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ABSTRACT

Neural networks have proven to be efficient for a number of practical applications ranging from image recognition to identifying phase
transitions in quantum physics models. In this paper, we investigate the application of neural networks to state classification in a single-shot
quantum measurement. We use dispersive readout of a superconducting transmon circuit to demonstrate an increase in assignment fidelity
for both two and three state classifications. More importantly, our method is ready for on-the-fly data processing without overhead or need
for large data transfer to a hard drive. In addition, we demonstrate the capacity of neural networks to be trained against experimental imper-
fections, such as phase drift of a local oscillator in a heterodyne detection scheme.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065011

Machine learning (ML) is ubiquitous in modern computer sci-
ence with a wide range of applications. By virtue of its archetypal prob-
lem classes—regression and classification—ML algorithms and neural
networks, in particular, have recently found a number of applications
in quantum computing, helping researchers to tackle such tasks as
optimizing gates and pulse sequences,’  identifying phase transi-
tions,™ correcting imperfections of measurement apparatus, ~ classi-
fying states'”'" or evolution'”"* of a quantum system with little or no
a priori knowledge, and even optimizing the fabrication process."”

A proposal to use machine learning to discriminate measurement
trajectories was one of the first and most natural applications of ML in
the field and has led to improvements in readout assignment fidelity.'®
The technique is now being regularly implemented across the commu-
nity'” """ due to their generalizability and capacity to extract useful fea-
tures from dense data. A recent advancement uses neural networks to
compensate for system dependent errors due to processes, such as
crosstalk in multiplexed qubit readout.”” In this work, we also apply
neural networks to the readout of a superconducting transmon system.
However, our approach works on-the-fly with no data processing
overhead and can be trained against experimental parameter drifts.

To deploy our neural-network-based state classification, we use
an open source PyTorch library.”' Geared toward computer vision
and natural language processing, it includes the capability to realize
deep neural networks and contains built-in functionality for data proc-
essing on a graphics processing unit (GPU). GPU integration enables
our pipeline to be fast enough to perform on-the-fly data classification
without the need to transfer raw measured signal to a hard drive.
Among other advantages, it allows monitoring the readout assignment
fidelity in real time.

With the initial training of the neural network taking on the
order of minutes, consequent retraining of network weights requires
several seconds and allows the readout assignment fidelity to return to
the optimal value. More importantly, the convolutional neural net-
work used in the present work may be designed and trained in a way
resilient to certain experimental parameter drifts. Specifically, we pre-
sent a strategy to eliminate the effect of local relative phase drifts
induced by generating microwave equipment on the readout assign-
ment fidelity.

In our experiment, we used a primitive of the circuit quantum
electrodynamics platform: a transmon coupled to a readout cavity.

Appl. Phys. Lett. 119, 114003 (2021); doi: 10.1063/5.0065011
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After initializing the qubit in its ground state, we used Gaussian pulses
of length 20 ns to prepare the transmon in the three basis states: apply-
ing no pulse to keep the transmon in its ground state |g), applying one
7-pulse at g, to prepare the transmon in its first excited state |e), and
applying two consecutive m-pulses at g, and w5 respectively, to pre-
pare a transmon in the second excited state |f). These protocols are
illustrated in Fig. 1(a).

After the state preparation, we perform measurement by acquir-
ing the probe signal transmitted through the readout resonator. To
achieve the single-shot regime, we used a Josephson parametric ampli-
fier (JPA).” Following amplification through the JPA, the readout sig-
nal is further amplified using a High Electron Mobility Transistor
(HEMT) amplifier and multiple room temperature amplifiers. The
signal is then downconverted to 25 MHz and acquired by a digitizer.
After repeating the protocol, acquiring the signal, and classifying the
states, we calculate the assignment fidelity, which was used to evaluate
the efficacy of different classification methods. We performed the
experiments with two different samples (see Table I). The first run
(sample A) of experiments was used as a test-bed to compare the qual-
ity of various ML methods. The second set of experiments (sample B)
demonstrated on-the-fly data processing using a GPU and the meth-
ods’ stability against phase drifts.

Within our data processing workflow, each acquired waveform
undergoes digital downconversion (DDC) by multiplying the acquired
signal with cos (wppct) (sin [wppct]) where wppc/2m = 25 MHz, to
obtain the in-phase quadrature I(t) (out-of-phase quadrature Q(f)). A
Finite Impulse Response (FIR) Filter with a window of 40 samples
(20 ns) and a cutoff frequency of 20 MHz is applied to the signal to elim-
inate the signal image at 50 MHz along with 25 MHz noise (originally
DC offset). After obtaining I(f) and Q(f), the signal undergoes further
post-processing. This may include time integration, channel correlation,
or even being fed through trained PyTorch neural networks.

For the on-the-fly experiments with sample B, we acquired 512
time points per measurement, recorded to the buffer of a 500 MSa/s
digitizer Spectrum M4i. After populating the buffer with 2048 time
traces, we transferred data to PC memory (RAM) and then to the
GPU memory for batch processing. While the data are being
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FIG. 1. (a) Transmon control pulses used for preparing three basis states of the
transmon. (b) Histogram of integrated cavity responses / + iQ. The blue, red, and
green points correspond to the transmon being prepared in |g), |e), and |f) states,
respectively. The relaxation of the f-state to the excited state and excited state to
ground state is visible. Some of the points that are decaying from the f-state to the
excited state will be classified as ground state due to their proximity to the ground
state cluster.

scitation.org/journal/apl

TABLE I. Device parameters. Here, wg,, is the frequency of the readout resonator,
ge (er) is the frequency of transition between the ground (first excited) state and
the first (second) excited state, g, and yr are the state-dependent dispersive shifts
of the resonator frequency, « is the decay rate of the resonator, and T; (T5) is the
relaxation (dephasing) rates of the transmons.

Parameter Transmon A Transmon B
Wear /2T 7.08 GHz 7.63 GHz
g /2T 6.27 GHz 5.49 GHz
/27 5.95GHz 5.16 GHz
2%ge/2m 8.00 MHz 8.50 MHz
21,/2m 5.35 MHz 15.57 MHz
K/2m 1.31 MHz 1.56 MHz
T, 11.75 us 4.07 us
T, 3.17 us 4.29 us

processed, the digitizer buffer is populated with new acquired wave-
forms. Due to the large number of cores in the GPU, the data can be
processed in parallel, which allowed us to perform real time data
acquisition on-the-fly. Although the results of this paper were obtained
with a repetition time of 40 u s, our GPU data processing can be run
without overhead as fast as 3.2 u s per repetition, obtaining 19 x 10°
traces (19 x 102 samples) in 1 min.

In order to determine the baseline readout fidelity, we first
employed the conventional classification. Following this method, the
heterodyne measurement signal was integrated in time, giving us one
complex number I and Q. By repeating the measurements, we can
populate histograms for every prepared state on the I-Q plane, as
shown in Fig. 1. A measurement response can be classified by selecting
the state whose mean response is closest to the mean state response
on the I-Q plane. The assignment fidelity can be evaluated as
Fa=(1/N) 2N, P(ili), where IP(i]j) is the probability of obtaining
outcome “i” given that the system was prepared in j state. Here, we
use N = 2(3) and states |g), |e) (|g), |e), |f)) to calculate qubit (qutrit)
assignment fidelity.

Alternatively, one can apply a matched filter to the heterodyne
measurement signal prior to integration in the conventional method.
Matched filters are calibrated by taking the means of all acquired sig-
nals corresponding to each basis state. An incoming signal is con-
volved with these filters. The filter, which returns maximum average
amplitude, determines the classified basis state.

To identify the best ML algorithm, we first collected data from
sample A. The transmon was prepared in the three basis states fol-
lowed by the 2 us measurement pulse, resulting in 50 time samples for
each trace at 100 MHz. In total, we collected 16 384 traces correspond-
ing to each state for analysis. 90% of these data were used for training,
and the rest was used to test and obtain the assignment fidelity.

We evaluated the assignment fidelity of several machine learning
methods: the support vector machine, a random forest classifier, and a
k-nearest-neighbors algorithm. After this, we deployed neural network
architectures, including a single hidden layer (“vanilla”) feedforward
neural network, several versions of convolutional neural networks
(CNN), and long short term memory networks (LSTM). The assign-
ment fidelities obtained using each of these algorithms are shown
in Table II.
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TABLE II. Assignment fidelities for different machine learning models evaluated on
an identical test data set generated with sample A. For all methods, there are signifi-
cant improvements over the conventional method (time integration of readout signal
and setting classification thresholds). CNN is the best model for classifying between
three levels. Note that the same data were used to extract both the qubit and qutrit
fidelities. Since the readout parameters were optimized for the qutrit case, the CNN
model returns higher value for the three state fidelity.

Model 2 state fidelity 3 state fidelity
Conventional 0.841 0.711
Matched filter 0.913 0.747
K nearest neighbors 0.902 0.845
Support vector machine 0.917 0.851
Random forest classifier 0.917 0.874
Vanilla neural network 0.912 0.925
LSTM 0.909 0.904
CNN 0.919 0.928

The k-nearest neighbor algorithm bears the most similarity to the
matched filter method. The LSTM algorithm is popular in language
processing and was chosen because they are designed to deal with
sequences of data and can, therefore, process long time correlations
between data points. CNN is most popularly used for pattern recogni-
tion and image classification. It is a neural network where the hidden
layer is a convolution of the input with a kernel (or filter). We feed the
time-domain signal data to the CNN with the I(t) and Q(t) traces as
two channel inputs, analogous to the red, blue, and green channels of
a color image.

After selecting CNN as the method with the highest assignment
fidelity, we apply this model to state classification on-the-fly. The net-
work consists of the following layers:

(1) 1D convolution: a convolution layer with 2 input channels
(corresponding to I and Q), 16 output channels, and a kernel
size of 128. The large kernel size filters out higher frequency
noise effectively. The initial kernel weights (or filter coeffi-
cients) are manually set using the He initialization function,”
with experimentation demonstrating that CNN performance
is sensitive to this weight initialization.

(2) ReLU activation: maps f(x) = max(0,x) in order to expedite
the learning process.”*

(3) 1D convolution: a convolution layer with 16 input channels
(corresponding to the output of the previous convolution
layer), 32 output channels, and a kernel size of 5. This expands
the previous 16 features to 32, by taking various linear combi-
nations of the prior layer outputs.

(4) ReLU activation

(5) Max pooling: the maximums of every three neighboring out-
put values of the previous layer are evaluated, to reduce the
size of the data representation and, therefore, computational
time in the remainder of the network.

(6) Flattening: reshapes data to a one-dimensional array.

(7) Dropout: 50% of the data points are randomly selected to be
set to zero (called “neuron deactivation”). This step was ini-
tially introduced to prevent the model from being overtrained.
Overtraining (or overfitting) is known behavior when ML

ARTICLE scitation.org/journal/apl

methods learns “too much” from the training data, showing

an artificially high accuracy of classification while training, but

failing to maintain performance when tested on new data.

This may occur if there are certain features of the signal pre-

sent in the training dataset due to noise or other conditions

relevant to the data-taking process.

Linear: applies a linear transformation to the incoming data:

y = Ax + b, where weights (denoted as a matrix A) and biases

(denoted as a vector b) are optimized. Here, the size of the out-

put y is half of the size of the input x.

(9) ReLU activation

(10) Linear: the size of the output data is designed to be two for the
qubit and three for the qutrit classification, corresponding to
the possible preparation states.

(8

=

The Adam optimizer” and a mean squared error (MSE) loss
function were used for optimization. The output was classified using a
softmax function. For each training cycle, we record 2048 traces of
each state, and pass these through the model. The loss was calculated
and gradient descent was undertaken at a learning rate of 1073, This
cycle takes ~3 s.

We trained the model on new data at every training cydle,
acquired in real-time from the sample. This provides an intrinsic pro-
tection from overfitting; since there is a new dataset each time the loss
is calculated, the model cannot learn on any spurious signal features
localized to a single dataset. The low learning rate assists in helping the
model to learn patterns that are common to data across training cycles,
thereby increasing model stability. After each update of the model
weights, a further 2048 acquisitions were made to test the model. The
loss and assignment fidelity on test data were stored for monitoring.

To investigate robustness of the CNN classification model against
system parameter drifts, we performed continuous measurements
over 24h and monitored the fidelity values as shown in Fig. 2. First,
we evaluated the fidelities obtained from the integrated responses
according to the conventional method (“Baseline”). Second, we
obtained the fidelity using the mean responses re-calibrated every
2048 repeated measurements (“Cal-Baseline”). Finally, we plot the
fidelity obtained by on-the-fly processing with the CNN model.

The model is trained for initial 100 training cycles. The fidelity is
then repeatedly tested for ~1-3.5h, before training the model again
for another 20 training cycles. Figure 3 shows the assignment fidelity
during training and retraining. This retraining process is akin to recali-
bration in the Cal-Baseline measurement. This model performs better
than both the Baseline and Cal-Baseline measurements, despite the
frequency of recalibration being significantly lower than its Cal-
Baseline counterpart. Without retraining, the model performs better
than the Baseline throughout the 24 h, but loses its enhanced fidelity
after a few hours.

To enforce robustness to input parameter variations, we can
train CNN with the dataset containing samples, which are broadly
distributed across the domain of that input parameter. This effec-
tively removes the parameter from the possible set of features upon
which the model can learn. An example of such a parameter varia-
tion can be a global phase drift generated by insufficient instrument
synchronization.

To endow the network with global phase robustness, a secondary
dataset was created by obtaining 256 traces for each of the three basis
states at each of 500 different global phases. Global phase was applied
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FIG. 2. Fidelity of different classification methods. Each point represents a fidelity evaluation using 2048 traces for each of the three states gathered on the fly, while each plot
represents a different training regime. The black dashed lines indicate when the model was retrained. The CNN model consistently does better than the Cal-Baseline measure-

ment, even though it is only trained at discrete intervals.

by imposing an arbitrary wait time at the beginning of each experi-
ment repetition. The readout signals obtained within each experi-
ment are downconverted to 25 MHz using a local oscillator, which
is phase-locked to the generator producing the readout signal itself.
This phase-locking ensures that if measurements occur at integer
multiples of 40 ns within the pulse sequence, phase coherence is
conserved. By generating data with uniformly distributed initial
wait times between 0 and 40 ns, a predictable global phase was no
longer a feature of the training dataset, forcing the model to learn a
phase-robust mapping from readout trajectory to qutrit state. We
fed these data into a CNN network in the same manner as the stan-
dard dataset.

The design of the neural network remains identical for this exper-
iment, aside from using a kernel size of 10 in the first convolutional
layer. Assignment fidelities are evaluated at 500 intervals with phase
shifts ranging from 0 to 27 over the course of 9min in Fig. 4, using
both the baseline mean integration and CNN processing methods
(trained/calibrated using data gathered immediately prior). The CNN
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FIG. 3. Training over 100 training cycles and re-training over 20 cycles. The left
plot shows the CNN learning to differentiate between the three (or two) states. The
model provides better fidelity than the baseline fidelity within 30 training cycles over
approximately one minute. The plot on the right shows the model being re-trained
after running the experiment for a few hours. Retraining takes only 20 training
cycles.

model classifies with fidelities comparable to the baseline state classifi-
cation fidelities without phase drift, but any non-trivial phase drift will
degrade the conventional approach markedly while the CNN main-
tains accuracy without any re-calibration required.

In summary, we investigated a set of machine learning methods
for classification of a transmon with the dispersive measurement. The
method classifies the states when two and three levels of the transmon
are considered and can be directly extended to more transmon levels.
Some modifications accounting for crosstalk could be necessary for
applying this method to multi-qubit systems. Convolutional neural
network methods demonstrated the highest performance consistent
with the results from Ref. 20. CNN methods could also be trained
against experimental imperfections, such as the local oscillator phase
drift. Improved assignment fidelity and ability to directly train the
model against system imperfections are the key advantages of neural
networks. The open-source, GPU-friendly, and easily implementable
nature of PyTorch makes these neural networks an attractive tool for
state classification.
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FIG. 4. Assignment fidelities of the baseline mean calibration method and a phase-
robust CNN model classifying data with an induced phase drift. Each point repre-
sents a fidelity evaluation using 2048 traces for each of the three states. Neither
method undergoes any retfraining or recalibration over the course of the
experiment.
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See the supplementary material for the experiment schematic
and an example of readout trajectories with and without decay.
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