000904872 001__ 904872
000904872 005__ 20240506205521.0
000904872 0247_ $$2doi$$a10.1103/PhysRevResearch.3.033036
000904872 0247_ $$2Handle$$a2128/30671
000904872 0247_ $$2altmetric$$aaltmetric:109221934
000904872 0247_ $$2WOS$$aWOS:000671591900004
000904872 037__ $$aFZJ-2022-00188
000904872 041__ $$aEnglish
000904872 082__ $$a530
000904872 1001_ $$00000-0003-1817-2276$$aFeggeler, Thomas$$b0$$eCorresponding author
000904872 245__ $$aSpatially resolved GHz magnetization dynamics of a magnetite nano-particle chain inside a magnetotactic bacterium
000904872 260__ $$aCollege Park, MD$$bAPS$$c2021
000904872 3367_ $$2DRIVER$$aarticle
000904872 3367_ $$2DataCite$$aOutput Types/Journal article
000904872 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714997245_14323
000904872 3367_ $$2BibTeX$$aARTICLE
000904872 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904872 3367_ $$00$$2EndNote$$aJournal Article
000904872 520__ $$aUnderstanding magnonic properties of nonperiodic magnetic nanostructures requires real-space imaging of ferromagnetic resonance modes with spatial resolution well below the optical diffraction limit and sampling rates in the 5–100 GHz range. Here, we demonstrate element-specific scanning transmission x-ray microscopy-detected ferromagnetic resonance (STXM-FMR) applied to a chain of dipolarly coupled Fe3O4 nano-particles (40–50 nm particle size) inside a single cell of a magnetotactic bacterium Magnetospirillum magnetotacticum. The ferromagnetic resonance mode of the nano-particle chain driven at 6.748 GHz and probed with 50 nm x-ray focus size was found to have a uniform phase response but non-uniform amplitude response along the chain segments due to the superposition of dipolar coupled modes of chain segments and individual particles, in agreement with micromagnetic simulations.
000904872 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000904872 536__ $$0G:(GEPRIS)405553726$$aDFG project 405553726 - TRR 270: Hysterese-Design magnetischer Materialien für effiziente Energieumwandlung (405553726)$$c405553726$$x1
000904872 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904872 7001_ $$0P:(DE-HGF)0$$aMeckenstock, Ralf$$b1
000904872 7001_ $$00000-0002-8461-5832$$aSpoddig, Detlef$$b2
000904872 7001_ $$0P:(DE-Juel1)186870$$aZingsem, Benjamin$$b3
000904872 7001_ $$00000-0002-2034-878X$$aOhldag, Hendrik$$b4
000904872 7001_ $$00000-0001-8395-3541$$aWende, Heiko$$b5
000904872 7001_ $$00000-0002-1864-3261$$aFarle, Michael$$b6
000904872 7001_ $$00000-0003-1352-9723$$aWinklhofer, Michael$$b7
000904872 7001_ $$00000-0002-2301-4670$$aOllefs, Katharina J.$$b8
000904872 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.3.033036$$gVol. 3, no. 3, p. 033036$$n3$$p033036$$tPhysical review research$$v3$$x2643-1564$$y2021
000904872 8564_ $$uhttps://juser.fz-juelich.de/record/904872/files/PhysRevResearch.3.033036.pdf$$yOpenAccess
000904872 8564_ $$uhttps://juser.fz-juelich.de/record/904872/files/Spatially%20resolved%20GHz.pdf$$yOpenAccess
000904872 909CO $$ooai:juser.fz-juelich.de:904872$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904872 9101_ $$0I:(DE-HGF)0$$60000-0003-1817-2276$$aExternal Institute$$b0$$kExtern
000904872 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186870$$aForschungszentrum Jülich$$b3$$kFZJ
000904872 9101_ $$0I:(DE-HGF)0$$60000-0002-2034-878X$$aExternal Institute$$b4$$kExtern
000904872 9101_ $$0I:(DE-HGF)0$$60000-0001-8395-3541$$aExternal Institute$$b5$$kExtern
000904872 9101_ $$0I:(DE-HGF)0$$60000-0002-1864-3261$$aExternal Institute$$b6$$kExtern
000904872 9101_ $$0I:(DE-HGF)0$$60000-0003-1352-9723$$aExternal Institute$$b7$$kExtern
000904872 9101_ $$0I:(DE-HGF)0$$60000-0002-2301-4670$$aExternal Institute$$b8$$kExtern
000904872 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000904872 9141_ $$y2022
000904872 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904872 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000904872 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904872 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV RES : 2022$$d2023-10-27
000904872 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000904872 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000904872 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-16T10:08:58Z
000904872 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-16T10:08:58Z
000904872 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-08-16T10:08:58Z
000904872 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2022-08-16T10:08:58Z
000904872 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000904872 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
000904872 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000904872 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
000904872 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
000904872 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
000904872 920__ $$lyes
000904872 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000904872 980__ $$ajournal
000904872 980__ $$aVDB
000904872 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000904872 980__ $$aUNRESTRICTED
000904872 9801_ $$aFullTexts