000904846 001__ 904846
000904846 005__ 20240610121028.0
000904846 0247_ $$2doi$$a10.1140/epja/s10050-021-00653-y
000904846 0247_ $$2ISSN$$a1434-6001
000904846 0247_ $$2ISSN$$a1434-601X
000904846 0247_ $$2Handle$$a2128/29936
000904846 0247_ $$2WOS$$aWOS:000734336100001
000904846 0247_ $$2altmetric$$aaltmetric:113458390
000904846 037__ $$aFZJ-2022-00170
000904846 082__ $$a530
000904846 1001_ $$0P:(DE-Juel1)168554$$aLe, Hoai$$b0$$eCorresponding author$$ufzj
000904846 245__ $$a$A=4-7$ $\varXi $ hypernuclei based on interactions from chiral effective field theory
000904846 260__ $$aHeidelberg$$bSpringer$$c2021
000904846 3367_ $$2DRIVER$$aarticle
000904846 3367_ $$2DataCite$$aOutput Types/Journal article
000904846 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641462227_6849
000904846 3367_ $$2BibTeX$$aARTICLE
000904846 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904846 3367_ $$00$$2EndNote$$aJournal Article
000904846 520__ $$aWe investigate the existence of bound Ξ states in systems with A=4−7 baryons using the Jacobi NCSM approach in combination with chiral NN and ΞN interactions. We find three shallow bound states for the NNNΞ system (with (Jπ,T)=(1+,0), (0+,1) and (1+,1)) with quite similar binding energies. The 5ΞH(12+,12) and 7ΞH(12+,32) hypernuclei are also clearly bound with respect to the thresholds 4He+Ξ and 6He+Ξ, respectively. The binding of all these Ξ systems is predominantly due to the attraction of the chiral ΞN potential in the 33S1 channel. A perturbative estimation suggests that the decay widths of all the observed states could be rather small.
000904846 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation  Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000904846 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000904846 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904846 7001_ $$0P:(DE-Juel1)131179$$aHaidenbauer, Johann$$b1$$ufzj
000904846 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G.$$b2$$ufzj
000904846 7001_ $$0P:(DE-Juel1)131273$$aNogga, Andreas$$b3$$ufzj
000904846 773__ $$0PERI:(DE-600)1459066-9$$a10.1140/epja/s10050-021-00653-y$$gVol. 57, no. 12, p. 339$$n12$$p339$$tThe European physical journal / A$$v57$$x1434-6001$$y2021
000904846 8564_ $$uhttps://juser.fz-juelich.de/record/904846/files/Le2021_Article_A4-7A4-7VarXi%CE%9EHypernucleiBased.pdf$$yOpenAccess
000904846 8767_ $$d2021-12-07$$eHybrid-OA$$jDEAL
000904846 909CO $$ooai:juser.fz-juelich.de:904846$$popenaire$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access
000904846 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168554$$aForschungszentrum Jülich$$b0$$kFZJ
000904846 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131179$$aForschungszentrum Jülich$$b1$$kFZJ
000904846 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b2$$kFZJ
000904846 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131273$$aForschungszentrum Jülich$$b3$$kFZJ
000904846 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000904846 9141_ $$y2021
000904846 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000904846 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000904846 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904846 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000904846 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J A : 2019$$d2021-01-29
000904846 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000904846 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-29$$wger
000904846 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000904846 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000904846 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904846 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000904846 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000904846 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000904846 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000904846 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000904846 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000904846 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000904846 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000904846 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000904846 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000904846 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000904846 9801_ $$aFullTexts
000904846 980__ $$ajournal
000904846 980__ $$aVDB
000904846 980__ $$aUNRESTRICTED
000904846 980__ $$aI:(DE-Juel1)IAS-4-20090406
000904846 980__ $$aI:(DE-Juel1)IKP-3-20111104
000904846 980__ $$aAPC
000904846 981__ $$aI:(DE-Juel1)IAS-4-20090406