulses if their control matrices have been precomputed.
The sequence structure can thus be exploited to one’s benefit.
If the same gates appear multiple times during the sequence
one can reuse control matrices for equal pulses to facilitate
calculating FFs for complex sequences with modest compu-
tational effort. Most importantly, Eq. (29) is independent of
the inner structure of the individual pulses and therefore takes
the same time to evaluate whether they are highly complex or
very simple. In Sec. III D we will analyze the computational
efficiency of capitalizing on this feature in more detail.

As we have seen, the total control matrix of a composite
pulse sequence is given by a sum over the individual control
matrices. Since B̃(ω) enters Eq. (24) twice, this leads to cor-
relation terms between two gates at different positions in the
sequence when computing the total decay amplitudes 
αβ,kl .
Inserting Eq. (29) into Eq. (24) gives


αβ,kl =
G∑

g,g′=1

∫ ∞

−∞

dω

2π
[Q(g′−1)†B̃(g′ )†(ω)]kαSαβ (ω)[B̃(g)(ω)Q(g−1)]βl e

iω(tg−1−tg′−1 ) =:
G∑

g,g′=1

∫ ∞

−∞

dω

2π
Sαβ (ω)F (gg′ )

αβ,kl (ω), (31)

where we defined the pulse correlation filter function
F (gg′ )

αβ,kl (ω) that captures the temporal correlations between
pulses at different positions g and g′ in the sequence. Unlike
regular FFs, these can be negative for g �= g′ and therefore
reduce the overall noise susceptibility of a sequence given
by F (ω) = ∑

gg′ F (gg′ )(ω). We have thus gained a concise de-
scription of the noise-cancelling properties of gate sequences:
in this picture, they arise purely from the concatenation of

different pulses, quantifying, for instance, the effectiveness of
DD sequences [16].

2. Control matrix of a single gate

Previous efforts have derived the control matrix analyti-
cally for selected pulses such as dynamical decoupling (DD)
sequences [20], special dynamically corrected gates (DCGs)
[30], as well as developed a general analytic framework

043047-7



HANGLEITER, CERFONTAINE, AND BLUHM PHYSICAL REVIEW RESEARCH 3, 043047 (2021)

[28,29]. However, analytical solutions might not always be
accessible, e.g., for numerically optimized pulses, and are
generally laborious to obtain. Therefore, we now detail a
method to obtain the control matrix numerically under the
assumption of piecewise constant control. Our method is sim-
ilar in spirit to that of Green et al. [28] for single qubits
with d = 2, but whereas those authors computed analytical
solutions to the relevant integrals during each time step, here
we use matrix diagonalization to obtain the propagator of a
control operation to make the approach amenable to numerical
implementation. This allows carrying out the Fourier trans-
form of the control matrix (16) analytically by writing the
control propagators in terms of their eigenvalues in diagonal
form.

We divide the total duration of the control operation, τ , into
G intervals (tg−1, tg] of duration �tg with g ∈ {0, . . . , G} and
t0 = 0, tG = τ . We then approximate the control Hamiltonian
as constant within each interval so that within the gth

Hc(t ) = H (g)
c = const (32)

and similarly the deterministic time dependence of the noise
operators as Bα (t ) = sα (t )Bα = s(g)

α Bα . Under this approxima-
tion we can diagonalize the time-independent Hamiltonians
H (g)

c with eigenvalues ω
(g)
i numerically and write the time

evolution operator that solves the noise-free Schrödinger
equation as Uc(t, tg−1) = V (g)D(g)(t, tg−1)V (g)†. Here, V (g) is
the unitary matrix of eigenvectors of H (g)

c and the diagonal
matrix D(g)

i j (t, tg−1) = δi j exp[−iω(g)
i (t − tg−1)] contains the

time evolution of the eigevalues. Using this result together
with Qg−1, the cumulative propagator up to time tg−1, we
can acquire the total time evolution operator at time t from
Uc(t ) = Uc(t, 0) = Uc(t, tg−1)Qg−1. We then substitute this re-
lation into the definition of the control matrix, Eq. (16), and
obtain

B̃αk (t ) = s(g)
α tr(Q†

g−1V
(g)D(g)†(t, tg−1)V (g)†Bα

× V (g)D(g)(t, tg−1)V (g)†Qg−1Ck ) (33)

=: s(g)
α

∑
i j

B̄(g)
α,i jC̄

(g)
k, jie

i�(g)
i j (t−tg−1 ), (34)

where �
(g)
i j = ω

(g)
i − ω

(g)
j , C̄(g)

k = V (g)†Qg−1CkQ†
g−1V

(g), and

B̄(g)
α = V (g)†BαV (g). Carrying out the Fourier transform of

Eq. (34) to get the frequency-domain control matrix of the
pulse generated by the Hamiltonian from Eq. (32) is now
straightforward since the integrals involved are over simple
exponential functions. We obtain

B̃αk (ω) =
G∑

g=1

s(g)
α eiωtg−1 tr

([
B̄(g)

α ◦ I (g)(ω)
]
C̄(g)

k

)
(35)

with I (g)
i j (ω) = −i(ei(ω+�

(g)
i j )�tg − 1)/(ω + �

(g)
i j ) and the

Hadamard product (A ◦ B)i j := Ai j · Bi j . Equation (35)
is readily evaluated on a computer and thus enables the
calculation of FFs of arbitrary control sequences, either on
its own or in conjunction with Eq. (29). A similar expression
is obtained for representations other than the Liouville
representation.

C. Calculating the frequency shifts

The frequency shifts �αβ,kl in Eq. (17) correspond to the
second order of the ME and thus involve a double integral
with a nested time dependence. This makes their evaluation
more involved than that of the decay amplitudes 
αβ,kl and,
in contrast to the previous section, we cannot identify a con-
catenation rule or single out correlation terms as in Eq. (31).
However, we can still apply the approximation of piecewise
constant control and follow a similar approach as in Sec. II B 2
to compute � in Fourier space. Since these terms correspond
to a coherent gate error that can in principle be calibrated out
in experiments we will not go into much detail here.

We follow the arguments made above for the decay ampli-
tudes and express the cross-correlation functions 〈bα (t )bβ (t ′)〉
by their Fourier transform, the spectral density Sαβ (ω), using
Eq. (23). Inserting this equation into the definition of the
frequency shifts in the time domain, Eq. (20), yields

�αβ,kl =
∫ ∞

−∞

dω

2π
Sαβ (ω)

∫ τ

0
dtB̃αk (t )e−iωt

×
∫ t

0
dt ′B̃βl (t

′)eiωt ′
. (36)

We again assume piecewise constant time segments so that
the inner time integral can be split up into a sum of integrals
over complete constant segments (tg′−1, tg′ ] as well as a single
integral that contains the last, incomplete segment up to time
t . That is, taking the time t of the outer integral to be within
the interval (tg−1, tg] we perform the replacement∫ t

0
dt ′ →

g−1∑
g′=1

∫ tg′

tg′−1

dt ′ +
∫ t

tg−1

dt ′. (37)

We have thus divided our task into two: The first term allows,
as before in Secs. II B 1 and II B 2, to identify the Fourier
transform of the control matrix during time steps g′ and g for
both the inner and the outer integral according to Eq. (35).
The second term remains a nested double integral, but now
the integrand contains only products of complex exponentials
because we assume the control to be constant within the limits
of integration. As a next step, we also replace the outer time
integral by a sum of integrals over single segments,

∫ τ

0 dt →∑G
g=1

∫ tg
tg−1

dt , to obtain

�αβ,kl =
∫ ∞

−∞

dω

2π
Sαβ (ω)

G∑
g=1

∫ tg

tg−1

dte−iωt B̃αk (t )

{
g−1∑
g′=1

∫ tg′

tg′−1

dt ′ +
∫ t

tg−1

dt ′
}

eiωt ′ B̃βl (t
′). (38)

Before continuing, we ease notation and define B̃(ω) =:
∑

g G (g)(ω) with G (g)(ω) obtained from Eq. (35) and furthermore adopt
the Einstein summation convention for the remainder of this section, meaning multiple subscript indices that appear on only
one side of an equality are summed over implicitly. We now proceed like in Sec. II B 2 and make use of the piecewise constant
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approximation to diagonalize the control Hamiltonian during each segment. For the nested integrals, we obtain B̃αk (t ) from
Eq. (34), whereas the remaining integrals factorize and we can identify the Fourier transformed quantity G (g)(ω). Equation (38)
then becomes

�αβ,kl =
∫ ∞

−∞

dω

2π
Sαβ (ω)

G∑
g=1

[
G (g)∗

αk (ω)
g−1∑
g′=1

G (g′ )
βl (ω) + s(g)

α B̄(g)
α,i jC̄

(g)
k, jiI

(g)
i jmn(ω)C̄(g)

l,nmB̄(g)
β,mns(g)

β

]
(39)

with B̄(g)
α,i j, C̄(g)

k,i j,�
(g)
i j as defined above in Sec. II B 2 and

I (g)
i jmn(ω) =

∫ tg

tg−1

dtei�(g)
i j (t−tg−1 )−iωt

∫ t

tg−1

dt ′ei�(g)
mn (t ′−tg−1 )+iωt ′

. (40)

Explicit results for the integration in Eq. (40) are given in
Appendix A 2. To calculate the frequency shifts �, we can
thus reuse the quantity G (g)(ω) also required for the decay
amplitudes 
. The only additional computation, apart from
contraction, involves the G integrations I (g)

i jmn(ω). Importantly,
Eq. (39) has the same structure as the corresponding Eq. (24)
for 
 in that the individual entries of � are given by an
integral over the spectral density of the noise multiplied with
a—in this case second-order—filter function that describes the
susceptibility to noise at frequency ω:

�αβ,kl =
∫ ∞

−∞

dω

2π
Sαβ (ω)F (2)

αβ,kl (ω). (41)

D. Computing derived quantities

By means of Eqs. (29), (35), and (39), one can obtain the
cumulant function K(τ ) from Eq. (17) and hence the error
process 〈Ũ (τ )〉 from Eq. (9) for an arbitrary sequence of
gates. From this, several quantities of interest for the char-
acterization of a given control operation can be extracted.
We explicitly review the average gate and state fidelities as
well as expressions to quantify leakage here, but emphasize
that this is not exhaustive. Because for many applications the
noise is weak and hence the parameter ξ � 1, we will in the
following expand the exponential in Eq. (7) to leading order
in ξ in the following. That is, we approximate [remember that
K(τ ) ∈ O(ξ 2)]

〈Ũ (τ )〉 ≈ 1 + K(τ ). (42)

For Gaussian noise, higher-order corrections can be obtained
either by explicitly calculating higher powers of K or by
numerically evaluating the exponential of the cumulant func-
tion. The former method often leads to simpler expressions
than Eq. (17) for which the trace tensor Ti jkl need not be
computed directly. In the weak-noise regime, one can also
define specific FFs for each derived quantity that are given in
terms of linear combinations of the generalized FFs Fαβ,kl (ω).
The ensemble expectation value of the quantity can then be
obtained directly from the overlap with the spectral den-
sity,

∫
dω/2πF (ω)S(ω). Finally, we will drop the averaging

brackets and the argument of the error transfer matrix 〈Ũ (τ )〉
for brevity in the following.

1. Average gate and entanglement fidelity

The average gate fidelity is a commonly quoted figure
of merit used to characterize physical gate implementa-

tions [5,8,68–70]. It represents the fidelity between an
implementation U and the ideal gate Q averaged over the uni-
form Haar measure. Since Favg(U ,Q) = Favg(Q† ◦ U ,1) =
Favg(Ũ ), the average gate fidelity can be obtained from the
error channel Ũ as [71,72]

Favg(Ũ ) = trŨ + d

d (d + 1)
(43)

= d × Fe(Ũ ) + 1

d + 1
, (44)

where d is the system dimension and Fe(Ũ ) = trŨ/d2 is the
entanglement fidelity. In the low-noise regime where Eq. (42)
holds, we can write the entanglement fidelity in terms of the
cumulant function Kαβ approximately as

Fe(Ũ ) = 1 + 1

d2

∑
αβ

trKαβ (45)

=: 1 −
∑
αβ

Iαβ (Ũ ). (46)

Here we defined Iαβ , the infidelity due to a pair of noise
sources (α, β ). As we show in Appendix A 3, we can simplify
the trace of the cumulant function so that the infidelity reads

Iαβ = 1

d
tr
αβ. (47)

Equation (47) reduces to Eq. (32) from Ref. [28] for a single
qubit (d = 2) and pure dephasing noise up to a different
normalization convention; by pulling the trace through to the
generalized filter function Fαβ,kl (ω) in Eq. (24), we recover
the relation (setting α = β for simplicity)

Iα = 1

d

∫ ∞

−∞

dω

2π
Sα (ω)Fα (ω) (48)

with the fidelity filter function Fα (ω) given by Eq. (26). No-
tably, only the decay amplitudes 
 contribute to the fidelity to
leading order since the frequency shifts � are antisymmetric
and therefore vanish under the trace.

2. State fidelity and measurements

In the context of quantum information processing we are
often interested in the probability of measuring the expected
state during readout. We can extract this projective readout
probability from the transfer matrix in Eq. (7) by inspecting
the transition probability, or state fidelity, between a pure state
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ρ = |ψ〉〈ψ | and an arbitrary state σ that evolves according to
the quantum operation E :σ → E (σ ). Using the double braket
notation introduced at the beginning of Sec. II we then define
the state fidelity as

F (|ψ〉,U (σ )) = tr(ρE (σ )) = 〈〈ρ|E (σ )〉〉 = 〈〈ρ|E |σ 〉〉, (49)

where we have expressed the density matrices by vectors on
the Liouville space L and E as a transfer matrix. We can thus
calculate arbitrary pure state fidelities by simple matrix-vector
multiplications of the transfer matrices E = QŨ and the vec-
torized density matrices |ρ〉〉 and |σ 〉〉. In Sec. V C we employ
this measure to simulate a RB experiment where return prob-
abilities are of interest so that F (|ψ〉, E (ρ)) = 〈〈ρ|QŨ |ρ〉〉.

General measurements can be incorporated in the superop-
erator formalism we have employed here in a straightforward
manner using the positive operator-valued measure (POVM)
formalism [49,73]. POVMs constitute a set of Hermitian, pos-
itive semidefinite operators {Ei}i (in contrast to the projective
measurement {|ψ〉〈ψ |,1 − |ψ〉〈ψ |}) that fulfill the complete-
ness relation

∑
i Ei = 1 and in the double braket notation may

be represented as the row vectors {〈〈Ei|}i in Liouville space.
Consequently, the measurement probability for outcome Ei is
given by 〈〈Ei|E (σ )〉〉 = 〈〈Ei|E |σ 〉〉 if the system was prepared
in the state σ and evolved according to E .

3. Leakage

In many physical implementations qubits are not encoded
in real two-level systems but in two levels of a larger Hilbert
space (e.g., transmon [74] or singlet-triplet [75] spin qubits)
such that population can leak between this computational
subspace and other energy levels. Thus, it is often of interest
to quantify leakage when assessing gate performance. Re-
cently, Wood and Gambetta [76] have suggested two separate
measures for quantifying leakage out of the computational
subspace on the one hand and seepage into the subspace on
the other. With the filter-function formalism and the transfer
matrix of the error process given by Eqs. (7) and (17), we can
easily extract these quantities.

Using the definitions from Ref. [76] and the double braket
notation we can write the leakage rate generated by a quantum
operation E as

Lc(E ) := 1

dc
〈〈��|E |�c〉〉 (50a)

and the seepage rate as

L�(E ) := 1

d�

〈〈�c|E |��〉〉. (50b)

Here, �c,� are projectors onto the computational and
leakage subspaces, respectively, and dc,� the corresponding
dimensions. For unital channels the leakage and seepage rates
are not independent but satisfy dcLc = d�L� [76] so that we
need to consider only one of the above expressions here (cf.
Sec. II A 2).

Equations (50a) and (50b) can be used to determine both
coherent and incoherent leakage separately by substituting Q
or Ũ , respectively, for E . While the former is due to systematic
errors of the applied pulse and could thus be corrected for by
calibration, the latter is induced by noise only. Alternatively,

the leakage from both contributions can also be determined
collectively by substituting U for E .

III. PERFORMANCE ANALYSIS AND EFFICIENCY
IMPROVEMENTS

In this section we focus on computational aspects of the
formalism, remarking first on several mathematical simpli-
fications that make the calculation of control matrices and
decay amplitudes more economical. Following this, we in-
vestigate the computational complexity of the method in
comparison with MC techniques and show that our software
implementation surpasses the latter’s performance in relevant
parameter regimes.

A. Periodic Hamiltonians

If the control Hamiltonian is periodic, that is Hc(t ) =
Hc(t + T ), we can reduce the computational effort of calcu-
lating the control matrix by potentially orders of magnitude
(see Sec. V B for an application in Rabi driving). We start
by making the following observations: First, the frequency
domain control matrix of every period of the control is the
same so that B̃(g)(ω) = B̃(1)(ω). Moreover, eiω�tg = eiωT for
all g so that eiωtg−1 = eiωT (g−1) and by the composition property
of transfer matrices Q(g−1) = [Q(1)]g−1 where the superscript
without parentheses denotes matrix power. We can then sim-
plify Eq. (29) to read

B̃(ω) = B̃(1)(ω)
G−1∑
g=0

[eiωTQ(1)]g. (51)

Furthermore, if the matrix 1 − eiωTQ(1) is invertible, which
is typically the case for the vast majority of values of ω, the
previous expression can be rewritten as

B̃(ω) = B̃(1)(ω)(1 − eiωTQ(1) )−1(1 − [eiωTQ(1)]G) (52)

by evaluating the sum as a finite Neumann series. Equa-
tion (52) offers a significant performance benefit over regular
concatenation in the case of many periods G as we will
show in Sec. III D. Beyond numerical advantages, it also pro-
vides an analytic method for studying FFs of periodic driving
Hamiltonians.

B. Extending Hilbert spaces

Examining Eq. (16), we can see that the columns of the
control matrix and therefore also the filter function are invari-
ant (up to normalization) under an extension of the Hilbert
space. This allows parallelizing pulses with precomputed
control matrices in a very resource-efficient manner if one
chooses a suitable operator basis. Note that the same also
applies to other representations of quantum operations.

Suppose we extend the Hilbert space H1 of a gate for
which we have already computed the control matrix by a sec-
ond Hilbert space H2 so that H12 = H1 ⊗ H2. If we can find
an operator basis whose elements separate into tensor prod-
ucts themselves, i.e., C12 = C1 ⊗ C2 as for the Pauli basis (cf.
Sec. III C), the control matrix of the composite gate defined
on H12 has the same nontrivial columns as that of the original
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gate on H1 up to a different normalization factor. The remain-
ing columns are simply zero. This is because the trace over a
tensor product factors into traces over the individual subsys-
tems so that B̃αk (t ) ∝ tr([U †

1 ⊗ U †
2 ][Bα ⊗ 1][U1 ⊗ U2][1 ⊗

Ck]) = tr(U †
1 BαU11)tr(U †

2 1U2Ck ) = 0 since we assumed that
the noise operators Bα are traceless (cf. Sec. II A 2).

Generalizing this result to multiple originally disjoint
Hilbert spaces we write the composite space as H = ⊗

i Hi

and the corresponding basis as C = ⊗
i Ci. The control matrix

of the composite pulse on H is then a combination of the
columns of the control matrices on Hi for noise operators Bα

that are nontrivial, i.e., not the identity, only on their original
space. For noise operators defined on more than one sub-
space, e.g., Bi j = Bi ⊗ Bj, Bi ∈ Hi, Bj ∈ H j , this does not
hold anymore and the corresponding row in the composite
control matrix needs to be computed from scratch.

One can thus reuse precomputed control matrices beyond
the concatenation laid out above when studying multiqubit
pulses or algorithms. For concreteness, consider a set of one-
and two-qubit pulses whose control matrices have been pre-
computed. We can then remap those control matrices to any
other qubit in a larger register if the entire Hilbert space is de-
fined by the tensor product of the single-qubit Hilbert spaces,
and even map the control matrices of two different pulses
to the same time slot on different qubits. Thus, we do not
need to perform the possibly costly computation of the control
matrices again but instead only need to remap the columns of
B̃ to the equivalent basis elements in the basis of the complete
Hilbert space, making the assembly of algorithms that consist
of a limited set of gates which are used at several points in the
algorithm more efficient. In Sec. V D we simulate a four-qubit
QFT algorithm making use of the shortcuts described here.

C. Operator bases

Up to this point, we have not explicitly specified the basis
that defines the Liouville representation. The only conditions
imposed by Eq. (14) are orthonormality with respect to the
Hilbert-Schmidt product and that the basis elements are Her-
mitian. Yet the choice of operator basis can have a large
impact on the time it takes to compute the control matrix
as discussed in the previous section. We therefore give a
short overview over two possible choices in the following. As
we are mostly interested in the computational properties, we
represent linear operators in L(H ) as matrices on Cd×d .

The n-qubit Pauli basis fulfills the requirements set by
Eq. (14) and furthermore allows for the simplifications
described before. In our normalization convention where
〈Ci,Ci〉 = 1 it can be written as

{σi}d2−1
i=0 =

{
1√
2
,

σx√
2
,

σy√
2
,

σz√
2

}⊗n

(53)

with the Pauli matrices σx, σy, and σz. While it is obvious that
it is separable, meaning it factors into tensor products of the
single-qubit Pauli matrices, the dimension of the Pauli basis
is restricted to powers of two, i.e., d = 2n. An operator basis
without this restriction is the generalized Gell-Mann (GGM)
basis [77,78]. In the following we will discuss optimizations
pertaining to this basis that are also implemented in the soft-
ware (see Sec. IV).

The GGM matrices are a generalization of the Gell-Mann
matrices known from particle physics to arbitrary dimensions.
In our normalization convention, the basis (excluding the
identity element) is given by [79]

{�i}d2−1
i=1 = {u jk, v jk,wl} j,k,l (54)

with

u jk = 1√
2

(| j〉〈k| + |k〉〈 j|), (54a)

v jk = − i√
2

(| j〉〈k| − |k〉〈 j|), (54b)

wl = 1√
l (l + 1)

(
l∑

m=1

|m〉〈m| − l|l + 1〉〈l + 1|
)

, (54c)

for 1 � j < k � d , 1 � l � d − 1, and an orthonormal vector
basis {| j〉}d

j=1 of the Hilbert space. Expanding an arbitrary
matrix A ∈ Cd×d in the basis of Eq. (54) is then simply a
matter of adding up the corresponding matrix elements of A
according to Eqs. (54a) to (54c). For instance, the expansion
coefficient for the first symmetric basis element is given by
u12 = (A12|1〉〈2| + A21|2〉〈1|)/√2. The explicit construction
prescription of the GGM basis thus allows calculating inner
products of the form 〈� j |A〉 at constant cost instead of the
quadratic cost of the trace of a matrix product, speeding up
the computation of the transfer matrix from Eq. (1) [in which
case A = E (�k )]. In numerical experiments, calculating the
transfer matrix of a unitary U with dimension d and precom-
puted matrix products Ak = U�kU † scaled as ∼d4.16. This
agrees with the expected scaling of ∼d4 (a transfer matrix
has d2 × d2 elements) and presents a significant improvement
over the explicit calculation with trace overlaps tr(� jAk ) that
we observed to scale as ∼d5.93 (we expected ∼d6).

Further inspection of the GGM basis additionally reveals
an increasing sparsity for large d (the filling factor scales
roughly with d−2), so that it is well suited for computing
the trace tensor Eq. (18). Since this tensor has d8 elements,
the amount of memory required for a dense representation
becomes unreasonably large quite quickly. To overcome this
constraint, we can use a GGM basis instead of a dense basis
like the Pauli basis (which has a filling factor of 1/2). In this
case, the resulting tensor is also sparse because the overlap be-
tween different basis elements is small. This not only enables
storing the tensor in memory but also makes the calculation
much faster since one can employ algorithms optimized for
operations on sparse arrays (see Sec. IV).

As an illustration, consider a system of four qubits so that
the Hilbert space has dimension d = 24. An operator basis for
this space has d2 = 28 elements and consequently the tensor
Ti jkl has (28)4 = 232 entries. Using 128 bit complex floats to
represent the entries the tensor would take up ≈68 GB of
memory in a dense format. Conversely, for a GGM basis
stored in a sparse data structure, the resulting trace tensor
takes up only ≈100 MB of memory. Furthermore, calculating
T takes ≈2.89 s on an Intel® CoreTM i9-9900K eight-core
processor since a GGM has a low filling factor. By contrast,
the same calculation with a Pauli basis takes ≈217 s. This is
due to the larger filling factor on the one hand and because
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sparse matrix multiplication algorithms perform poorly with
dense matrices on the other.

D. Computational complexity

In order to assess the performance of FFs for comput-
ing fidelities compared to MC methods, we determine each
method’s asymptotic scaling behavior as a function of the
system dimension d . For the FFs, we calculate the fidelities
using Eqs. (48) and (26) in our software implementation,
described in more detail in Sec. IV, and hence neglect con-
tributions of O(ξ 4) from the frequency shifts �. Additionally,
we distinguish between three different approaches for calcu-
lating the control matrix; first, for a single pulse following
Eq. (35), second for an arbitrary sequence of pulses following
Eq. (29), and third for a periodic sequence of pulses follow-
ing Eq. (52). For the single pulse, we run benchmarks using
exemplary values for the various parameters on a machine
with an AMD FXTM-6300 processor with six logical cores
and 24 GB of memory. We also discuss the filter function
method using left-right conjugation by unitaries instead of
the Liouville representation. The latter has higher memory
requirements and is expected to perform poorly for large
system dimensions d since one deals with d2 × d2 transfer
matrices on a Liouville space L instead of d × d unitaries on
a Hilbert space H . In the software package, the calculations
are currently implemented in Liouville space and calculation
by conjugation is only partially supported through the low-
level API. However, both representations perform similarly
for small dimensions as we show below. Note that for a fair
performance comparison the different nature of errors needs
to be kept in mind. MC becomes less costly if larger statistical
errors can be tolerated, whereas the filter-function formalism
is typically limited by higher-order errors. For reference, the
following considerations are summarized in Table I for each
approach and a representative set of parameters.

TABLE I. Complexity scaling of the three approaches for cal-
culating the discussed average gate fidelities. “FF (explicit)” stands
for calculating filter functions from scratch following Eq. (35), “FF
(concat.)” for sequences following Eq. (29), and “FF (periodic)” for
periodic Hamiltonians following Eq. (52). H and L designate the
vector space on which calculations are performed. Example values
for the dominant contributions listed in the table are given for ma-
trix multiplication exponent b = 2.376, dimension d = 2, number of
time steps n�t = 1000, and number of gates G = 100 (corresponding
to a sequence of 100 single-qubit gates with 10 time steps each) with
the remaining parameters as in Fig. 2. For increasing d the computa-
tional advantage of FF (L ) over MC diminishes but is conserved for
FF (H ).

Method Dominating scaling Ex. values

MC (H ) n�t nMCnseg(db + d3) 1.3 × 108

FF (L , explicit) n�t nωnαd4 + n�t db+2 2.4 × 107

FF (H , explicit) n�t nωnα (d2 + db) 1.4 × 107

FF (L , concat.) Gnωnαd4 + Gd2b 2.4 × 106

FF (H , concat.) Gnωnαdb 7.8 × 105

FF (L , periodic) nω(nαd4 + d2b + d2b log G) 1.0 × 105

To calculate the fidelity using MC, we generate nMC differ-
ent noise traces that slice every time step �t of the pulse into
nseg = fUV�t segments to appropriately sample the spectral
density with fUV being the ultraviolet cutoff frequency. In
total, there are n�t nMCnseg noise samples for each of which the
Hamiltonian is diagonalized, exponentiated, and the resulting
propagators multiplied to get the final, noisy unitary. The
entanglement fidelity is then obtained by averaging the trace
overlap tr(Q†U )/d of ideal and noisy unitary over all noise
realizations. Taking the complexity of matrix diagonalization
to be O(d3) and matrix multiplication to be O(db) with b = 3
for a naive algorithm and b = 2.376 for the Coppersmith-
Winograd algorithm [80], we expect MC to scale with the
dimension d of the problem as ∼n�t nMCnseg(db + d3). For
simplicity, we use a white noise spectrum for which S(ω) =
const. but note that sampling arbitrary spectra induces addi-
tional overhead for MC, depending on which method is used
to generate the noise traces. Typical time-domain methods
include the simulation of the underlying physical process (like
two-state fluctuators) or the application of an inverse Fourier
transform to white noise multiplied by a frequency-domain
transfer function.

By contrast, the computational cost of the filter-function
formalism as realized by Eq. (35) is independent of the form
of the spectrum. For this approach we find the leading terms to
scale as ∼n�t nωnαd4 + n�t db+2 with nα the number of noise
operators and nω the number of frequency samples. Here, the
first term is due to the trace in Eq. (35), which boils down
to the trace of a matrix product,

∑
i j Ai jB ji, that scales with

d2 and is performed once for each of the d2 basis elements,
nα noise operators, n�t time steps, and nω frequency points.
The second term is due to the transformation Ck → C̄(g)

k which
requires multiplication of d × d matrices for every time step
and basis element. As nαnω < nMCnseg for realistic parameters
because the ultraviolet cutoff frequency needs to be chosen
sufficiently high and the relative error of the method decreases
with 1/

√
nMC, we expect that in the case of a single pulse the

filter-function formalism in Liouville representation should
outperform MC calculations for reasonably small dimensions
d . Using left-right conjugation, this advantage should hold
also for large d . In this case the Hadamard product (∼d2)
as well as matrix multiplication (∼db) are carried out for
each frequency, noise operator, and time step to calculate the
interaction picture noise operators B̄α (ω). We thus find this
method to scale with ∼n�t nωnα (d2 + db).

Figure 2 shows exemplary wall times for both methods and
d ∈ [2, 120] that confirm our expectation. Only for about d ≈
100 the overhead from the extra time steps and trajectories
over which is averaged is compensated for MC. For smaller
dimensions the calculation using FFs is faster by almost two
orders of magnitude (see the inset showing the same data in a
log-log plot). The lines show fits to t = adb. The data is not
quite in the asymptotic regime due to limited memory so that
even for large dimension terms of lower power in d contribute
significantly to the run time. Even though this causes the
fits to underestimate the exponent b, the general trend agrees
with our expectation. Note that the crossover does not always
occur at the same dimension d . On a different system with an
Intel® CoreTM i9-9900K eight-core processor the FF method
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FIG. 2. Performance of the formalism using Eq. (35) com-
pared to a MC method for a single gate as a function of problem
dimension d . Parameters are n�t = 1, nα = 3, nMC = 100, fUV =
102/�t, nω = 500 where nα is the number of noise operators con-
sidered, nMC the number of MC trajectories over which is averaged,
and nω the number of frequency samples. The calculation using
FFs clearly outperforms MC for small system sizes. For dimensions
larger than d ≈ 100 (roughly equivalent to seven qubits) MC (blue
squares) performs better than the filter function (FF) calculation with
transfer matrices (green triangles) for this set of parameters and
processor due to the better scaling behavior. Using conjugation by
unitaries (orange diamonds) significantly outperforms Monte Carlo
(MC) also for large dimensions. While the fits to t = adb (lines)
underestimate the leading order exponent due to the data not being
in the asymptotic regime, they support the expected relationship of
complexity between the approaches. The inset shows the same data
on a linear scale, highlighting the different scaling behaviors for
large d .

outperformed MC even for d = 120 beyond which available
memory limited the simulation.

Quantifying the performance gain from using the control
matrices’ concatenation property to calculate fidelities of gate
sequences is more difficult since it strongly depends on the
number of gates occurring multiple times in the sequence
(enabling reuse of precomputed control matrices) as well as
the complexity of the individual gates. The evaluation using
the concatenation rule Eq. (29) performs asymptotically worse
than the evaluation for a complete pulse according to Eq. (35)
because of higher powers of d dominating the calculation
in the former case. Performing the G matrix multiplications
B̃(g)(ω)Q(g−1) from Eq. (29) is of order ∼Gnωnαd4, with G the
number of pulses in the sequence. Furthermore, calculating
the transfer matrix of the total propagators Qg−1 involves
multiplication of d × d matrices for all d4 combinations of
basis elements amounting to ∼Gdb+4. In case the Liouville
representation of the individual pulses’ total propagators Pg,
P (g), have been precomputed, the latter computation can be
made more efficient since one can just propagate the transfer
matrices P (g) to obtain the cumulative transfer matrices for
the sequence, Q(g) = ∏0

g′=g Q(g′ ), at cost ∼Gd2b. The restric-
tion to small dimensions does not apply for conjugation by
unitaries as in this case the matrix multiplications involve
d × d matrices and we do not have to compute the Liouville
representation. We thus obtain a more favorable asymptotic
scaling of ∼Gnωnαdb.

Utilizing the concatenation property in the Liouville repre-
sentation thus corresponds to effectively reducing the number
of times the calculations scaling with ∼nωnαd4 have to be car-
ried out but incurs additional calculations scaling with ∼d2b.
Accordingly, it provides a performance benefit if a sequence
consists of either very complex pulses, in which case single
repetitions already make the calculation much more efficient,
or of few pulses that occur many times. In the extremal case
of G repetitions of a single gate the benefit of employing
the concatenation property is most pronounced and can be
improved even further utilizing the simplifications laid out in
Sec. III A. Since matrix inversion has the same complexity as
matrix multiplication and taking a matrix to the Gth power re-
quires O(log G) matrix multiplications, Eq. (52) should scale
with ∼nω(nαd4 + d2b + d2b log G) (the first two terms are
due to the final matrix multiplications and are independent
of G). It hence allows for a vast speedup over Eq. (29) in
that the asymptotic behavior as a function of the number of
gates changes from ∼G to ∼ log G. An example of this is
presented in Sec. V B for the context of Rabi driving. Note
that this closed form is a unique feature of the transfer matrix
representation and not applicable to conjugation by unitaries.

IV. SOFTWARE IMPLEMENTATION

In this section we give an overview over the
filter_functions software package implementing the
main features of the formalism derived above. This includes
the calculation of the decay amplitudes 
 and fidelities as
well as the calculation of the control matrices for single gates
and both generic and periodic sequences of gates. Moreover,
control matrices may be efficiently extended to and merged on
larger Hilbert spaces. Calculations using unitary conjugation
instead of transfer matrices are implemented but at this point
not available in the high-level API.

Our software is written in Python and available on GitHub
[41] under the GPLv3 license. We also provide a current
snapshot in the Supplemental Material [81]. It features a broad
coverage through unit tests and extensive API documentation
as well as didactic examples (see Sec. V). The package relies
on the NumPy [82] and SciPy [83] libraries for vectorized ar-
ray operations. Data visualization is handled by matplotlib
[84]. For tensor multiplications with optimized contraction
order we use opt_einsum [85] for which sparse [86], a
library aiming to extend the SciPy sparse module to multi-
dimensional arrays, serves as a backend in the calculation of
the trace tensor from Eq. (18). Last, the package is written
to interface with qopt [43,87] and QuTiP [42], frameworks
for the simulation and optimization of open quantum systems,
and mirrors the latter’s data structure for Hamiltonians ensur-
ing easy interoperability between the two.

A. Package overview

In the filter_functions package all operations are un-
derstood as sequences of pulses that are applied to a quantum
system. These pulses are represented by instances of the
PulseSequence class which holds information about the
physical system (control and noise Hamiltonians) as well
as the mathematical description (e.g., the basis used for the
Liouville representation). As indicated above, the Hamilto-
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nians Hc(t ) and Hn(t ) are given in a similar structure as in
QuTiP. That is, a Hamiltonian is expressed as a sum of Hermi-
tian operators with the time dependence encoded in piecewise
constant coefficients so that

Hc(t ) =
∑

i

a(g)
i Ai = const, (55a)

Hn(t ) =
∑

α

s(g)
α Bα = const (55b)

for t ∈ (tg−1, tg], g ∈ {1, . . . , G} and where the a(g)
i are the

amplitudes of the ith control field. Note that the noise
variables bα (t ) are missing from Eq. (55b) because they
are captured by the spectral density S(ω). In the software,
Eqs. (55a) and (55b) are represented as lists whose ith element
corresponds to a sublist of two elements: the ith operator and
the ith coefficients [a(1)

i , . . . , a(G)
i ].

The PulseSequence class provides methods to calculate
and cache the filter function according to Eq. (30). Alter-
natively, FFs may also be cached manually to permit using
the package with analytical solutions for the control matrix.
Concatenation of pulses is implemented by the functions
concatenate() and concatenate_periodic() which will
attempt to use the cached attributes of the PulseSequence
instances representing the pulses to efficiently calculate the
filter function of the composite pulse following Eq. (29) and
Eq. (52), respectively.

Operator bases fulfilling Eq. (14) are implemented by the
Basis class. There are two predefined types of bases:

(1) Pauli bases for n = 2d qubits from Eq. (53) and
(2) generalized Gell-Mann (GGM) bases of arbitrary di-

mension d from Eq. (54).
The Pauli basis is both unitary and separable while the

GGM basis is sparse for large dimensions but neither unitary
nor separable. As mentioned in Sec. III B (see also Sec. V D),
using a separable basis can provide significant performance
benefits for calculating the FFs of algorithms. On the other
hand, a sparse basis makes the calculation of the trace tensor
Ti jkl and therefore also of the error transfer matrix Ũ much
faster (cf. Sec. III C). Additionally, the user can define custom
bases using the class constructor.

The error transfer matrix Ũ can be calculated
for a given pulse and noise spectrum using the
error_transfer_matrix() function [88]. Various other
quantities can be computed from Ũ as outlined in Sec. II D.
Furthermore, the package includes a plotting module that
offers several functions, e.g., for the visualization of FFs or
the evolution of the Bloch vector using QuTiP.

B. Workflow

We now give a short introduction into the workflow of the
filter_functions package by showing how to calculate
the dephasing filter function of a simple Hahn spin echo
sequence [89] as an example. The sequence consists of a
single π -pulse of finite duration around the x-axis of the Bloch
sphere in between two periods of free evolution. We can hence
divide the control fields into three constant segments and write
the control Hamiltonian as

H (SE)
c (t ) = σx

2
·
{
π/tπ , if τ � t < τ + tπ
0, otherwise

(56)

with τ the duration of the free evolution period and tπ that
of the π pulse. For the noise Hamiltonian we only need to
define the deterministic time dependence sα (t ) and operators
Bα since the noise strength is captured by the spectrum S(ω).
Thus we have sz(t ) = 1 and Bz = σz/2 for pure dephasing
noise that couples linearly to the system.

In the software, we first define a PulseSequence object
representing the spin echo (SE) sequence. As was already
mentioned, the control and noise Hamiltonians are given as
a list containing lists for every control or noise operator that
is considered. These sublists consist of the respective operator
as a NumPy array or QuTiP Qobj and the amplitudes (a(g)

i or
s(g)
α ) in an iterable data structure such as a list. We can hence

instantiate the PulseSequence with the following code:
import filter_functions as ff
import qutip as qt
from math import pi
tau, t_pi = (1, 1e-3)
# Control Hamiltonian for pi rotation
H_c = [[qt.sigmax()/2, [0, pi/t_pi, 0]]]
# Pure dephasing noise Hamiltonian
H_n = [[qt.sigmaz()/2, [1, 1, 1]]]
# Durations of piecewise constant segments
dt = [tau, t_pi, tau]
ECHO = ff.PulseSequence(H_c, H_n, dt)

where a basis is automatically chosen since we did not specify
it in the constructor in the last line. Calculating the filter
function of the pulse for a given frequency vector omega can
then be achieved by calling

F = ECHO.get_filter_function(omega)
where F is the dephasing filter function Fzz(ω) as we defined
only a single noise operator. Finally, we calculate the error
transfer matrix Ũ for the noise spectral density Szz(ω) = ω−2,

S = 1/omega**2
U = ff.error_transfer_matrix(ECHO, S, omega)
This code uses the control matrix previously cached when

the filter function was first computed. Therefore, only the
integration in Eq. (24) and the calculation of the trace tensor
in Eq. (18) are carried out in the last line.

An alternative approach to calculate the spin echo filter
function is to employ the concatenation property. For this, we
interpret the SE as a sequence consisting of three separate
pulses. Each of the pulses has a single time segment during
which a constant control is applied and concatenating the sep-
arate PulseSequence instances yields the PulseSequence
representing a spin echo. This way analytic control matrices
may be used to calculate the control matrix of the composite
sequence. Pulses can be concatenated by using either the
concatenate() function or the overloaded @ operator:

# Define PulseSequence objects as shown above
FID = ff.PulseSequence(...)
NOT = ff.PulseSequence(...)
# Cache the analytic control matrices
FID.cache_control_matrix(omega, B_FID)
NOT.cache_control_matrix(omega, B_NOT)
# Concatenate the pulses
ECHO = FID @ NOT @ FID
Since we have cached the control matrices of the FID

and NOT pulses, that of the ECHO object is also automatically
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calculated and stored. Concatenating PulseSequence objects
is implemented as an arithmetic operator of the class to reflect
the intrinsic composition property of the control matrices.

Further development of the software has focused on
making it available in a gate optimization and simulation
framework [43,87]. Besides using it to compute decoherence
effects and fidelities, analytic derivatives of the FFs have been
implemented to allow for optimizing pulse parameters in the
presence of non-Markovian noise within the framework of
quantum optimal control [90].

Additionally, building an interface with qupulse [91,92],
a software toolkit for parametrizing and sequencing control
pulses and relaying them to control hardware, would imple-
ment the capability to compute FFs of pulses assembled in
qupulse, thereby allowing a user in the laboratory to easily
inspect the noise susceptibility characteristics of the pulse
they are currently applying to their device.

V. EXAMPLE APPLICATIONS

We now present example applications of the software pack-
age and the formalism. As stated before, we focus on the
decay amplitudes 
 and its associated FFs and assume that
the unitary errors generated by the frequency shifts � are
either small (as is the case for gate fidelities) or calibrated
out. All of the examples shown below are part of the software
documentation as either interactive Jupyter notebooks [93]
or Python scripts. In the following, we give angular frequen-
cies and energies in units of inverse times (e.g., s−1), while
ordinary frequencies are given in Hz and we write 〈Ũ (τ )〉 = Ũ
for legibility.

A. Singlet-triplet two-qubit gates

In order to benchmark fidelity predictions of our imple-
mentation as well as demonstrate its application to nontrivial
pulses, we compute the first-order infidelity of the two-qubit
gates presented in Ref. [94] and compare the results to
the reference’s MC calculations. There, a numerically op-
timized gate set consisting of {Xπ/2 ⊗ I, Yπ/2 ⊗ I, CNOT}
for exchange-coupled singlet-triplet spin qubits is introduced,
taking into account different noise spectra and realistic control
hardware.

For readers unfamiliar with the reference we briefly sum-
marize the physical system and noise model entering the
optimization. The authors consider four electrons confined
in a linear array of four quantum dots in a semiconductor
heterostructure. Each electron i ∈ {1, 2, 3, 4} experiences a
different static magnetic field Bi so that there is a gradient
bi j = Bi − Bj between two adjacent dots i and j. This gives
rise to spin quantization along the magnetic field axis and
defines the eigenstates {|↑↓〉, |↓↑〉} that span the computa-
tional subspace of a single qubit so that the accessible Hilbert
space of the two-qubit system is spanned by {|↑↓〉, |↓↑〉}⊗2.
The magnitude of the exchange interaction Ji j between two
adjacent dots i and j is controlled via gate electrodes located
on top of the heterostructure that can be pulsed on a nanosec-
ond timescale with an arbitrary waveform generator (AWG).

Changing the gate voltages changes the detuning εi j of the
electrochemical potential between dots and in turn leads to a
change in exchange coupling according to the phenomenolog-
ical model Ji j (εi j ) ∝ exp(εi j ).

The pulses are defined by a set of discrete detuning volt-
ages εi j passed to an AWG with a sample rate of 1 GS/s
and constant magnetic field gradients bi j are assumed. To
reflect the fact that the qubits experience a different pulse than
what is programed into the AWG due to cable dispersion and
nonideal control hardware, the detunings are convoluted with
an experimental impulse response [94]. Finally, the signal is
discretized as piecewise constant by slicing each segment into
five steps, yielding a time increment of �t = 0.2 ns.

To find optimal detuning pulses, a Levenberg-Marquardt
algorithm iteratively minimizes the infidelity, leakage, and
trace distance from the target unitary. For the infidelity, con-
tributions from quasistatic magnetic field noise as well as
quasistatic and white charge noise are taken into account
during each iteration. Because treating colored (correlated)
noise using MC methods is computationally expensive (cf.
Sec. III D), the infidelity due to fast 1/ f -like noise is
computed only for the final gate and not used during the
optimization.

Two-qubit interactions are mediated via the exchange J23

that makes the states |↑↑↓↓〉 and |↓↓↑↑〉 accessible. They
constitute levels outside of the computational subspace that
ideally should be occupied only during an entangling gate
operation. A nonvanishing population of these states after the
operation has ended is therefore unwanted and considered
leakage, the magnitude of which we could quantify following
Sec. II D 3. However, here we limit ourselves to determine the
infidelity contribution from fast, viz., nonquasistatic, charge
noise entering the system through εi j . That is, we consider
noise sources α ∈ {ε12, ε23, ε34}. We take the nonlinear depen-
dence of the Hamiltonian on the detunings εi j into account by
setting sεi j (t ) = ∂Ji j (εi j (t ))/∂εi j (t ) ∝ Ji j (εi j (t )).

Figure 3 shows the filtered (convoluted) exchange interac-
tion Ji j between each pair of dots during the pulse sequence in
Fig. 3(a) and FFs plotted as function of frequency in Fig. 3(b)
for the three different detunings. For a detailed description
on how the filter functions were computed in the presence
of additional leakage levels refer to Appendix B. As one
would expect from the fact that the intermediate (interqubit)
exchange interaction J23 (orange dash-dotted lines) is turned
on only for short times to entangle the qubits, the filter func-
tion for ε23 is smaller by roughly an order of magnitude than
the intra-qubit exchange FFs. Notably, the FFs for ε12 and ε34

show clear characteristics of DCGs, that is they drop to zero
as ω → 0, and decouple from quasistatic noise with an error
suppression ∝ ω2. This is not unexpected as the optimization
minimizes quasistatic noise contributions to the infidelity. In
addition, one can also observe small oscillations with period
5 ns−1 in frequency space that arise as a numerical artifact of
the piecewise constant discretization of the control parameters
as investigations have shown. If high-frequency spectral com-
ponents are expected to play a significant role, one needs to
be aware of these effects and adjust the simulation parameters
appropriately.
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FIG. 3. (a) Exchange interaction J (εi j ) for the CNOT gate presented in Ref. [94] as function of time. (b) Filter functions Fεi j for noise in
the detunings evaluated on the computational subspace. The FFs are modulated by oscillations at high frequencies due to numerical artifacts
of the finite step size for the time evolution. The inset shows the FFs in the DC regime on a linear scale with distinct peaks around ω = 2π/τ

and ω = 50/τ (τ = 50 ns). (c)–(e) Computational subspace block of the first-order approximation of the error transfer matrix, given by the
cumulant function Kαα excluding second-order contributions, for the CNOT gate and the three detunings α ∈ {ε12, ε23, ε34}. Note that in panel
(e) the order of the rows and columns was permuted for better comparability.

The inset of Fig. 3(b) shows the same FFs for the DC tail on
a linear scale. Most notably, Fε12 and Fε34 have maxima around
ω = 2π/τ , i.e., exactly the frequency matching the pulse du-
ration, and around ω = 50/τ = 1 ns−1 with τCNOT = 50 ns.
The former is the typical window in which a pulse is most
susceptible to noise whereas the latter matches the absolute
value of the magnetic field gradients, b12 = −b34 = 1 ns−1,
indicating that the peak corresponds to the qubit dynamics
generated by the magnetic field gradients. Figures 3(c)–3(e)
show the cumulant functions Kεi j (τ ) of the detuning error
channels εi j on the computational subspace. Kε12 displays
clear characteristics of a Pauli channel with only elements
on the diagonal and secondary diagonals deviating from zero
significantly whereas Kε34 (the target qubit) possesses a more
complicated structure.

We now compute the infidelity contribution originating
from fast charge noise using Eq. (43) but tracing only over
the computational subspace to compare to the MC calcula-
tions of Ref. [94] (see Appendix B for further details). Like
the reference, we use a noise spectrum Sε,a( f ) ∝ 1/ f a with
Sε,a(1 MHz) = 4 × 10−20V2Hz−1 and consider white noise
(a = 0) and correlated noise with a = 0.7 [10] with infrared
and ultraviolet cutoffs 1/τ and 100 ns−1, respectively. Table II
compares the results in this work with the reference. The val-
ues computed here are consistent with the more elaborate MC
calculations within a few percent. Notably, the deviation is
smaller for the smaller noise levels with a = 0.7, in line with
the fact that we have computed only the contributions from the

decay amplitudes 
 and thus the leading order perturbation. If
we had additionally evaluated the frequency shifts � we could
have obtained the exact fidelity in the case of Gaussian noise.

B. Rabi driving

A widely used method for qubit control is Rabi driving
[8,13,26,95]. If we restrict ourselves to the resonant case for
simplicity, the control Hamiltonian takes on the general form
Hc = ω0σz/2 + A sin(ω0t + φ)σx. Here ω0 is the resonance
frequency, A the drive amplitude corresponding to the Rabi
frequency in the weak driving limit A/ω0 � 1, �R ≈ A, and φ

TABLE II. Fast charge noise infidelity contributions to the total
average gate fidelity of the two-qubit gate set from Ref. [94] without
capacitive coupling for GaAs S-T0 qubits compared with the original
results. The fidelities are consistent with results from the reference
within the uncertainty bounds of 3 % of the MC calculation. The in-
fidelities presented here are all average gate infidelities [cf. Eq. (43),
Refs. [71,72]].

This work Ref. [94]

a 0 0.7 0 0.7

Xπ/2 ⊗ I 1.7 × 10−3 5.8 × 10−5 1.9 × 10−3 5.7 × 10−5

Yπ/2 ⊗ I 1.6 × 10−3 5.7 × 10−5 1.7 × 10−3 5.6 × 10−5

CNOT 1.5 × 10−3 6.4 × 10−5 1.6 × 10−3 6.3 × 10−5
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an adjustable phase giving control over the rotation axis in the
xy-plane of the Bloch sphere. This Hamiltonian and associated
decoherence mechanisms are well studied in the weak driving
regime, where the rotating wave approximation (RWA) can be
applied to remove fast-oscillating terms in the rotating frame
[96,97]. There is a comprehensive understanding of how spec-
tral densities transform to this frame and which frequencies
are most relevant to loss of coherence [98].

By contrast, the description of a system in the strong driv-
ing regime, where A/ω0 ∼ 1, is more complicated since the
RWA cannot be applied without making large errors. Yet an
improved understanding is desirable because strong driving
allows for much shorter gate times and thus shifts the window
of relevant noise frequencies towards higher energies where
the total noise power is typically lower, e.g., for 1/ f noise.
Conversely, faster control also requires more accurate timing
to prevent rotation errors. It is therefore of interest to have
available tools that can provide a comprehensive picture for
Rabi pulses over a wide range of driving amplitudes. By
making use of the concatenation property of the FFs, our
formalism can do just that.

The problem that arises when trying to numerically inves-
tigate Rabi pulses in the weak driving regime in the laboratory
frame is that typical control operations have a duration τ � T
with T = 2π/ω0. Since the sampling time step �t should
additionally be chosen much smaller than a single drive period
in order to sample the time evolution accurately (�t � T ),
brute-force simulations are costly.

For T/�t = 100 samples per period and assuming Rabi
and drive frequencies in typical regimes for SiGe and MOS
quantum dots [99,100] or trapped ions [26], �R = 1μs−1 and
ω0 = 20 ns−1, a MC simulation of a π -rotation with approxi-
mately 3 % relative error would require 109 samples in total.
Using the filter-function formalism, we can drastically reduce
the simulation time even beyond the improvement gained
from concatenating precomputed FFs of individual drive peri-
ods using Eq. (29). This can be achieved with Eq. (52), which
simplifies the calculation of the control matrix for periodic
Hamiltonians.

To benchmark our implementation, we use the parameters
from above and calculate the control matrix of a NOT gate
generated by a Rabi Hamiltonian with three different methods
on an Intel® CoreTM i9-9900K eight-core processor. First, we
use Eq. (29) in a brute force approach. Second, we utilize the
concatenation property following Eq. (35). Third, we employ
the simplified expression given by Eq. (52). The brute force
approach takes 250 s of wall time, whereas calculating the fil-
ter function using the standard concatenation is faster by two
orders of magnitude, taking 1.5 s to run. Last, the calculation
utilizing the optimized method is faster again by two orders of
magnitude and is completed in 0.056 s.

As an example application, we calculate the FFs for con-
tinuous Rabi driving in the weak and strong driving regimes.
For weak driving, we use the parameters from the benchmark
above for a pulse of duration τweak ≈ 20μs that corresponds
to 20 identity rotations in total. For the strong driving regime,
we use the approximate analytical solution for a flux qubit
biased at its symmetry point from Ref. [101] with A = ω0/4
to drive the qubit for τstrong ≈ 4 ns so that we achieve the same
amount of identity rotations as in the weak driving case. In the

FIG. 4. Filter functions for weak (a) and strong (b) Rabi driving
(20 identity gates in total). Gray dashed (dotted) lines indicate the
respective drive (Rabi) frequencies ω0 (�R). (a) Weak driving with
A/ω0 � 1. The filter function Fxx for noise operator σx is approxi-
mately constant up to the resonance frequency where it peaks sharply
and then aligns with the filter function Fzz for σz. Fzz peaks at the Rabi
frequency before rolling off with ω−2 and a DC level that is almost 10
orders of magnitude larger than the DC level of the transverse filter
function Fxx . (b) Strong driving with A/ω0 ∼ 1. Again Fzz peaks at
�R whereas Fxx has three distinct peaks at ω0 and ω0 ± �R. These
features also appear at slightly higher frequencies in Fzz due to the
strong coupling.

reference, strong driving in this regime is shown to give rise to
non-negligible counterrotating terms that modulate the Rabi
oscillations and which are well described by Floquet theory
applied to the Rabi driving Hamiltonian. While for the regime
studied here only two additional modes appear, the results
extend to the regime where A > ω0 and up to eight different
frequency components were observed.

Figure 4 shows the FFs Fxx and Fzz for the σx and
σz noise operators in the weak [Fig. 4(a)] and the strong
[Fig. 4(b)] driving regime. Both display sharp peaks at their
Rabi frequencies and the resonance frequency for Fzz and Fxx,
respectively. We expect these features as they correspond to
perturbations of the qubit Hamiltonian that are resonant with
the qubit dynamics about an axis orthogonal to them. For
weak driving, Fxx is constant up to the resonance frequency
where it peaks sharply and then aligns with Fzz. The latter
has a peak at the Rabi frequency before rolling off with
ω−2 and a DC level that is almost 10 orders of magnitude
larger than that of the transverse filter function. This behavior
is consistent with the results by Yan et al. [98], who show
that the noise sources dominating decoherence during driven
evolution are Sxx(ω0) and Szz(�R). Note that the piecewise
constant control approximation causes the weak driving FFs
to level off towards low frequencies after an initial roll-off
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(here at ω ∼ 1 ms−1). By decreasing the discretization time
step �t , one can shift the frequency at which this effect occurs
to lower frequencies and thus attribute the feature to a numer-
ical artefact of the approximation. However, the decoupling
properties depend quite sensitively on the pulse duration.

In case of strong driving, the two FFs are closer in am-
plitude for lower frequencies. In addition, Fxx also peaks at
ω = ω0 ± �R. These peaks also show up at higher frequen-
cies in the dephasing filter function Fzz, reflecting frequency
mixing in the strong coupling regime. While both FFs show
characteristics of a DCG in the weak driving regime, that is
they drop to zero as ω → 0, this is not the case in the strong
driving regime. Instead, there they approach a constant level
for small frequencies. On top of rotation errors from timing
inaccuracies, we may thus expect naive strong driving gates
to be more susceptible to quasistatic noise than weak driving
gates. By shaping the pulse envelope of the strong driving gate
the decoupling properties could be recovered.

C. Randomized benchmarking

Standard randomized benchmarking (SRB) and related
methods, for example, interleaved RB, are popular tools to
assess the quality of a qubit system and the operations used
to control it [50,102,103]. The basic protocol consists of con-
structing K random sequences of varying length m of gates
drawn from the Clifford group [104] and appending a final
inversion gate so that the identity operation should be per-
formed in total. Each of these pulse sequences is applied to
an initial state |ψ〉 in order to measure the survival probability
p(|ψ〉) after the sequence. In reality, the applied operations are
subject to noise and experimental imprecisions. This renders
them imperfect and results in a survival probability smaller
than one. Assuming gate-independent errors, the average gate
fidelity Favg is then obtained by fitting the measured survival
probabilities for each sequence length to the zeroth-order ex-
ponential model [103]

p(|ψ〉) = A

(
1 − dr

d − 1

)m

+ B, (57)

where r = 1 − Favg is the average error per single gate to
be extracted from the fit, A and B are parameters capturing
state preparation and measurement (SPAM) errors, and d is
the dimensionality of the system.

One of the main assumptions of the SRB protocol is that
temporal correlations of the noise are small on timescales
longer than the average gate time [103]. If this requirement
is not satisfied, e.g., if 1/ f noise plays a dominant role,
the decay of the sequence fidelity can have nonexponential
components [105–107] and a single exponential fit will not
produce the true average gate fidelity [108,109]. The filter-
function formalism suggests itself to numerically probe RB
experiments in such systems for two reasons. First, it enables
the study of gate performance subject to noise with correlation
times longer than individual gate times. This regime, where a
simple description in terms of individual, isolated quantum
operations fails, is accessible in the filter-function formalism
because universal classical noise can be included by the power
spectral density S(ω). Second, the simulation of a RB experi-
ment can be performed efficiently by using the concatenation

property. Because RB sequences are compiled from a limited
set of gates whose FFs may be precomputed, one only needs
to concatenate m FFs for a single sequence of length m to gain
access to the survival probability.

Since for sufficiently long RB sequences r ∈ O(1), and
we would need to include the frequency shifts � in a full
simulation following Eq. (9) because the low-noise approxi-
mation Eq. (42) does not hold in this regime. Unfortunately,
the concatenation property does not hold for �. Therefore, we
focus on the high-fidelity regime where the exponential decay
of the sequence fidelity may be approximated to linear order
and only the decay amplitudes 
 need to be considered.

In order to evaluate the survival probability of a RB exper-
iment using FFs, we employ the state fidelity from Sec. II D 2
and focus on the single-qubit case with d = 2 and the (nor-
malized) Pauli basis from Eq. (53). Because the ideal action
of a RB sequence is the identity we have Q = 1. Assuming
we prepare and measure in the computational basis, |ψ〉 ∈
{|0〉, |1〉} so that

√
2|ρ〉〉 = |σ0〉〉 ± |σ3〉〉, we simplify Eq. (49)

to

F (|ψ〉,URB(|ψ〉〈ψ |)) = 1

2
(Ũ00 + Ũ33 ± Ũ03 ± Ũ30)

= 1 + Ũ33

2
≈ 1 − 1

2

∑
k �=3


kk . (58)

For the second equality we used that Ũ is trace-preserving and
unital (cf. Sec. II A 2) while in the last step we approximated
the expression using Eqs. (42) and (22). For our simulation,
we neglect SPAM errors so that A = B = 0.5, choose |ψ〉 =
|0〉, and approximate Eq. (57) as

p(|0〉) = F (|0〉,URB(|0〉〈0|)) ≈ 1 − rm (59)

for small gate errors r � 1 since this is the regime which we
can efficiently simulate using the concatenation property.

We simulate single-qubit SRB experiments using three dif-
ferent gate sets to generate the 24 elements of the Clifford
group. For the first gate set we implement the group by naive
“single” rotations about the symmetry axes of the cube. Each
pulse corresponds to a single time segment during which one
rotation is performed so that the jth element is given by
Qj = exp(−iφ j 
n j · 
σ ). We compile the other two gate sets
from primitive π/2 x- and y-rotations so that on average each
Clifford gate consists of 3.75 primitive gates (see Ref. [110]).
For the specific implementation of the primitive π/2-gates we
compare “naive” rotations, i.e., with a single time segment so
that Qj = exp(−iπσ j/4) for j ∈ {x, y}, and the “optimized”
gates from Ref. [94]. Pulse durations are chosen such that
the average duration of all 24 Clifford gates generated from
a single gate set is equal for all three gate sets. This is to
ensure that the different implementations of the Clifford gates
are sensitive to the same noise frequencies.

We investigate white noise and correlated noise with
S(ω) ∝ ω−0.7 assuming the same noise spectrum on each
Cartesian axis of the Bloch sphere and normalize the noise
power for each gate set and noise type (white and correlated)
so that the average Clifford infidelity r is the same throughout.
We then randomly draw K = 100 sequences for 11 different
lengths m ∈ [1, 101] and concatenate the m Clifford gates
using Eq. (29) to compute the control matrix of the entire
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FIG. 5. Simulation of a standard RB (SRB) experiment using
100 random sequences per point for different gate and noise types
(see the main text for an explanation of the gate-type monikers).
Dashed lines are fits of Eq. (59) to the data, while the solid black
lines correspond to a zeroth-order SRB model with A = B = 0.5 and
the true average gate infidelity per Clifford r. Errorbars show the
standard deviation of the SRB sequence fidelities, illustrating that
for the “single” gate set noise correlations can lead to amplified
destructive and constructive interference of errors. The same noise
spectrum is used for all three error channels (σx , σy, σz), and the large
plots show the sum of all contributions. (a) Uncorrelated white noise
with the noise power adjusted for each gate type so that the average
error per gate r is constant over all gate types. No notable deviation
is seen between different gate types. (b) Correlated 1/ f -like noise
with noise power adjusted to match the average Clifford fidelity in
(a). The decay of the “single” gateset differs considerably from that
of the other gate sets and the SRB decay expected for the given
average gate fidelity, whereas “naive” and “optimized” gates match
the zeroth-order SRB model well, indicating that correlations in the
noise affect the relation between SRB decay and average gate fidelity
in a gateset-dependent way. Inset: Contributions from σz-noise show
that the sequence fidelity can be better than expected for certain gate
types and noise channels.

sequence. For the integral in Eq. (24) we choose the ultra-
violet cutoff frequency two orders of magnitude above the
inverse duration of the shortest pulse, fUV = 102/τmin. Sim-
ilarly, the infrared cutoff is chosen as fIR = 10−2/mmaxτmax

with mmax = 101 and τmax = 7τmin (since the longest gate is
compiled from seven primitive gates with duration τmin) to
guarantee that all nontrivial structure of the FFs is resolved
at small frequencies [111]. Finally, we fit Eq. (59) to the
infidelities computed for the different noise spectra.

The results of the simulation are shown in Figs. 5(a) and
5(b) for white and correlated noise, respectively. For white
noise, the survival probability agrees well with the SRB pre-
diction for all gate types, whereas for 1/ f -like noise the
“single” gates (green pluses) deviate considerably. Hence,

fitting the zeroth-order SRB model to such data will not reveal
the true average gate fidelity although errors are of order
unity. We note that Refs. [105] and [37] found similar results
using different methods for 1/ f and perfectly correlated DC
noise, respectively. The former observed SRB to estimate r
within 25% and the latter found the mean of the SRB fidelity
distribution to deviate from the mode, thereby giving rise to
incorrectly estimated fidelities.

On top of affirming the findings by the references, our re-
sults demonstrate that the accuracy of the predictions made by
SRB theory, i.e., that the RB decay rate directly corresponds to
the average error rate of the gates, not only depends on the gate
implementation but also on which error channels are assumed.
This can be seen from the inset of Fig. 5(b), where only
dephasing noise (σz) contributions are shown. For this noise
channel and the “naive” gates, one finds a slower RB decay
than expected from the actual average gate fidelity, so that the
latter would be overestimated by an RB experiment, whereas
the “single” gates show the opposite behavior. Depending on
the gate set and relevant error channels, non-Markovian noise
may thus even lead to improved sequence fidelities due to
errors interfering destructively. This behavior is captured by
the pulse correlation FFs whose contributions to the sequence
fidelity lead to the deviations from the SRB prediction.

Notably, the data for the “optimized” gates agree with the
prediction for every noise channel individually which im-
plies that correlations between pulses are suppressed. This
highlights the formalism’s attractiveness for numerical gate
optimization as the pulse correlation FFs F (gg′ )(ω) may be
exploited to suppress correlation errors. To be more explicit,
the correlation decay amplitudes 
(gg′ ) from Eq. (31) can be
used to construct cost functions for quantum optimal con-
trol algorithms like GRAPE [112,113] or CRAB [114]. By
constructing linear combinations of 
(gg′ ) with different pulse
indices g and g′, correlations between any number of pulses
can be specifically targeted and suppressed using numerical
pulse optimization.

D. Quantum Fourier transform

To demonstrate the flexibility of our software implemen-
tation, we calculate FFs for a four-qubit quantum Fourier
transform (QFT) [45,115] circuit. QFT plays an important
role in many quantum algorithms such as Shor’s algorithm
[116] and quantum phase estimation [45]. For the underlying
gate set, we assume a standard Rabi driving model with IQ
control and nearest neighbor exchange. That is, we assume
full control of the x- and y-axes of the individual qubits as
well as the exchange interaction mediating coupling between
two neighboring qubits. This system allows for native access
to the minimal gateset G = {Xi(π/2), Yi(π/2), CRi j (π/23)}
where CRi j (φ) denotes a controlled rotation by φ about z with
control qubit i and target qubit j. Controlled-z rotations by
angles π/2m as required for the QFT can thus be obtained by
concatenating 23−m minimal gates CRi j (π/23).

Despite native access to all necessary gates, we em-
ploy QuTiP’s implementation [42] of the GRAPE algorithm
[112,113] to generate the gates in order to highlight our
method’s suitability for numerically optimized pulses. For the
optimization we choose a time step of �t = 1 ns and a total
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FIG. 6. Top: Circuit for a QFT on four qubits with nearest-neighbor coupling. Labels next to the wires indicate the qubit index, showing
that the final SWAP operation has already been carried out. Bottom: FFs for noise operators on the first qubit (i = 0). Dotted gray lines indicate
the positions of the nth harmonic, ωn = 2πn/τ with τ = 30 ns the duration of the gates in G, for n ∈ {1, 2, 3, 4}. The FFs have a baseline
of around 104 in the range ω ∈ [10−1, 101] ns−1 before they drop down to follow the usual 1/ω2 behavior. The dashed lines show the error
sensitivities Iα (ω1, ω2) := ∫ ω2

ω1
dωFα (ω) in the frequency band [0, ω] as a fraction of the total sensitivity Iα (0, ∞). These are closely related

to the entanglement fidelity [cf. Eqs. (26) and (48)] and suggest that high frequencies up to the knee at ω ≈ 10 ns−1 cannot be neglected if
the cutoff frequency of the noise is sufficiently high or the spectrum does not drop off quickly enough (note the linear scale as opposed to the
logarithmic scale for the FFs).

gate duration of τ = 30 ns. For completeness, see Appendix C
for details on the optimized gates. We then construct the re-
maining required gates by sequencing these elementary gates,
i.e., the Hadamard gate Hi = Xi(π/2) ◦ Xi(π/2) ◦ Yi(π/2),
where B ◦ A denotes the composition of gates A and B such
that gate A is executed before gate B. To map the canon-
ical circuit [45] onto our specific qubit layout with only
nearest-neighbor coupling, we furthermore introduce SWAP
operations to couple distant qubits. These gates can be im-
plemented by three CNOTs, SWAPi j = CNOTi j ◦ CNOT ji ◦
CNOTi j . The CNOTs in turn are obtained by a Hadamard
transform of the controlled phase gate, CNOTi j = H j ◦
CRi j (π ) ◦ H j . The complete quantum circuit is shown at the
top of Fig. 6; for the canonical circuit with all-to-all connectiv-
ity refer to Ref. [45]. In total, there are 442 elementary pulses,
198 of which are required for the three SWAPs on the first
two qubits, so that the entire algorithm would take ∼13μs to
run. Note that the circuit could be compressed in time by par-
allelizing some operations but for simplicity we execute gates
only sequentially and do not execute dedicated idling gates.

In order to leverage the extensibility of the filter function
approach (see Sec. III B), we use a Pauli basis for the pulses
and proceed as follows:

(1) Instantiate the PulseSequence objects for the ele-
mentary gates G for the first two qubits and cache the control
matrices.

(2) Compile all required single- and two-qubit pulses by
concatenating the PulseSequences that implement G.

(3) Extend the PulseSequences to the full four-qubit
Hilbert space.

(4) Recursively concatenate recurring gate sequences by
concatenating four-qubit PulseSequences, e.g., SWAP10 ◦
CR10(π/21) ◦ H0, in order to optimally use the performance
benefit offered by Eq. (29).

(5) Concatenate the last PulseSequences to get the com-
plete QFT pulse.

For our gate parameters and 400 frequency points, this
procedure takes around 5 s on an Intel® CoreTM i9-9900K
eight-core processor, whereas computing the FFs naively us-
ing Eq. (35) takes around 4 min. The resulting FFs are shown
in Fig. 6 for the noise operators affecting the first qubit; for an
in-depth discussion and validation of the fidelities predicted;
see the accompanying letter Ref. [16] and its supplemental
information. Evidently, the fidelity of the algorithm is most
susceptible to DC noise; below roughly ω � 10−3 ns−1 the
FFs level off at their maximum value. In the GHz range
there is a plateau with sharp peaks corresponding to the nth
harmonics of the inverse pulse duration ωn = 2πn/τ , where
the leftmost belongs to n = 1. The dashed lines show the
error sensitivities Iα (ω1, ω2) := ∫ ω2

ω1
dωF (ω) in the frequency

band [0, ω] relative to the total sensitivity Iα (0,∞). For a
white spectrum, i.e., S(ω) = const, this quantifies the fraction
of the total entanglement infidelity that is accumulated up to
frequency ω [cf. Eqs. (26) and (48)]. Thus, to obtain a precise
estimate of the algorithm’s fidelity, five frequency decades
need to be taken into account.
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These insights demonstrate that our method represents a
useful tool to analyze how and to which degree small algo-
rithms are affected by correlated errors, and how this effect
depends on the gate implementation. It could thus also be used
to choose or optimize gates in an algorithm-specific way.

VI. FURTHER CONSIDERATIONS

Before we conclude, let us address two possible avenues
for future work, one for the formalism itself and one for its
application.

To extend our approach to the filter-function formalism
beyond the scope discussed in this work, the most evident
path forward is to allow for quantum mechanical baths instead
of purely classical ones. Such an extension would facilitate
studying for example nonunital T1-like processes. In fact, the
filter-function formalism was originally introduced consider-
ing quantum baths such as spin-boson models [18,19] or more
general baths [17,23,117], but it remains an open question
whether this can be applied to our presentation of the formal-
ism and the numerical implementation in particular. In a fully
quantum-mechanical treatment, (sufficiently weak) noise cou-
pling into the quantum system can be modelled via a set of
bath operators {Dα (t )}α so that Hn(t ) = ∑

α Bα (t ) ⊗ Dα (t )
(the classical case is recovered by replacing Dα (t ) → bα (t )1)
[118]. Accordingly, the ensemble average over the stochastic
bath variables {bα (t )}α needs to be replaced by the quan-
tum expectation value trB(·ρB) with respect to the state ρB

of the bath B. One therefore needs to deal with correlation
functions of bath operators instead of stochastic variables. An
immediate consequence for numerical applications is hence
an increased dimensionality of the system, which could be
dealt with by using analytical expressions for the partial trace
over the bath.

For future applications of our method, it would be inter-
esting to study the effects of noise correlations in quantum
error correction (QEC) schemes [119–121]. While extensive
research has been performed on QEC, noise is usually as-
sumed to be uncorrelated between error correction cycles.
In this respect, our formalism may shed light on effects that
need to be taken into account for a realistic description of
the protocol. As outlined above, we can compute expecta-
tion values of (stabilizer) measurements in a straightforward
manner from the error transfer matrix. Unfortunately, this
implies performing the ensemble average over different noise
realizations, therefore removing all correlations between sub-
sequent measurement outcomes for a given noise realization.
Hence, the same feature that allows us to calculate the quan-
tum process for correlated noise, namely that we compute
only the final map by averaging over all “paths” leading to
it, prevents us from studying correlations between consec-
utive cycles. To overcome this limitation in the context of
quantum memory one could invoke the principle of deferred
measurement [45] and move all measurements to the end of
the circuit, replacing classically controlled operations depen-
dent on the measurement outcomes by conditional quantum
operations. Alternatively, to incorporate the probabilistic na-
ture of measurements, one could devise a branching model
that implements the classically controlled recovery opera-
tion by following both conditional branches of measurement

outcomes with weights corresponding to the measurement
probabilities as computed from the ensemble-averaged error
transfer matrix. An intriguing connection also exists to the
quantum Zeno effect, for which quantum systems subject to
periodic projective measurements have been identified with a
filter function [17,122,123].

VII. CONCLUSION AND OUTLOOK

As quantum control schemes become more sophisticated
and take into account realistic hardware constraints and
sequencing effects, their analytic description becomes cum-
bersome, making numerical tools invaluable for analyzing
pulse performance. In the above, we have shown that the
filter-function formalism lends itself naturally to these tasks
since the central objects of our formulation, the interaction
picture noise operators, obey a simple composition rule which
can be utilized to efficiently calculate them for a sequence of
quantum gates. Because the nature of the noise is encoded in
a power spectral density in the frequency domain, its effects
are isolated from the description of the control until they are
evaluated by the overlap integral of noise spectrum and filter
function. Hence, the noise operators are highly reusable in
calculations and can serve as an economic way of simulating
pulse sequences.

Building on the results of a separate publication [16], we
have presented a general framework to study decoherence
mechanisms and pulse correlations in quantum systems cou-
pled to generic classical noise environments. By combining
the quantum operations and filter-function formalisms, we
have shown how to compute the Liouville representation of
the exact error channel of an arbitrary control operation in the
presence of Gaussian noise. For non-Gaussian noise our re-
sults become perturbative in the noise strength. Furthermore,
we have introduced the filter_functions Python software
package that implements the aforementioned method. We
showed both analytically and numerically that our software
implementation can outperform MC techniques by orders of
magnitude. By employing the formalism and software to study
several examples we demonstrated the wide range of possible
applications.

The capacity for applications in quantum optimal control
has already been established above. In a forthcoming publi-
cation, we will present analytical derivatives for the fidelity
filter function, Eq. (26), and their implementation in the soft-
ware package [90]. Together with the infidelity, Eq. (48),
they can serve as efficient cost functions for pulse optimiza-
tion in the presence of realistic, correlated noise [43,87].
Since our method offers insight into correlations between
pulses at different positions in a sequence, the pulse corre-
lation filter function F (gg′ )(ω) with g �= g′ can additionally
serve as a tool for studying under which conditions pulses
decouple from noise with long correlation times. Such in-
sight would be valuable to design pulses for algorithms.
Another interesting application could be quantum error cor-
rection in the regime of long-time correlated noise as outlined
above in Sec. VI, where we also briefly touched upon a
possible extension of the framework to quantum mechanical
baths.
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The tools presented here, both analytical and numer-
ical as implemented in the filter_functions software
package [41], provide an accessible way for computing
FFs in generic control settings across the different ma-
terial platforms employed in quantum technologies and
beyond.
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APPENDIX A: ADDITIONAL DERIVATIONS

In this Appendix we show additional derivations omitted
from the main text.

1. Derivation of the single-qubit cumulant function
in the Liouville representation

For a single qubit, the Pauli basis {σi}3
i=0 =

{1, σx, σy, σz}/
√

2 is a natural choice to define the Liouville
representation. In this case, the trace tensor Eq. (18) can be
simplified and thus Eq. (17) given a more intuitive form which

we derive in this Appendix. Since the cumulant function is
linear in the noise indices α, β we drop them in the following
for legibility. Our results hold for both a single pair of noise
indices and the total cumulant. We start by observing the
relation

Tkli j = tr(σkσlσiσ j ) = (δklδi j − δkiδl j + δk jδli )/2 (A1)

for the Pauli basis elements σk, k ∈ {1, 2, 3}. Including the
identity element σ0 in the trace tensor gives additional terms.
However, as we show now none of these contribute to K
because they cancel out.

First, since the noise Hamiltonian Hn(t ) is traceless and
therefore B̃α0(t ) = 0, we have 
kl ,�kl ∝ (1 − δk0)(1 − δ0l ),
i.e., the first column and row of both the decay amplitude and
frequency shift matrices are zero, and hence terms in the sum
of Eq. (17) with either k = 0 or l = 0 vanish. Next, for i =
j = 0 all of the traces cancel out as can be easily seen. The
last possible cases are given by i = 0, j �= 0 and vice versa.
For these cases we have

Tkl0 j = Tkl j0 = 1√
2

tr(σkσlσ j ) = i

2
εkl j (A2)

with εkl j the completely antisymmetric tensor. Both of the
above cases vanish in K since, taking the case j = 0, for
example,

1

2
(Tkl0i − Tk0li − Tkil0 + Tki0l ) = i

2
(εkli − εkli − εkil + εkil ) = 0 (A3a)

for the decay amplitudes 
 and

1

2
(Tkl0i − Tlk0i − Tkli0 + Tlki0) = i

2
(εkli − εlki − εkli + εlki ) = 0 (A3b)

for the frequency shifts �. Hence, only terms with i, j > 0 contribute, and we can plug the simplified expressions for the trace
tensor Tkli j , Eq. (A1), into Eq. (17) to write the cumulant function for a single qubit and the Pauli basis concisely as

Ki j (τ ) = −1

2

∑
kl

(�kl (Tkl ji − Tlk ji − Tkli j + Tlki j ) + 
kl (Tkl ji − Tk jli − Tkil j + Tki jl )) (A4)

= −
∑

kl

(�kl (δkiδl j − δk jδli ) + 
kl (δklδi j − δk jδli )) (A5)

= � ji − �i j + 
i j − δi j tr
 (A6)

=
{− ∑

k �=i 
kk if i = j,

−�i j + � ji + 
i j if i �= j,
(A7)

as given in the main text.

2. Evaluation of the integrals in Eq. (39)

Here we calculate the integrals appearing in the calculation of the frequency shifts �, Eq. (40), given by

I (g)
i jmn(ω) =

∫ tg

tg−1

dtei�(g)
i j (t−tg−1 )−iωt

∫ t

tg−1

dt ′ei�(g)
mn (t ′−tg−1 )+iωt ′

. (A8)

The inner integration is simple to perform, and we get

I (g)
i jmn(ω) =

∫ tg

tg−1

dtei�(g)
i j (t−tg−1 )−iω(t−tg−1 ) ×

{
ei(ω+�

(g)
mn )(t−tg−1 )−1

i(ω+�
(g)
mn )

if ω + �
(g)
mn �= 0

t − tg−1 if ω + �
(g)
mn = 0.

(A9)
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Shifting the limits of integration and performing integration by parts in the case ω + �
(g)
mn = 0 then yields

I (g)
i jmn(ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
ω+�

(g)
mn

(
e

i(�(g)
i j −ω)�tg−1
�

(g)
i j −ω

− e
i(�(g)

i j +�
(g)
mn )�tg−1

�
(g)
i j +�

(g)
mn

)
if ω + �

(g)
mn �= 0,

1
�

(g)
i j −ω

(
e

i(�(g)
i j −ω)�tg−1
�

(g)
i j −ω

− i�tgei(�(g)
i j −ω)�tg

)
if ω + �

(g)
mn = 0 ∧ �

(g)
i j − ω �= 0,

�t2
g /2 if ω + �

(g)
mn = 0 ∧ �

(g)
i j − ω = 0.

(A10)

3. Simplifying the calculation of the entanglement infidelity

In the main text, we claimed that the contribution of noise
sources (α, β ) to the total entanglement infidelity Ie(Ũ ) =∑

αβ Iαβ reduces from the trace of the cumulant function K to

Iαβ = − 1

d2
trKαβ (A11)

= 1

d
tr
αβ. (A12)

To show this, we substitute K by its definition in terms of �

and 
 according to Eq. (17). This yields for the trace

trKαβ = −1

2

∑
kl

δi j ( fi jkl�αβ,kl + gi jkl
αβ,kl )

= −1

2

∑
ikl


αβ,kl (Tklii + Tlkii − 2Tkili ) (A13)

since � is antisymmetric. In order to further simplify the trace
tensors on the right hand side of Eq. (A13), we observe that
the orthonormality and completeness of the operator basis C
defining the Liouville representation of K [cf. Eq. (14)] is
equivalent to requiring that C†C = 1 with C reshaped into a
d2 × d2 matrix by a suitable mapping. This condition may
also be written as

δacδbd =
∑

k

C∗
k,abCk,cd =

∑
k

Ck,baCk,cd (A14)

because every element Ck is Hermitian. Using this relation in
Eq. (A13) then yields

trKαβ = −1

2

∑
kl


αβ,kl (2dδkl − 2tr(Ck )tr(Cl ))

= −dtr
αβ. (A15)

The last equality holds true only for bases with a single
nontraceless element (the identity), such as the bases
discussed in Sec. III C. This is because in this case, tr(Ck ) = 0
for k > 0 whereas 
αβ,kl = 0 for either k = 0 or l = 0 since

 is a function of the traceless noise Hamiltonian for which
tr(C0Hn) ∝ trHn = 0 [i.e., the first column of the control
matrix is zero; see Eqs. (16) and 21]. Finally, substituting
Eq. (A15) into Eq. (A11) we obtain our result

Iαβ = 1

d
tr
αβ. (A16)

APPENDIX B: SINGLET-TRIPLET GATE FIDELITY

In this Appendix we lay out in more detail how the fi-
delity of the optimized S-T0 qubit gates from Ref. [94] was
calculated using FFs. In two singlet-triplet qubits, angular

momentum conservation suppresses occupancy of states with
nonvanishing magnetic spin quantum number ms so that the
total accessible state space of dimension d = 6 is spanned
by {|↑↓↑↓〉, |↑↓↓↑〉, |↓↑↑↓〉, |↓↑↓↑〉, |↑↑↓↓〉, |↓↓↑↑〉}. A
straightforward method to single out the computational sub-
space (CS) dynamics from those on the whole space would
be to simply project the error transfer matrix Ũ ≈ 1 + K
with K the cumulant function onto the CS as proposed by
Wood and Gambetta [76], that is, calculate the fidelity as
Fe = tr(�cŨ )/d2

c where �c is the Liouville representation of
the projector onto the CS and dc = 4 the dimension of the CS.
However, here we use a more involved procedure in order to
gain more insight from the error transfer matrix as well as to
obtain a better comparison to the fidelities computed by Cer-
fontaine et al. [94], who map the final 6 × 6 propagator to the
closest unitary on the 4 × 4 CS during their MC simulation.

To calculate the fidelity of the target unitary on the 4 × 4
CS, we thus construct an orthonormal operator basis C of the
full 6 × 6 space that is partitioned into elements which are
nontrivial only on the CS on the one hand and elements which
are nontrivial only on the remaining space on the other such
that C = Cc ∪ C�. Using such a basis, we can then trace only
over CS elements of the error transfer matrix Ũ in Eq. (45) to
obtain the fidelity of the gate on the CS. Moreover, we retain
the opportunity to characterize the gates on the basis of the
Pauli matrices.

Since there is no obvious way to extend the Pauli basis for
two qubits to the complete space we proceed as follows: For
the CS, we pad the two-qubit Pauli basis with zeros on the
leakage levels, i.e.,

Cc
i

.=
⎛
⎝

|↑↑↓↓〉 |↓↓↑↑〉
Pi 0 0

〈↑↑↓↓| 0 0 0
〈↓↓↑↑| 0 0 0

⎞
⎠, i ∈ {0, . . . , 15},

(B1)
where the Pi are normalized two-qubit Pauli matrices [cf.
Eq. (53)] in the basis {|↑↓↑↓〉, |↑↓↓↑〉, |↓↑↑↓〉, |↓↑↓↑〉}.
To complete the basis we require an additional 20 elements
orthogonal to the 16 padded Pauli matrices. We obtain the
remaining elements by first expanding the Cc

i in an arbitrary
basis {�i}35

i=0 of the complete space [we choose a GGM—cf.
Eq. (54)—for simplicity], yielding a 16 × 36 matrix of expan-
sion coefficients:

Mi j = tr
(
Cc

i � j
)
. (B2)

We then compute an orthonormal vector basis V (a matrix of
size 36 × 20) for the null space of M using singular value
decomposition M = U�V † and acquire the corresponding
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FIG. 7. Filter functions of the voltage detunings εi j excluding (a) and including (b) the zero-padded identity matrix basis element Cc
0 ∝

diag(1, 1, 1, 1, 0, 0) for the computational subspace. Evidently, including Cc
0 removes the DCG character, namely, that Fεi j (ω) → 0 as ω → 0,

of the gates but has little effect on the high-frequency behavior. As the pulse optimization minimizes, among other figures of merit, the infidelity
of the final propagator mapped to the closest unitary on the computational subspace due to quasistatic and fast white noise, this indicates that
excluding Cc

0 from the filter function corresponds to partially neglecting nonunitary components of the propagator on the computational
subspace.

basis matrices as

C�
i =

∑
j

� jVji, i ∈ {0, . . . , 19}. (B3)

Finally, to account for the fact that Ref. [94] map the to-
tal propagator to the closest unitary on the CS, we exclude
the identity Pauli element Cc

0 ∝ diag(1, 1, 1, 1, 0, 0) from the
trace over the computational subspace part of Ũ represented
in the basis C = Cc ∪ C� when calculating the fidelity,

Fe = 1

16

15∑
i=1

Ũii, (B4)

since for unitary operations on the CS we have K00 ≈ 1 −
Ũ00 = 1 − tr(Cc

0ŨCc
0Ũ †) = 0. Hence, excluding Ũ00 from the

trace corresponds to partially disregarding nonunitary com-
ponents of the error channel on the computational subspace.
Although not the only element that differs compared to the
closest subspace unitary, K00 contains the most obvious con-
tribution, whereas those of other elements are more difficult
to disentangle into unitary and nonunitary components.

Similar to the fidelity, we also obtain the canonical FF
shown in Fig. 3(b) by summing only over columns one
through 15 of the control matrix, Fεi j (ω) = ∑15

k=1 |B̃εi j k (ω)|2.
In fact, including the first column, corresponding to the
padded identity matrix Cc

0 , in the filter function removes the
DCG character of Fε12 (ω) and Fε34 (ω), which instead approach
a constant level of around 20 (note that the filter function is di-
mensionless in our units) at zero frequency. This is consistent
with the fact that the gates were optimized using quasistatic
and fast white noise contributions to the fidelity after mapping
to the closest unitary on the computational subspace. We
have performed MC resimulations that support this reading.
In Fig. 7 we show the FFs once including and once excluding
the contributions from Cc

0 .

APPENDIX C: GRAPE-OPTIMIZED GATE SET FOR QFT

For completeness, in this Appendix we give details
on the GRAPE-optimized pulses for the gate set G =
{Xi(π/2), Yi(π/2), CRi j (π/23)} used in Sec. V D to simulate
a QFT algorithm. As mentioned in the main text, we consider
a toy Rabi driving model with IQ single-qubit control and ex-
change to mediate interqubit coupling. Cast in the language of
quantum optimal control theory, this translates to a vanishing
drift (static) Hamiltonian, Hd = 0, and a control Hamiltonian
in the rotating frame given by

Hc(t ) = H (0)
c (t ) ⊗ 1 + 1 ⊗ H (1)

c (t ) + H (01)
c (t ), (C1)

H (i)
c (t ) = Ii(t )σ (i)

x + Qi(t )σ (i)
y , H (i j)

c (t ) = Ji j (t )σ (i)
z ⊗ σ ( j)

z ,

(C2)

where Ii(t ) and Qi(t ) are the in-phase and quadrature pulse
envelopes and σ (i)

x,y are the Pauli matrices acting on the ith and
extended trivially to the other qubit. As our goal is only of
illustrative nature and not to provide a detailed gate optimiza-
tion, we obtain the controls {I0(t ), Q0(t ), I1(t ), Q1(t ), J12(t )}
for the gate set G using the GRAPE algorithm implemented in
QuTiP [42] initialized with randomly distributed amplitudes.
The resulting pulses and the corresponding FFs for the
relevant noise operators are shown in Fig. 8.

APPENDIX D: CONVERGENCE BOUNDS

In this Appendix we give bounds for the convergence
of the expansions employed in the main text for the case
of purely autocorrelated noise, Sαβ (ω) = δαβSαβ (ω) = Sα (ω),
following the approach by Green et al. [29]. For Gaussian
noise, our expansion is exact when including first- and second-
order Magnus expansion (ME) terms. Hence, the convergence
radius of the ME becomes infinite and the fidelity can be com-
puted exactly by evaluating the matrix exponential Eq. (11).
For non-Gaussian noise, the following considerations apply.
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FIG. 8. Control fields (top row) and corresponding FFs (bottom row) of the GRAPE-optimized pulses in G. (a, b) X0(π/2); (c, d) Y0(π/2);
(e, f) CR01(π/23). Note that the optimization is neither very sophisticated nor realistic as the algorithm only maximizes the systematic
(coherent) fidelity tr(UQ†

targ )/d and the randomly distributed initial control amplitudes are not subject to any constraints.

1. Magnus expansion

The ME of the error propagator Eq. (8a) converges
if

∫ τ

0 dt‖H̃n(t )‖ < π with ‖A‖2 = 〈A, A〉 = ∑
i j |Ai j |2 the

Frobenius norm [57]. We assume a time dependence of the
noise operators of the form Bα (t ) = sα (t )Bα . By the Cauchy-
Schwarz inequality we then have

‖H̃n(t )‖2 = ‖Hn(t )‖2

=
∑
αβ

sα (t )sβ (t )bα (t )bβ (t )〈Bα, Bβ〉

�
∑
αβ

sα (t )sβ (t )bα (t )bβ (t )‖Bα‖‖Bβ‖

�
[∑

α

G∑
g=1

ϑ (g)(t )s(g)
α b(m)

α ‖Bα‖
]2

, (D1)

where b(m)
α is the maximum value that the noise assumes dur-

ing the pulse, ϑ (g)(t ) = �(t − tg−1) − �(t − tg) is one during
the gth time interval and zero else, and where we approxi-
mated the time evolution as piecewise constant. Then, in order
to guarantee convergence of the ME,∫ τ

0
dt‖H̃n(t )‖ �

∫ τ

0
dt

∣∣∣∣∣∑
α

G∑
g=1

ϑ (g)(t )s(g)
α b(m)

α ‖Bα‖
∣∣∣∣∣

=
∑

α

b(m)
α ‖Bα‖

G∑
g=1

s(g)
α

∫ tg

tg−1

dt

=
∑

α

Cmδbα‖Bα‖
G∑

g=1

s(g)
α �tg

=: N, (D2)

where we have expressed the in principle unknown maximum
noise amplitude b(m)

α in terms of the root-mean-square value
δbα . That is, b(m)

α = Cm〈bα (0)2〉1/2 = Cmδbα for a sufficiently
large value Cm. Finally, realizing that δb2

α = ∫
dω
2π

Sα (ω) and
by the triangle inequality,

N = Cm

∑
α

‖Bα‖
[ ∫ ∞

−∞

dω

2π
Sα (ω)

]1/2 G∑
g=1

s(g)
α �tg

� Cm

[ ∑
α

‖Bα‖2
∫ ∞

−∞

dω

2π
Sα (ω)

(
G∑

g=1

s(g)
α �tg

)2]1/2

=: Cmξ

!
< π, (D3)

where we have introduced the parameter ξ . Thus, the expan-
sion converges if ξ < π/Cm. However, we note that in practice
the rms noise amplitude δbα will often be infinite, limiting the
usefulness of this bound for certain noise spectra.
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2. Infidelity

Again assuming a time dependence Bα (t ) = sα (t )Bα as well as piecewise constant control, we note that for the infidelity we
have [cf. Eq. (45)]

|tr(
)| =
∣∣∣∣∣∑

α

∫ τ

0
dt2

∫ τ

0
dt1〈bα (t1)bα (t2)〉

∑
k

B̃αk (t1)B̃αk (t2)

∣∣∣∣∣
�

∣∣∣∣∣∑
α

∫ τ

0
dt2

∫ τ

0
dt1〈bα (t1)bα (t2)〉

G∑
g,g′=1

ϑ (g)(t1)ϑ (g′ )(t2)s(g)
α s(g′ )

α

∥∥Bα
2
∥∥∣∣∣∣∣

�
∑

α

‖Bα‖2 〈b2
α (0)〉︸ ︷︷ ︸∫

dω
2π

Sα (ω)

G∑
g,g′=1

s(g)
α s(g′ )

α

∣∣∣∣∣∣
∫ tg′

tg′−1

dt2

∫ tg

tg−1

dt1 〈bα (t1)bα (t2)〉︸ ︷︷ ︸
|·|�1

∣∣∣∣∣∣
�

∑
α

⎡
⎣‖Bα‖2

∫ ∞

−∞

dω

2π
Sα (ω)

(
G∑

g=1

s(g)
α �tg

)2
⎤
⎦

= ξ 2, (D4)

where, going from the second to the third line, we have factored out the total power of noise source α from the cross-correlation
function, 〈bα (t1)bα (t2)〉 = 〈b2

α (0)〉|〈bα (t1)bα (t2)〉|. Thus, the first-order infidelity Eq. (45) is upper bounded by ξ 2/d , the same
parameter also bounding the convergence of the ME, and higher orders can be neglected if ξ 2 � 1.

Note that similar arguments can be made for the higher orders of the ME [29]. In particular, the nth order ME term containing
n-point correlation functions of the noise is of order O(ξ n) as stated in the main text.
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