001     904872
005     20240506205521.0
024 7 _ |a 10.1103/PhysRevResearch.3.033036
|2 doi
024 7 _ |a 2128/30671
|2 Handle
024 7 _ |a altmetric:109221934
|2 altmetric
024 7 _ |a WOS:000671591900004
|2 WOS
037 _ _ |a FZJ-2022-00188
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Feggeler, Thomas
|0 0000-0003-1817-2276
|b 0
|e Corresponding author
245 _ _ |a Spatially resolved GHz magnetization dynamics of a magnetite nano-particle chain inside a magnetotactic bacterium
260 _ _ |a College Park, MD
|c 2021
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714997245_14323
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding magnonic properties of nonperiodic magnetic nanostructures requires real-space imaging of ferromagnetic resonance modes with spatial resolution well below the optical diffraction limit and sampling rates in the 5–100 GHz range. Here, we demonstrate element-specific scanning transmission x-ray microscopy-detected ferromagnetic resonance (STXM-FMR) applied to a chain of dipolarly coupled Fe3O4 nano-particles (40–50 nm particle size) inside a single cell of a magnetotactic bacterium Magnetospirillum magnetotacticum. The ferromagnetic resonance mode of the nano-particle chain driven at 6.748 GHz and probed with 50 nm x-ray focus size was found to have a uniform phase response but non-uniform amplitude response along the chain segments due to the superposition of dipolar coupled modes of chain segments and individual particles, in agreement with micromagnetic simulations.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a DFG project 405553726 - TRR 270: Hysterese-Design magnetischer Materialien für effiziente Energieumwandlung (405553726)
|0 G:(GEPRIS)405553726
|c 405553726
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Meckenstock, Ralf
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Spoddig, Detlef
|0 0000-0002-8461-5832
|b 2
700 1 _ |a Zingsem, Benjamin
|0 P:(DE-Juel1)186870
|b 3
700 1 _ |a Ohldag, Hendrik
|0 0000-0002-2034-878X
|b 4
700 1 _ |a Wende, Heiko
|0 0000-0001-8395-3541
|b 5
700 1 _ |a Farle, Michael
|0 0000-0002-1864-3261
|b 6
700 1 _ |a Winklhofer, Michael
|0 0000-0003-1352-9723
|b 7
700 1 _ |a Ollefs, Katharina J.
|0 0000-0002-2301-4670
|b 8
773 _ _ |a 10.1103/PhysRevResearch.3.033036
|g Vol. 3, no. 3, p. 033036
|0 PERI:(DE-600)3004165-X
|n 3
|p 033036
|t Physical review research
|v 3
|y 2021
|x 2643-1564
856 4 _ |u https://juser.fz-juelich.de/record/904872/files/PhysRevResearch.3.033036.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/904872/files/Spatially%20resolved%20GHz.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904872
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0003-1817-2276
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186870
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 0000-0002-2034-878X
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 0000-0001-8395-3541
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 0000-0002-1864-3261
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 0000-0003-1352-9723
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 0000-0002-2301-4670
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV RES : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-16T10:08:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-16T10:08:58Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-08-16T10:08:58Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2022-08-16T10:08:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21