# Cost-effective technology choice in a decarbonized and diversified long-haul truck transportation sector: A U.S. case study

Lukas Mauler<sup>1,2\*</sup>, Laureen Dahrendorf<sup>1</sup>, Fabian Duffner<sup>1,2</sup>, Martin Winter<sup>3,4</sup>, Jens Leker<sup>1,3</sup>

<sup>1</sup> Institute of Business Administration at the Department of Chemistry and Pharmacy, University of Münster, Leonardo Campus 1, 48148 Münster, Germany

<sup>2</sup> Porsche Consulting GmbH, Porschestraße 1, 74321 Bietigheim-Bissingen, Germany

<sup>3</sup> Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany

<sup>4</sup> MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstraße 46, 48149 Münster, Germany.

\*Corresponding author:

Lukas Mauler

lmauler@uni-muenster.de

## Abstract

Achieving net-zero emissions by 2050 will require accelerated efforts that include decarbonizing long-haul road transportation. In this difficult-to-decarbonize, low-margin industry, economic transparency on technology options is vital for decision makers seeking to eliminate emissions. Battery electric (BET) and hydrogen fuel cell electric trucks (FCET) can represent emission-free alternatives to diesel-powered trucks (DT). Previous studies focus on cost competitiveness in weight-constrained transportation even though logistics research shows that significant shares of transportation are constrained by volume, and analyze cost only for selected technologies, hence impeding a differentiated market segmentation of future emission-free trucks. In this study, the perspective of a rational investor is taken and it is shown that, under current conditions in the U.S., BETs outperform FCETs in various long-haul use cases despite charging times and cargo deficits, and will further increase their technological competitiveness to DTs. While future energy and fueling prices are decisive for BET competitiveness, the analysis reveals that autonomous driving may change the picture in favor of FCETs.

# Highlights

- Battery electric trucks on the verge of competitiveness at trip distances <500 km
- LFP-based chemistries are more suitable for volume-constrained transports
- High-Nickel-based chemistries are suitable for weight-constrained transports
- Fuel cell closest to diesel parity for weight-constrained transports >600 km
- U.S. energy prices to be reduced for battery and/or fuel cell competitiveness vs. diesel
- Autonomous driving will particularly improve fuel cell truck competitiveness

# Keywords

Battery electric truck; hydrogen fuel cell electric truck; long-haul transportation; cost-effective technology choice; total cost of ownership; mobility transition;

# Wordcount

6,129 words

# **Abbreviations**

BET Battery electric truck

C Graphite

CaT Catenary truck

CE Coulombic efficiency

CO<sub>2</sub> Carbon dioxide

DT Diesel truck

FC Fuel cell

FCET Fuel cell electric truck

GVW Gross vehicle weight

H<sub>2</sub> Hydrogen

HyT Hybrid truck

kWh Kilowatt hour

LFP Lithium iron phosphate

LCO Lithium cobalt oxide

LIB Lithium-ion battery

NCA Lithium nickel cobalt aluminum oxide

NGT Natural gas truck

Ni Nickel

NMC Lithium nickel manganese cobalt oxide

R&D Research and development

SEI Solid electrolyte interface

SOP Start of production

Ta Tantalum

TCO Total cost of ownership

VE Voltage efficiency

#### 1. Introduction

The decarbonization of the long-haul transportation sector is a key requirement to achieve net-zero emission goals by 2050 [1,2]. While cargo trucks account for 9% of the global vehicle stock, they generate 39% of the sector's greenhouse gas emissions [3]. In the U.S., heavy-duty trucks account for more fuel consumption and respective greenhouse gas emissions than all lighter truck categories combined [4] and hence, alternatives to diesel trucks (DT) offer significant climate and air quality benefits [5,6]. Among various alternatives, the International Energy Agency assigns the highest importance for net-zero emission to battery-electric trucks (BET) and hydrogen fuel cell electric trucks (FCET) [7], both allowing for carbon-neutral operation if renewable sources provide the required electricity for charging and hydrogen production [8]. Despite a greater reduction potential per vehicle compared to the light-duty segment, the adoption of these trucks proceeds at a slower pace [6,9]. In addition to a still limited offer of respective vehicles on the market [10] and concerns regarding infrastructure availability [11,12], customers face a lack of full economic transparency to compare truck propulsion technology options in their investment decision [13]. In this risk-averse [13], difficult-todecarbonize [14,15] industry characterized by low profit margins, total cost of ownership (TCO, consisting of capital and operating cost [16]) represents the prior criterion for truck purchase decisions [17]. While TCO is a rational decision criterion on the currently diesel-dominated market, it needs to be complemented with regard to a more diverse set of future technology options. In addition to TCO differences that have been analyzed in multiple studies, long-haul BETs require significant charging times and, BETs and FCETs differ in powertrain weight and volume from DTs. Idle times induced by charging and cargo capacity deviations due to legal limits of gross vehicle weight and length result in profit differences that decision makers need to take into account and have to date not been comprehensively analyzed between BETs, FCETs and DTs. In addition, currently commercialized BETs differ in the battery chemistry used, and can be categorized in lithium iron phosphate (LFP)-based and High-Nickel-based BETs. While LFP chemistries offer safety and durability advantages [18] and are considered particularly suitable for heavy-duty applications [19], High-Nickel-based chemistries exhibit increased energy density that allows for higher payloads [20]. The impact of the choice of battery chemistry on BET competitiveness has so far not been investigated. Further, previous studies focus on weight-constrained transportation [20–22], meaning that transported goods exhibit such a high density (e.g. construction materials, liquids) that the truck's weight limit is reached before its volume limit. However, logistics research suggests that larger and increasing shares of transportation are constrained by cargo volume (e.g. refrigerators, parcels) [21,23-25], thereby relaxing the impact of weight drawbacks for BETs in particular. Both, a limited scope of technologies in available studies and their focus on weight-constrained transportation, currently impede a differentiated forecast of the market segmentation for future long-haul trucks. In the underlying study, the relative competitiveness of BETs to FCETs and DTs in long-haul transportation is evaluated by applying a cost estimation method to U.S. heavy-duty trucks that incorporates technology-specific profit deviations due to charging/fueling times and cargo capacities, and reflects weight- and volume-constrained transports. The conducted analysis differentiates between current and future state-of-technology, specific battery chemistries, energy price developments and evaluates the impact of autonomous driving on the cost-effective technology choice. The use case of full truck load transports at U.S. highways is focused and U.S. regulation regarding gross vehicle weight and length is assumed throughout the study and, for human driving regimes, compliance with drivers' hours of service [26] is maintained. For BETs, the battery is dimensioned to provide sufficient energy until the first (mandatory) break that is used for charging. The results are presented based on three scenarios distinguished by their state-of-technology, energy price levels, and vehicle automation level.

## 2. Literature review and overview of truck market

The technical and economic competitiveness of different truck technologies in heavy-duty and long-haul truck transportation has been the object of multiple research studies in the past decade. Relevant publications on the topic, analyzed truck types and criteria for comparison are displayed in Table 1. A brief summary of these publications is outlined in the following section.

| Publication                                           | Truck types                | Criterion                                      | Opportunity cost                  | Cargo<br>focus    | BET battery technology |
|-------------------------------------------------------|----------------------------|------------------------------------------------|-----------------------------------|-------------------|------------------------|
| Nykvist, B. & Olsson, O. [22]                         | DT, BET                    | Capital cost, operating cost                   | Charging time,<br>Payload deficit | Weight            | NMC                    |
| Wolff, S., Fries, M. & Lienkamp, M. [27]              | DT, HyT, BET,<br>FCET, CaT | Capital cost, operating cost                   | -                                 | Weight            | LIB                    |
| Liimatainen, H., van<br>Vliet, O. & Aplyn, D.<br>[28] | DT, BET                    | Energy consumption                             | -                                 | Weight,<br>volume | -                      |
| Sripad, S. &<br>Viswanathan, V. [21]                  | DT, BET                    | Operating cost, vehicle price differential     | -                                 | Weight            | NMC  C                 |
| Tanco, M., Cat, L. & Garat, S. [29]                   | DT, BET                    | Capital cost, operating cost                   | -                                 | -                 | LIB                    |
| Earl, T. et al. [30]                                  | DT, BET                    | Capital cost, operating cost                   | -                                 | -                 | LCO                    |
| Mareev, I., Becker, J. & Sauer, D. [31]               | <sup>t</sup> DT, BET       | Capital cost, operating cost                   | -                                 | -                 | NMC                    |
| Sen, B., Ercan, T. & Tatari, O. [32]                  | DT, NGT, HyT,<br>BET       | Capital cost, operating cost                   | -                                 | -                 | LIB                    |
| Sripad, S. &<br>Viswanathan, V. [20]                  | DT, BET                    | Powertrain weight,<br>Powertrain cost          | -                                 | Weight            | LIB,<br>beyond LIB     |
| Zhao, H., Burke, A. & Zhu, L. [33]                    | DT, HyT, NGT,<br>BET, FCET | Energy consumption, vehicle price differential | -                                 | -                 | LIB                    |

Table 1: Publications in peer-reviewed journals for heavy-duty and/or long-haul transportation analyzing the competitiveness of technologies

In 2013, Zhao et al. compare the emissions and economics of alternative powertrains for long-haul trucks by analyzing energy consumption and vehicle price differentials [33]. While all alternative powertrain concepts, including BET and FCET, are found to offer potentials for emission reduction, none of the locally CO<sub>2</sub>-free powertrains can economically compete with DTs at the state-of-technology of the time. In their study of 2017, Sripad and Viswanathan investigate performance metrics required for BETs to achieve competitiveness with DTs [20]. The authors focus on weight-constrained heavy-duty transportation, analyze the respective energy requirements in detail, and identify the battery as the main hurdle for BETs to outperform DTs. The main challenges are shown to be its low specific energy and high cost that may only be overcome by beyond lithium-ion battery (LIB) chemistries. In the same year, Sen et al. evaluate life cycle cost and emission of CO<sub>2</sub> equivalents of heavy-duty truck powertrains [32]. Among various alternatives, BETs are shown to be a promising DT alternative in both aspects. However,

only BETs with battery energies of up to 400 kWh are analyzed that might not be large enough for longhaul transportation. Likewise in 2017, Mareev et al. conduct a life cycle cost analysis for heavy-duty trucks in long-haul transportation in Germany and set a particular focus on BET energy consumption and battery dimensioning [31]. It is shown that for vehicle ranges greater than 500 km, battery energies of 900 kWh are required, reducing BETs' average cargo weight capacity by 20% compared to DTs. Regarding life cycle cost, BETs are shown to already reach levels similar to DTs. In 2018, Earl et al. investigate the economic competitiveness by comparing TCO between long-haul BETs and DTs in the EU [30]. It is shown that BETs may become competitive at low electricity cost levels, reduced road taxes and without the need for battery replacements. In 2019, Tanco et al. conduct a break-even analysis for long-haul BETs in Latin America by comparing their TCO to that of a DT [29]. The authors find that for heavy-duty trucks, BETs struggle to reach cost parity to DTs, mainly explained by the high initial investment, even though potential battery replacements are neglected in their analysis. In the same year, Sripad and Viswanathan quantify the economic viability of heavy-duty long-haul BETs [21]. By thoroughly analyzing the trade-off between initial truck investments and operating cost, the authors derive four targets, each of which needs to be met to allow for BET economic competitiveness. These consist of improved aerodynamics to reduce required battery energies, battery pack prices below 150 \$ kWh<sup>-1</sup>, electricity prices below 0.2 \$ kWh<sup>-1</sup>, and improved battery cycle stability. Likewise in 2019, Liimatainen et al. assess the potential of electric trucks in Switzerland and Finland by comparing the energy consumption of BETs and DTs [28]. The authors find that the electrification potential increases with, on the one hand, the state-of-technology consisting of battery size, battery specific energy and charging power and, on the other hand, with the type of commodity. Commodities that are rather constrained by cargo volume capacity exhibit higher electrification potential than those that are constrained by cargo weight capacity. In 2020, Wolff et al. evaluate the economic impact of alternative powertrains in long-haul transportation based on TCO and take infrastructure investments into account [27]. BETs are assessed to be uncompetitive in long-haul applications due to cost, range, and cargo weight capacity drawbacks, both induced by insufficiently advanced battery technology. In 2021, Nykvist and Olsson compare the cost-effectiveness of BETs and DTs in weight-constrained transportation based on different gross vehicle weights [22]. The authors find that fast charging enables the use of smaller batteries that decreases energy consumption and payload deficits, and that BET competitiveness might have been underestimated by earlier studies.

Three limitations of the analyzed studies have been identified that can be derived from Table 1. First, all studies that evaluate cost competitiveness have to date focused on weight-constrained transportation. Second, none of the analyzed studies compares the economic performance of specific battery chemistries in BETs. Third, comprehensive cost competitiveness (i.e., including opportunity cost) has so far only

been evaluated between BETs and DTs, neglecting market influences from the presence of FCETs. Consequently, a differentiated market segmentation that reflects volume- and weight-constrained transportation, integrates the technological concepts of DTs, FCETs, and BETs, and for the latter, the presence of multiple battery technologies, is currently lacking.

In order to underline the necessity of such an analysis, a review of public sources such as media and company websites has been conducted that provides an overview of truck technologies currently on the market or in commercialization. A summary of results based on vehicle range, maximal gross vehicle weight of the trailer combination, and truck propulsion technology is provided in Figure 1. Further details regarding start of production and related data sources are provided in Table 2.

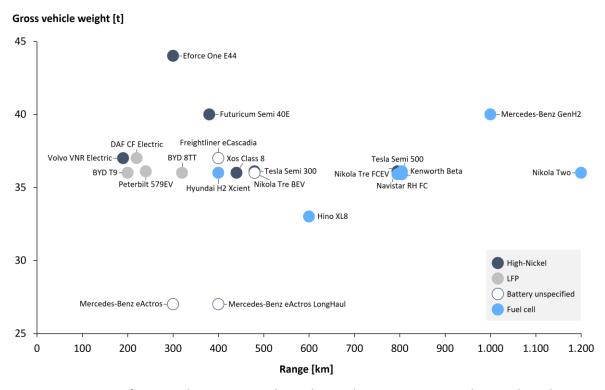



Figure 1: Summary of BETs and FCETs currently on the market or in commercialization based on vehicle range, maximal gross vehicle weight and truck propulsion technology

| Manufacturer  | Model              | GVW          | Range    | Technology  | (Planned)<br>SOP | Source  |
|---------------|--------------------|--------------|----------|-------------|------------------|---------|
| Tesla Motors  | Semi 300           | 36 t         | 480 km   | High-Nickel | 2021             | [34]    |
| Tesla Motors  | Semi 500           | 36 t         | 800 km   | High-Nickel | 2021             | [34]    |
| BYD           | Т9                 | 36 t         | 200 km   | LFP         | 2020             | [28,35] |
| BYD           | 8TT Gen 3          | 36 t         | 320 km   | LFP         | 2021             | [36]    |
| Freightliner  | eCascadia          | 37 t         | 400 km   | Battery     | 2022             | [37]    |
| Mercedes-Benz | GenH2              | 40 t         | 1,000 km | Fuel cell   | 2027             | [38,39] |
| Mercedes-Benz | eActros long-haul  | 27 t (40 t*) | 400 km   | Battery     | 2024             | [40]    |
| Mercedes-Benz | eActros            | 27 t (40 t*) | 300 km   | Battery     | 2021             | [40]    |
| Nikola Motors | Nikola Two         | 36 t         | 1,200 km | Fuel cell   | 2024             | [41,42] |
| Nikola Motors | Nikola Tre FCEV    | 36 t         | 800 km   | Fuel cell   | 2023             | [41,42] |
| Nikola Motors | Nikola Tre BEV     | 36 t         | 480 km   | Battery     | 2022             | [42]    |
| Volvo Trucks  | Volvo VNR Electric | 37 t         | 190 km   | High-Nickel | 2021             | [43]    |
| Hyundai       | H2 Xcient          | 36 t         | 400 km   | Fuel cell   | 2020             | [44]    |
| Eforce One    | E44                | 44 t         | 300 km   | High-Nickel | 2019             | [45]    |
| DAF Trucks    | CF Electric        | 37 t         | 220 km   | LFP         | 2021             | [46]    |
| Futuricum     | Semi 40E           | 40 t         | 380 km   | High-Nickel | 2019             | [47,48] |
| Peterbilt     | 579EV              | 36 t         | 240 km   | LFP         | 2021             | [49,50] |
| Hino          | XL8                | 33 t         | 600 km   | Fuel cell   | 2021             | [51,52] |
| Kenworth      | Beta               | 36 t         | 800 km   | Fuel cell   | n/a              | [51]    |
| Xos Trucks    | Class 8            | 36 t         | 440 km   | High-Nickel | 2021             | [53,54] |
| Navistar      | RH fuel cell       | 36 t         | 800 km   | Fuel cell   | 2024             | [55]    |

\* Mercedes-Benz eActros and eActros long-haul will be available with a GVW of 40 t, related range specifications have not been available

Table 2: Manufacturer, model, gross vehicle weight, range, propulsion technology, (planned) SOP and related sources of BETs and FCETs on the market or in commercialization

It can be observed from Figure 1 that both, FCETs and BETs are in focus of truck manufacturers, the latter representing the majority of the planned model portfolio and differing in battery chemistry. In contrast to the literature, where a comparison of specific battery chemistries and an analysis of the influence from FCETs is currently lacking, the respective technologies are set to compete against each other in the truck market. In terms of vehicle range, LFP-BETs are stated to travel between 200 and 320 km, and High-Nickel-BETs between 190 and 800 km on one charge. FCETs exhibit the highest vehicle ranges that vary from 400 to 1,200 km. Hence, in order to identify the cost-effective technology choice for haulers, a comprehensive evaluation of these technologies in both, weight- and volume-constrained transports is required.

#### 3. Methods

#### 3.1 Cost estimation model

In order to determine the cost-effective technology choice in a specific use case, a cost estimation model is set up that addresses the aforementioned limitations and reflects weight- and volume-constrained transportation and different battery chemistries. In the following, a superordinate extract of the model structure is described, a graphical overview of the model components and their relations is presented, and the results of a review for current technological and market parameters are outlined. The detailed

model description and the mathematical derivation of the opportunity cost equations are included in Section 1 of the Appendix.

For the analysis, the technology-specific distance-based cost  $c_{total,x}$  (\$ km<sup>-1</sup>) that is relevant to an investor in her truck purchasing decision is calculated as the sum of four elements:

$$c_{total,x} = c_{cap,x} + c_{op,x} + c'_{time,x} + c'_{cargo,x}$$

$$\tag{1}$$

where  $x \in \{DT; BET; FCET\}$  represents the technology of the truck,  $c_{cap,x}$  the capital cost,  $c_{op,x}$  the operating cost of the truck and  $c'_{time,x}$  and  $c'_{cargo,x}$  the cost of foregone profits compared to a diesel truck due to charging/refueling times and lower cargo capacity, respectively. Please note here that costs that are signified with an apostrophe represent opportunity costs and only exist at the moment of decision and vanish thereafter [56]. The capital cost  $c_{cap,x}$  (\$ km<sup>-1</sup>) is calculated as the distance-based linear depreciation of the total truck investment:

$$c_{cap,x} = \frac{1}{d_{life}} \cdot \left( I_{tractor} + I_{trailer} + I_{pt,x} \right)$$
 (2)

where  $d_{life}$  (km) represents the total distance-based truck lifetime,  $I_{tractor}$  (\$) and  $I_{trailer}$  (\$) the investment for the tractor without powertrain and for the trailer unit, respectively, and  $I_{pt,x}$  (\$) the technology-specific investment for the powertrain. The distance-based operating cost  $c_{op,x}$  (\$ km<sup>-1</sup>) is calculated based on:

$$c_{op,x} = c_{main,x} + c_{energy,x} \tag{5}$$

where  $c_{main,x}$  (\$ km<sup>-1</sup>) is the technology-specific truck maintenance cost, and  $c_{energy,x}$  (\$ km<sup>-1</sup>) the technology-specific cost for charging and fueling. The cost of forgone profits compared to a diesel truck due to charging/fueling times and due to differences in cargo capacity can be calculated according to equations (13) and (16), respectively:

$$c'_{time,x} = \left[ w_{paid} \cdot \left( r_g \cdot K_{g,x} \cdot w_g + r_v \cdot K_{v,x} \cdot w_v \right) - c_{cap,x} - c_{op,x} \right] \cdot \left( 1 - \frac{d(T)_{total,x}}{d(T)_{total,pT}} \right)$$
(13)

$$c'_{cargo,x} = \left[ r_g \cdot \left( K_{g,x} - K_{g,DT} \right) \cdot w_g + r_v \cdot \left( K_{v,x} - K_{v,DT} \right) \cdot w_v \right] \cdot w_{paid}$$
(16)

where  $w_{paid}$  (%) represents the share of loaded, paid transports,  $r_g$  (\$ t<sup>-1</sup> km<sup>-1</sup>) the weight- and distance-based freight rate in the U.S.,  $K_{g,x}$  (t) the cargo weight capacity of a truck using technology x,  $r_v$  (\$ m<sup>-3</sup> km<sup>-1</sup>) the volume- and distance-based freight rate,  $K_{v,x}$  (m<sup>3</sup>) the cargo volume capacity of a truck using technology x,  $w_g$  (%) and  $w_v$  (%) the shares of weight- and volume-constrained transports, respectively, and  $d(T)_{total,x}$  the truck's total traveled mileage in a time window T.

A graphical representation of the structure of the BET cost model is displayed in Figure 2. The overview includes model variables, model parameters, links to the DT model required for the opportunity cost calculation and references to the equations described in Section 1 of the Appendix.

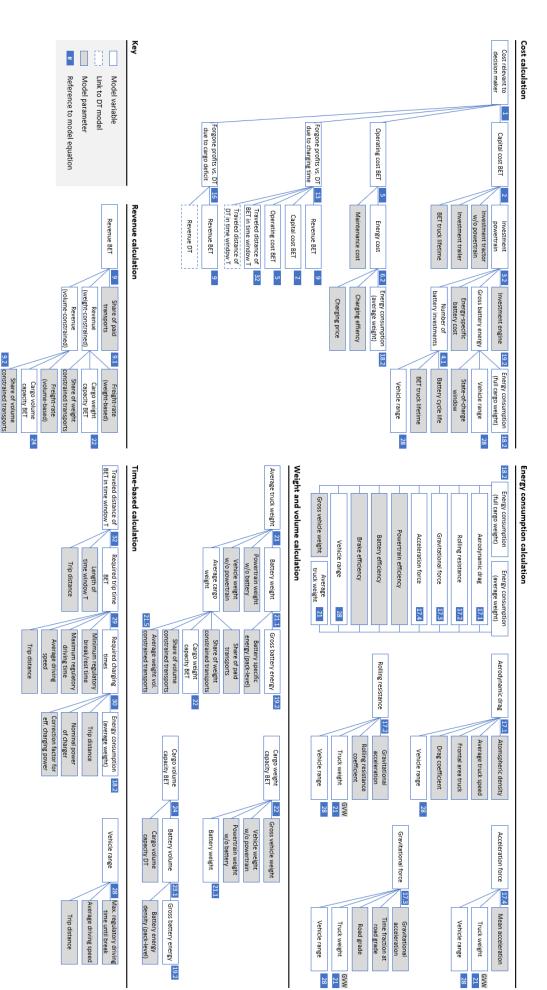



Figure 2: Graphical representation of model structure for BETs

12

## 3.2 Scenario overview and overarching assumptions

In order to analyze the effect of developments in technology, energy prices, and the level of automation on the competitiveness of truck powertrain technologies in the U.S. market, three scenarios are set up. While the first scenario is intended to reflect the current state-of technology and energy prices for electricity charging and hydrogen fueling, the second and third scenarios approximate their potential future state. Both, the first and the second scenario assume the truck to be driven by a human driver, bound to comply with break and rest time regulations, whereas in the third scenario, autonomous driving is considered. A brief overview of the three scenarios is provided in Table 3.

| Scenario                          | 1                          | 2                                                             | 3                 |  |  |
|-----------------------------------|----------------------------|---------------------------------------------------------------|-------------------|--|--|
| State-of-technology*              | Current                    | Future                                                        |                   |  |  |
|                                   | Commercialized LFP         | Advanced LFP                                                  |                   |  |  |
|                                   | Commercialized High-Nickel | Advanced High-Nickel                                          |                   |  |  |
|                                   | Commercialized Fuel cell   | Advanced Fuel cell                                            |                   |  |  |
|                                   | Commercialized Diesel: te  | technological maturity is assumed throughout Scenarios 1 to 3 |                   |  |  |
| Energy prices                     | Current                    | Future optimistic                                             | Future optimistic |  |  |
| (charging/H <sub>2</sub> fueling) | + sensitivities            | + sensitivities                                               |                   |  |  |
| Automation level                  | Human driver Autonomous    |                                                               |                   |  |  |
|                                   | Regulatory break tir       | time of 0.5 h after 8 h, No regulatory break &                |                   |  |  |
|                                   | regulatory rest tim        | times considered                                              |                   |  |  |
| Further scenario details          | Table 5                    | Table 6                                                       |                   |  |  |

<sup>\*</sup>State-of-technology is reflected in energy efficiency, share of useable energy, gravimetric and volumetric performance, durability, and cost

Table 3: Overview of the three considered scenarios

While assumptions specific to each of the above introduced scenarios are outlined in Section 4, several assumptions are held constant across scenarios. These are presented in Table 4 and include overarching characteristics of the truck and its components, as well as U.S. driving cycle and hours of service regulations. It should be noted here that several of these assumptions are U.S.-specific and the outlined results are expected to alter if assumptions for other countries are considered.

| Parameter                                                  | Value/unit                                                                 | Source |
|------------------------------------------------------------|----------------------------------------------------------------------------|--------|
| Truck life                                                 | 1,609,344 km (1 million miles)                                             | [57]   |
| Investment tractor unit w/o powertrain                     | 110,000 \$                                                                 | [58]   |
| Investment trailer unit                                    | 32,500 \$                                                                  | [32]   |
| Maintenance cost DT                                        | 0.096 \$ km <sup>-1</sup>                                                  | [58]   |
| Maintenance cost BET                                       | 0.062 \$ km <sup>-1</sup>                                                  | [58]   |
| Maintenance cost FCET                                      | 0.096 \$ km <sup>-1</sup>                                                  | [58]   |
| Energy density of diesel fuel                              | 9.8 kWh L <sup>-1</sup>                                                    | [58]   |
| Specific energy of hydrogen                                | 33.3 kWh kg <sup>-1</sup>                                                  |        |
| Engine power                                               | 350 kW                                                                     | [25]   |
| Efficiency of charger                                      | 95 %                                                                       | [25]   |
| Share of empty runs                                        | 9 %                                                                        | [59]   |
| Freight rate                                               | 0.117 \$ t <sup>-1</sup> km <sup>-1</sup>                                  | [60]   |
| Density of air                                             | 1.2 kg m <sup>-3</sup>                                                     |        |
| Average truck speed                                        | $19.2 \text{ m s}^{-1} = 43 \text{ miles h}^{-1} = 69.2 \text{ km h}^{-1}$ | [20]   |
| Frontal area truck                                         | 3.5 m x 2.5 m                                                              |        |
| Drag coefficient                                           | 0.65                                                                       | [61]   |
| Rolling resistance coefficient                             | 0.0065                                                                     | [61]   |
| Time fraction at road grade                                | 15 %                                                                       | [20]   |
| Road grade                                                 | 1 %                                                                        | [20]   |
| Mean acceleration                                          | 0.112 m s <sup>-2</sup>                                                    | [20]   |
| Brake efficiency                                           | 97 %                                                                       | [20]   |
| Battery size FCET                                          | 70 kWh                                                                     | [30]   |
| Weight truck and trailer w/o powertrain                    | 10.8 t                                                                     | [4]    |
| Weight powertrain BET/FCET w/o battery, fuel cell, storage | 0.4 t                                                                      | [30]   |
| Weight powertrain DT w/o storage                           | 3.2 t                                                                      | [4]    |
| Correction factor charging power                           | 0.75 (150 kW) / 0.6 (350 kW)                                               | [62]   |
| Regulatory minimum break time (after 8h)                   | 0.5 h (not considered in Scenario 3)                                       | [26]   |
| Regulatory minimum rest time (after 11h)                   | 10 h (not considered in Scenario 3)                                        | [26]   |

Table 4: Overarching assumptions including truck characteristics, U.S. driving cycle, and break and rest time regulations

## 4. Scenario-based results and discussion

# 4.1 Scenario 1: Current technology, current energy prices, human driver

In the first scenario, trucks are equipped with propulsion technology currently available on the market. Further, current charging technology and energy prices at U.S. highways are assumed. A human driver operates the truck and needs to comply with break (≥0.5 h after 8 h driving) and rest time regulations (10 h after 11 h driving) that BETs can seize to recharge and partially offset profit disadvantages. An extract of relevant parameters is outlined in Table 5.

| Category/                         | LFP BET                       | High-Nickel BET               | FCET                                                    | DT                           |
|-----------------------------------|-------------------------------|-------------------------------|---------------------------------------------------------|------------------------------|
| Parameter                         | LFF DE1                       | Iligii-Nickei de i            | FCEI                                                    | DI                           |
| <u>Technology</u>                 |                               |                               |                                                         |                              |
| Energy efficiency                 |                               |                               |                                                         |                              |
| Energy storage/Fuel converter     | 95 % [63,64],[a]              | 95 % [64–66],[a]              | 60 % [67]                                               | 46 % [30]                    |
| Powertrain                        | 90 % [20]                     | 90 % [20]                     | 90 % [20]                                               | 90 % [20]                    |
| Share of useable energy           |                               |                               |                                                         |                              |
| State-of-charge window            | 100 % [68]                    | 95 % [69]                     | -                                                       | -                            |
| Fuel utilization                  | -                             | -                             | 100 %                                                   | 100 %                        |
| Gravimetric performance           |                               |                               |                                                         |                              |
| Specific energy (battery pack)    | 125 Wh kg <sup>-1</sup> [70]  | 170 Wh kg <sup>-1</sup> [71]  | 170 Wh kg <sup>-1</sup> [71]                            | -                            |
| Specific power (FC system)        | -                             | -                             | 650 W kg <sup>-1</sup> [72]                             | -                            |
| Hydrogen storage weight           | -                             | -                             | 0.045 kg H <sub>2</sub> (kg storage) <sup>-1</sup> [73] | ] -                          |
| Cargo weight capacity (500 km)    | 20.7 t [b,c]                  | 21.9 t [b,c]                  | 24.3 t [b,c]                                            | 22.1 t [b]                   |
| Volumetric performance            |                               |                               |                                                         |                              |
| Energy density (battery pack)     | 190 Wh L <sup>-1</sup>        | 239 Wh L <sup>-1</sup>        | 239 Wh L <sup>-1</sup>                                  | -                            |
|                                   | based on [74]                 | based on [74]                 | based on [74]                                           |                              |
| Power density (FC system)         | -                             | -                             | 650 W L <sup>-1</sup> [72]                              | -                            |
| Hydrogen storage volume           | -                             | -                             | 0.030 kg H <sub>2</sub> (L storage) <sup>-1</sup> [73]  | -                            |
| Cargo volume capacity (500 km)    | $109 \text{ m}^3 [b]$         | $109 \text{ m}^3 [b]$         | 110 m <sup>3</sup> [b]                                  | 112 m <sup>3</sup> [b]       |
| Durability                        | 3,000 cycles [64]             | 1,500 cycles [75]             | 25,000 h [76]                                           | 25,000 h [57]                |
| Number of powertrain investments  | 1 [b]                         | 2 [b]                         | 1 [b]                                                   | 1 [b]                        |
| during truck life (500 km) [-]    |                               |                               |                                                         |                              |
| Cost                              |                               |                               |                                                         |                              |
| Battery cost (pack)               | 100 \$ kWh <sup>-1</sup> [77] | 140 \$ kWh <sup>-1</sup> [77] | 140 \$ kWh <sup>-1</sup> [77]                           | -                            |
| FC cost (system)                  | -                             | -                             | 190 \$ kW <sup>-1</sup> [78]                            | -                            |
| Hydrogen storage cost             | _                             | -                             | 333 \$ (kg H <sub>2</sub> ) <sup>-1</sup> [73]          | -                            |
| Engine cost                       | 19 \$ kW <sup>-1</sup> [21]   | 19 \$ kW <sup>-1</sup> [21]   | 19 \$ kW <sup>-1</sup> [21]                             | 122 \$ kW <sup>-1</sup> [21] |
| Charging power (nominal)          | 150 kW [79]                   | 150 kW [79]                   | -                                                       | -                            |
| Energy market                     |                               |                               |                                                         |                              |
| Electricity charging price        | 0.3 \$ kWh <sup>-1</sup> [80] | 0.3 \$ kWh <sup>-1</sup> [80] | -                                                       | _                            |
| Hydrogen fueling price            | -                             | -                             | 13 \$ kg <sup>-1</sup> [81]                             | -                            |
| Diesel price                      | -                             | -                             | -                                                       | 0.85 \$ L <sup>-1</sup> [82] |
| Energy consumption (500 km)       |                               |                               |                                                         |                              |
| Volume-constrained transportation | 1.04 kWh km <sup>-1</sup> [b] | 1.01 kWh km <sup>-1</sup> [b] | 0.05 kg km <sup>-1</sup> [b]                            | 0.30 L km <sup>-1</sup> [b]  |
| Weight-constrained transportation |                               |                               | 0.06 kg km <sup>-1</sup> [b]                            | 0.40 L km <sup>-1</sup> [b]  |

a | See literature review on battery energy efficiency in Section 3 of the Appendix

Table 5: Literature-based assumptions for current state-of-technology and energy market prices. Additional assumptions and related sources are included in Sections 2 and 3 in the Appendix.

For BETs, battery chemistries are differentiated between lithium iron phosphate (LFP)-based and High-Nickel-based (comprising High-Nickel layered oxide cathode materials such as NCA and NMC [83]) chemistries, both of which represent state-of-the-art lithium-ion battery chemistries in heavy-duty trucks. The given technologies are characterized by distinct properties that can be categorized in energy efficiency, share of useable energy, gravimetric and volumetric performance, durability and cost [84,85]. Battery rate capability is excluded here since the use of long-haul-BETs' large batteries implies C-rates significantly below 2C even at extreme fast charging stations (see Section 3 in the Appendix). Based on the assumptions in Table 5, Figure 3 shows the resulting cost-effective alternative to DTs depending on the trip distance between starting point and destination, and the type of transportation. Regarding the latter, cargo types may vary between orders, and transports are differentiated between weight-constrained, mixed weight- and volume-constrained, and volume-constrained cargo. While volume-constrained LFP-BETs are competitive at each trip distance within a driver's daily driving time window,

b | calculated

c | Includes additional gross vehicle weight allowance for gross vehicle weight of 0.9 t (equals 2,000 lbs) according to U.S. regulation

a different picture emerges for weight-constrained transportation. Here, with increasing trip distances, the cost-effective technology choice follows the order LFP-BETs, High-Nickel-BETs and FCETs. Further, it can be observed that gravimetrically inferior technologies improve their relative cost with increasing shares of volume-constrained transports, expressed by diagonally running borders between technologies.

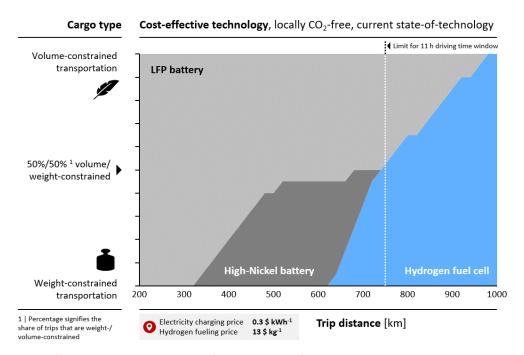



Figure 3: Cost-effective technology choice for locally  $CO_2$ -free trucks at current technology level under current U.S. regulation and energy prices

Even though Figure 3 shows defined borders between locally CO<sub>2</sub>-free technologies, two aspects should be kept in mind during its interpretation. First, previous studies have outlined system cost [20,21,29,31] and energy prices [21,22,30,32] to be major determinants for the competitiveness of alternative powertrains (see literature review in Section 2). Since both, current system cost and current energy prices involve uncertainty, a closer look needs to be taken on the impact of different energy price levels. Second, the considered powertrains exhibit different behaviors depending on temperature conditions, affecting cost-relevant parameters such as range and durability [86,87].

Regarding the first aspect of system cost and energy price uncertainty, an impact analysis of different parameter constellations is conducted to determine the effect on the presented borders between cost-effective technologies. In order to validate the assumptions in this study, a literature review for system cost and energy prices is included in Sections 4 and 5 in the Appendix. Using the estimates for both cost

drivers from multiple industry analysts, parameter constellations favoring FCETs and BETs, respectively, are applied and their effect is compared in Figure 4.

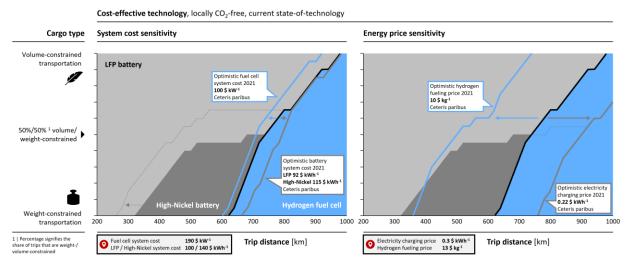



Figure 4: The effect of different system and energy cost assumptions on the cost-effectiveness of technologies at current technology level

With respect to system cost, the impact of fuel cell and battery system cost on the cost-effective technology choice is presented on the left-hand side of Figure 4. Keeping all other assumptions equal, reducing heavy-duty fuel cell system cost from 190 \$ kW<sup>-1</sup> [78] to an optimistic level of 100 \$ kW<sup>-1</sup> [88] leads to a moderate increase in FCET competitiveness at shorter trip distances, shown by a left-sided shift from the black to the blue border between FCET and BETs. Similar increases in competitiveness can be observed for BETs if optimistic LFP (High-Nickel) battery system cost of 92 \$ kWh<sup>-1</sup> (115 \$ kWh<sup>-1</sup>) [89] are assumed instead of 100 \$ kWh<sup>-1</sup> (140 \$ kWh<sup>-1</sup>) [77], shown by a right-sided shift from the black to the grey border. In both cases, additional competitiveness for the respective truck type is limited to trip distance variation of 0 to 80 km. Higher sensitivities are shown on the right-hand side of Figure 4 where the impact of energy cost assumptions is analyzed. If current hydrogen fueling is available for 10 [90] instead of 13 \$ kg-1 [81], FCETs already become competitive at shorter trip distances (left-sided shift in the order of 200 km, blue border) if all other assumptions are kept at their original level. Reducing the level of electricity charging prices from 0.3 [80] to optimistic 0.22 \$ kWh <sup>1</sup> [91,92] results in a BET competitiveness gain for additional trip distances in the order of 150 km (grey border). Consequently, an assessment of cost competitiveness between alternative powertrains needs to be developed in the context of energy price scenarios in particular. Hence, the effect of future energy price developments is further investigated in Section 4.2.

Regarding the second aspect of temperature performance, both, batteries and fuel cells face challenges at low environmental temperatures (< 0 °C) due to hampered (electro-)chemical reaction kinetics and slow ion transport [87]. With respect to batteries, the truck range is determined by their discharge energy that decreases at lower temperature levels due to overvoltages and their effect on cell capacity and cell voltage [93,94]. A similar effect applies to the durability of the battery powertrain that is defined by the rate of cell aging. Here, lower temperatures lead to an increased overpotential of the anode, bringing its potential closer to the one of lithium metal, increasing the risk of lithium plating, and thus, dendrite and electric short formation [86,87]. With respect to fuel cells, particular challenges are associated with their cold start, meaning their startup in subfreezing temperatures. In these environments, ice can form in flow channels and porous layers that can block catalyst reaction sites and gas transport pathways [95]. Cold starts have been shown to consume hydrogen [96], and hence, reduce truck range. Further, if conducted repeatedly, cold starts are considered to negatively affect fuel cell durability [97]. Consequently, both BETs and FCETs experience different performance impacts in cold climate conditions that have to our knowledge not been investigated on a comparative basis so far. Therefore, and with respect to effective countermeasures such as thermal management systems for both technologies [74,95,98], as well as advanced electrolyte additives [99–101] to improve overall kinetics in batteries, and the deployment of functional micro porous layers on the electrodes to prevent ice formation [102] for fuel cells, the cost comparison underlying Figure 3 is assumed to neither favor BETs or FCETs in particular. Further analyses provided in the remainder of this section are based on the assumptions provided in Table 5.

Figure 5 shows the cost disadvantage of BETs and FCETs compared to DTs depending on the trip distance and the type of transportation. If customers opt for locally CO<sub>2</sub>-free transportation, it represents the minimum price premium on the distance-based freight rate that needs to be paid in order to incentivize an investor to favor BETs and FCETs over DTs under current circumstances. While locally CO<sub>2</sub>-free transports are already competitive in weight-constrained transportation at trip distances below 300 km and investors do not need to be compensated for cost disadvantages compared to DTs, an increasing disadvantage can be observed for increasing trip distances and increasing shares of volume-constrained cargo. The first aspect can be attributed to the overproportionally increasing powertrain weights at higher trip distances of both BETs and FCETs compared to DTs. BETs need to carry larger battery weights and FCETs, despite an existing absolute powertrain weight advantage over DTs, need to carry more hydrogen, increasing weight-intensive hydrogen storage, each increasing energy consumption and, for weight-constrained cargo, decreasing profit potentials. DTs in turn benefit, owing to the high energy density of additional diesel fuel, from significantly lower marginal powertrain weight increases. The second aspect results from current U.S. regulation that grants an additional allowance on

gross weight vehicle weight of 0.9 t (equals 2,000 lbs), that partially offsets the BET's weight disadvantage and increases the FCET's benefit in weight-constrained transportation. A similar allowance for additional cargo volume, such as additional truck length, currently does not exist in the U.S., lowering competitiveness of BETs and FCETs in this use case.

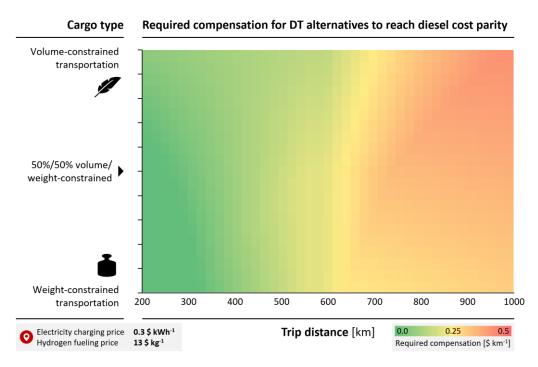



Figure 5: Required compensation for cost parity with diesel trucks, depending on trip distance and cargo type

In order to derive improvement potentials for competitiveness of locally CO<sub>2</sub>-free trucks, the cost structure is analyzed in three suitable use cases shown in Figure 6a, where each technology reveals its cost advantage. A trip distance of 500 km is chosen for volume-constrained and weight-constrained transportation and a trip distance of 750 km in weight-constrained transportation where technology-specific cost advantages are graphically revealed (for completeness, a similar analysis for a trip distance of 200 km is included in Section 6 in the Appendix). Across use cases, the BET's efficiency-induced operating cost advantage over FCETs becomes apparent. The FCET in turn benefits from its powertrain volume and weight advantage that finds its expression in low cargo weight profit losses and cargo volume gains measured against the DT, where BETs, in both aspects, need to bear (higher) losses. With regard to the competitiveness between both BETs at 500 km, the LFP-BET is most attractive in volume-constrained transportation, where its higher battery weight from inferior specific energy (see Section 7 in the Appendix for an exhaustive analysis) only affects energy consumption, not its profit potential. This effect is overcompensated by its capital cost advantage over High-Nickel-BETs due to favorable

battery durability, battery cost and share of useable energy. For weight-constrained transportation, LFP-BETs can retain this advantage only for trip distances up to 350 km (not depicted in Figure 6), since their battery weight additionally shows effect in forgone profits. For the case of 500 km, the above-mentioned trade-off tips in favor of High-Nickel-BETs. For weight-constrained transportation at a trip distance of 750 km, increased battery energies and charging times exceeding mandatory breaks, particularly driving forgone profits, render BETs uncompetitive and leave the FCET as the cost-effective alternative to DTs. Please note that in two use cases, neglecting profit deviations (signified as red, orange and green segments) alters the cost-minimal decision between DT alternatives. In all use cases, DT cost advantages become apparent. While the cost delta to DTs is in the order of 0.15 \$ km<sup>-1</sup> at trip distances of 500 km, it exceeds 0.25 \$ km<sup>-1</sup> for 750 km.

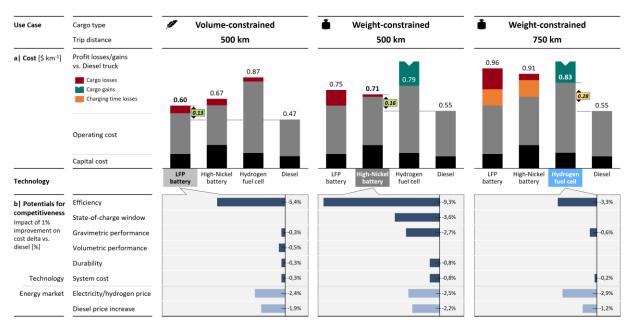



Figure 6: Cost comparison for different truck use cases and potentials to increase competitiveness versus DT

In order to identify levers for competitiveness improvement, technological and energy market parameters are varied in favor of the most competitive alternative to DTs in each use case. Parameters are varied by the same percentage (1%) and the impact on the DT cost delta is measured, as shown in Figure 6b. Of all analyzed levers, efficiency improvement proves most effective. However, its impact differs between use cases and technologies. For volume-constrained transports, the efficiency impact is generally lower compared to weight-constrained transportation due to lower average vehicle weights that drive energy consumption and cost. On FCETs in weight-constrained transportation, the impact is lower than on BETs due to the FCET's comparative weight advantage, a lower initial efficiency value

(60% vs. 95%), and a higher cost delta to DTs. The effectiveness of further technological improvements varies between alternative powertrains and requires a differentiated approach. To improve competitiveness of LFP-BETs, an increase in volumetric performance is second-most promising (subsequent to efficiency improvement), resulting in reduced penalties for forgone cargo profits. Improvements of gravimetric performance, durability and cost, play a subordinate role in comparison. High-Nickel-BETs benefit second-most from state-of-charge window improvement, thereby reducing battery cost and weight, an advantage LFP BETs cannot seize since respective packs are already assumed to withstand 100% discharge. In contrast, increasing specific energy of High-Nickel BETs proves more effective than energy density since forgone profits can thus be reduced in their more suitable weight-constrained use case. High-Nickel-BETs turn out to be slightly more sensitive to durability and battery cost due to their inferiority in both aspects. For FCETs, the second-most effective lever, again owing to their suitable use case, is gravimetric performance increase. As for BETs, system cost reductions have lower marginal impacts on their competitiveness. Regarding future powertrain R&D, this analysis reveals important implications. Even if it is taken into account that improvements may not be equally feasible in the parameters analyzed (e.g., 1% energy efficiency increase might prove more difficult than 1% cost reduction), it shows that moderate cost increases and/or compromised battery rate capability may be tolerated if these can be successfully invested in the above-mentioned technology-specific improvements. For levers related to the energy market, energy price variations significantly impact competitiveness. However, across technologies, lower energy prices for alternative powertrains are more favorable than higher diesel prices. This is due to the cost structure of FCETs and BETs, which is characterized by higher operating cost impacted by this variation. This finding has already been made in BET literature [21] but can be extended to FCETs.

# 4.2 Scenario 2: Future technology, energy price sensitivity, human driver

For the second scenario, a literature review is conducted on technology-specific developments based on the prioritized parameters from Section 4.1. Further, extreme fast charging technology [103] is assumed to be in place. Regarding energy market developments, the results are based on optimistic energy prices for electricity charging and hydrogen fueling (for both, see Section 5 in the Appendix), the diesel price remains constant. However, since future energy market developments involve uncertainty, the impact of different energy price scenarios on cost-effective decisions is analyzed. The assumption of a human driver is retained. Relevant parameters are outlined in Table 6, improvements compared to the first scenario are italicized and explained in the following section.

| Category/                         | LFP BET                       | High-Nickel BET               | FCET                              | DT                          |
|-----------------------------------|-------------------------------|-------------------------------|-----------------------------------|-----------------------------|
| Parameter                         |                               |                               |                                   |                             |
| Technology                        |                               |                               |                                   |                             |
| Energy efficiency                 | 07.0/                         | 07.0/                         | 70.0/                             | 46.07                       |
| Energy storage/Fuel converter     | 97 %                          | 97 %                          | 70 %                              | 46 %                        |
| Powertrain                        | 90 %                          | 90 %                          | 90 %                              | 90 %                        |
| Share of useable energy           |                               |                               |                                   |                             |
| State-of-charge window            | 100 %                         | 100 %                         | -                                 | <del>.</del>                |
| Fuel utilization                  | -                             | -                             | 100 %                             | 100 %                       |
| Gravimetric performance           |                               | _                             |                                   |                             |
| Specific energy (battery pack)    | 180 Wh kg <sup>-1</sup>       | 240 Wh kg <sup>-1</sup>       | $240 \ Wh \ kg^{-1}$              | -                           |
| Specific power (FC system)        | -                             | -                             | 650 W kg <sup>-1</sup>            | -                           |
| Hydrogen storage weight           | -                             | -                             | 0.065 kg H <sub>2</sub> (kg stora | ıge) <sup>-1</sup> -        |
| Cargo weight capacity (500 km)    | 22.4 t [b,c]                  | 23.3 t [b,c]                  | 24.7 t [b,c]                      | 22.1 [b]                    |
| Volumetric performance            |                               |                               |                                   |                             |
| Energy density (battery pack)     | 330 Wh L-1                    | 400 Wh L <sup>-1</sup>        | $400 \ Wh \ L^{-1}$               | -                           |
| Power density (FC system)         | -                             | -                             | $800~WL^{-1}$                     | -                           |
| Hydrogen storage volume           | -                             | -                             | 0.050 kg H2 (L stora              | $(ge)^{-I}$ -               |
| Cargo volume capacity (500 km)    | $110  m^3  [b]$               | $110  m^3  [b]$               | $111 \ m^3 [b]$                   | 112 m <sup>3</sup> [b]      |
| Durability                        | 6,700 cycles                  | 3,000 cycles                  | 30,000 h                          | 25,000 h                    |
| Number of powertrain investments  | 1 [b]                         | <i>1</i> [b]                  | 1 [b]                             | 1 [b]                       |
| during truck life (500 km) [-]    |                               |                               | . ,                               | . ,                         |
| Cost                              |                               |                               |                                   |                             |
| Battery cost (pack)               | 70 \$ kWh <sup>-1</sup>       | 80 \$ kWh <sup>-1</sup>       | 80 \$ kWh <sup>-1</sup>           | -                           |
| FC cost (system)                  | _                             | =                             | 60 \$ kW <sup>-1</sup>            | _                           |
| Hydrogen storage cost             | _                             | _                             | $266 \ \ (kg \ H_2)^{-1}$         | _                           |
| Engine cost                       | 19 \$ kW <sup>-1</sup>        | 19 \$ kW <sup>-1</sup>        | 19 \$ kW <sup>-1</sup>            | 122 \$ kW <sup>-1</sup>     |
| Charging power (nominal)          | 350 kW                        | 350 kW                        |                                   |                             |
| Energy market (optimistic)        |                               |                               |                                   |                             |
| Electricity charging price        | 0.1 \$ kWh <sup>-1</sup>      | 0.1 \$ kWh <sup>-1</sup>      | _                                 | _                           |
| Hydrogen fueling price            | - Ψ W 11 W                    | - W 10 11 12                  | 4.3 \$ kg <sup>-1</sup>           | _                           |
| Diesel price                      | _                             | _                             | y ng                              | 0.85 \$ L <sup>-1</sup>     |
| Energy consumption (500 km)       |                               |                               |                                   | υ.υυ ψ <u>L</u>             |
| Volume-constrained transportation | 0.97 kWh km <sup>-1</sup> [b] | 0.95 kWh km <sup>-1</sup> [b] | 0.04 kg km <sup>-1</sup> [b]      | 0.30 L km <sup>-1</sup> [b] |
| Weight-constrained transportation | 1.24 kWh km <sup>-1</sup> [b] | 1.24 kWh km <sup>-1</sup> [b] | $0.04 \text{ kg km}^{-1} [b]$     | 0.40 L km <sup>-1</sup> [b] |
| h   selevieted                    | 1.27 KWII KIII [D]            | 1.24 KWH KHI [D]              | o.os kg kiii [b]                  | U.HULKIII [U]               |

b | calculated

Table 6: Literature-based assumptions for future state-of-technology and optimistic energy market prices

Regarding BET energy efficiency improvements, the most effective lever to increase its competitiveness, increases for LFP and High-Nickel batteries can be expected in the future. A battery's energy efficiency describes the fraction of usable energy from the battery compared to the ingoing charge energy [104]. A simplified formula for the energy efficiency ( $\eta_{bat}$ , %) can be stated as [66]:

$$\eta_{bat} = CE \cdot VE$$

where CE represents the Coulombic efficiency (%) and VE the voltage efficiency (%), respectively. CE represents the proportion between the number of electrons returning during discharging (=discharge capacity) compared to the number stored during charging (=charge capacity). For LIBs, the number of reversible electrons is the same as the number of reversible lithium ions. Both, active lithium and electrons can be lost due to solid electrolyte interface (SEI) formation [105], various undesired side reactions at negative and positive electrodes [106], kinetic lithiation hindrances [107,108], and isolation of lithium storing electrode particles [66], leading to a loss of CE [109]. VE, on the other hand, describes

c | Includes additional gross vehicle weight allowance for gross vehicle weight of 0.9 t (equals 2,000 lbs) according to U.S. regulation

the ratio of output voltage to input voltage. In practice, a gap between both can be observed that is known as overpotential and can be attributed to internal resistances during battery operation [110,111]. Strategies to increase CE include prelithiation of electrode materials [112,113], decreasing electrode surface area as in single crystal particle structures [114], particle engineering such as concentration gradient shells [115,116], and inert surface coatings [66,117]. Improvements in VE can be expected by element doping of cathode materials [118,119], the use of high-purity raw materials [120], conductive agents [121], and novel electrolyte additives [106,122]. Improvements of CE and VE both enhance a battery's overall energy efficiency as stated above.

Additional potentials for BETs in long-haul transportation may arise from the prioritized chemistryspecific improvements outlined in Section 4.1. For LFP-based batteries, limited in cell-level energy density by LFP's relatively low specific capacity and discharge voltage [123,124], major improvements can merely be expected on pack-level. Current development efforts focus on packing efficiency increases by cell-to-pack integration, rendering module elements obsolete and thus, increasing packlevel energy density [74]. Based on recently identified potentials [74], pack energy density, pack specific energy and durability are increased. For High-Nickel-based batteries, where material development faces trade-offs between energy content, power capability, durability, safety and cost [65], estimates are relied on a recently introduced Nickel-rich layered cathode material [125] that exhibits a favorable balance of the prioritized properties. By partially replacing Ni with Ta in a Li[Ni<sub>0.91</sub>Co<sub>0.09</sub>]O<sub>2</sub> cathode material, an increased material-level specific energy (>850 Wh kg<sup>-1</sup>) is attainable compared to commercialized High-Nickel materials (~750 Wh kg<sup>-1</sup> [83]) while increasing state-of-charge window and durability. Further, battery cost are expected to drop significantly [126–128] and a differentiated cost development between cell-to-pack-based LFP and High-Nickel batteries based on market expectations for 2030 [129] is assumed. For future FCETs, the achievement of the ultimate targets defined by the U.S. Department of Energy [57,72,73] is assumed.

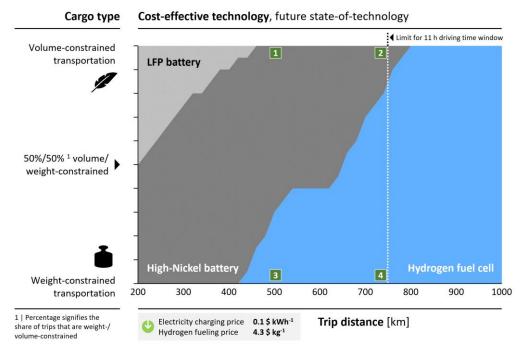



Figure 7: Cost-effective technology choice at potential future technology level under current U.S. regulation & optimistic energy prices

The resulting cost-effective technology choice is presented in Figure 7. Under this scenario, locally CO<sub>2</sub>free technologies are competitive to DTs in all use cases. Relative to the previous scenario, a left-sided shift can be perceived for the segmentation between BETs and FCETs, allowing FCETs to break even at trip distances 200 km shorter in comparison. This is driven by higher reductions in the FCET's operating cost that can be explained by two key points. First, even though energy prices are assumed to decrease by the same proportion (~67%) for both, charging and hydrogen fueling, the relatively higher initial level of the FCET's operating cost is affected by this reduction. Second, a higher improvement in the FCET's energy efficiency assumed, further reducing the operating cost disadvantage of FCETs compared to BETs. When comparing the border between battery chemistries, a shift in the border between High-Nickel and LFP BETs is observable. This shift in favor of High-Nickel-BETs proceeds along both dimensions, decreasing trip distances and higher shares of volume-constrained transportation. This is mainly dedicated to the High-Nickel-BET's state-of-charge window increase and its stronger cost reductions induced by durability and cost. Increases in specific energy and energy density play a minor role due to the similarity of their relative improvements. Under the given assumptions, High-Nickel-BETs will largely displace LFP-BETs in long-haul transportation and will share the long-haul truck market with FCETs. However, competitiveness is sensitive to energy price developments, rendering an exhaustive analysis indispensable. Based on the technological assumptions from Table 6, prices for electricity charging and hydrogen fueling are continuously varied and an impact analysis on the cost-effective technology choice is conducted in four cases. The results for weight- and volume-constrained transports and trip distances of 500 and 750 km, are displayed in Figure 8.

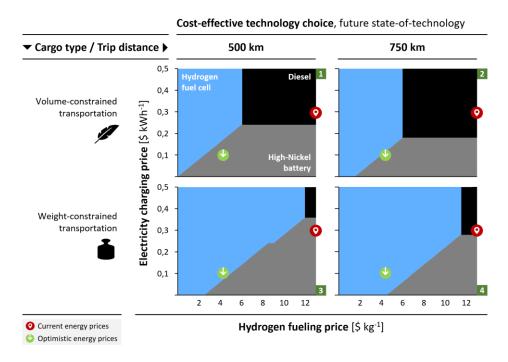



Figure 8: Impact of hydrogen fueling price and electricity charging price developments on cost-effective technology choice in different use cases

Unsurprisingly, high energy prices for alternative powertrains favor DTs in all cases and lower hydrogen fueling prices and electricity charging prices favor FCETs and High-Nickel-BETs, respectively. However, price variations do not alter the cost-effective choice between BET technologies, expressed by a lack of LFP-BET emergence in this analysis. Most strikingly, by considering the size of black segments signifying DT superiority, it can be observed that DTs are more competitive in volume-constrained transportation than in the case of weight-constrained transportation. The first reason is an extra profit opportunity for BET and FCET due to additional weight allowances (+0.9 t under U.S. regulation). The second reason is the BET's vanishing weight drawback due to increased specific energy, and the FCETs increased weight advantage. For volume-based transportation, in contrast, alternative powertrain trucks retain a volume disadvantage to DTs. Another important observation is that future alternative powertrains do not have a clear cost advantage over DTs at current energy price levels (signified by a red pin), underlining the necessity for reduced energy prices in order to decarbonize long-haul transportation. Finally, under optimistic energy price levels (signified by a green arrow), small price variations can imply shifts in the cost-optimal technology. This indicates a challenge for truck

manufacturers in their technology strategy. However, cost gradients at border regimes are rather flat and may allow BETs and FCETs to coexist.

## 4.3 Scenario 3: Future technology, optimistic energy prices, autonomous driving

In the third scenario, results are based on the state-of-technology and optimistic energy prices from the second scenario. However, long-haul transportation is believed to be a prioritized sector captured by autonomous driving due to energy saving potentials [130], productivity improvements [131], labor cost sensitivity, potential driver shortages and traffic safety [132]. In order to assess the impact of this transition, the truck is assumed to drive autonomously and mandatory break and rest times are omitted. Hence, BETs cannot seize those for offsetting profit losses from charging. Yet, cargo needs to be unloaded and loaded between trips, still providing time windows suitable for charging. Since handling times differ between the type of goods transported [132], cargo handling times are assumed to be either 2 h and 4 h between trips. The results for both cases are displayed in Figure 9.

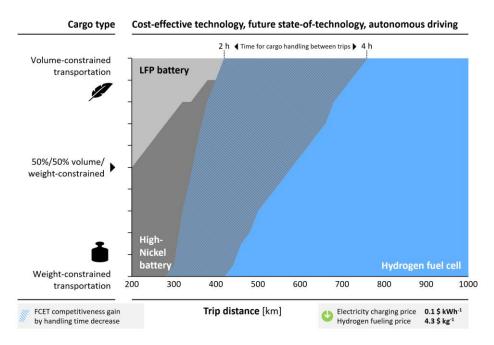



Figure 9: Impact of autonomous driving on cost-effective technology choice depending on different cargo handling times that can be used for BET charging

Compared to both previous scenarios, FCETs are cost-competitive already at shorter trip distances in both cases. This is due to the fact that BETs, without intra-trip breaks, require additional battery energy to complete longer trips, resulting in additional weight and cargo disadvantages. Further, due to

significantly reduced time windows between trips, the FCET's refueling time advantage can show its full effect. Even though automated vehicles are still in an early testing and development phase [133], for completeness, an analysis of the impact of autonomous driving has been conducted for the scenario described in Section 4.1, yielding similar results for the current state-of-technology (see Section 8 in the Appendix).

#### 5. Conclusion

The presented results show that a cost-effective technology choice in long-haul transportation is significantly impacted by the trip distance and the type of cargo carried. A new complexity that haulers and truck manufacturers are facing in their purchase and portfolio decisions, and that has been of lesser importance in a truck market dominated by a single technology. Increased consciousness and understanding of these criteria and, more extensive information exchange between market players is required for a smooth transition of the sector. The analysis for the U.S. market further showed that profit deviations can be pivotal and underlined the need for their integration in future technology decisions.

Regarding short-term competitiveness of DT alternatives, the results indicate that in the U.S., BETs are on the verge of competitiveness at shorter trip distances below 500 km. For longer trip distances, a growing compensation is required to incentivize emission elimination. Therefore, investigating customers' willingness-to-pay and developing suitable pricing models for decarbonized transports is a crucial task for industry and academia.

To increase long-term competitiveness of FCETs and BETs, R&D activities should focus on efficiency improvements. Battery R&D should further concentrate on energy density improvements for LFP-based, and on specific energy and state-of-charge window improvement for High-Nickel-based chemistries. Moderate technology cost increases for FCETs and BETs, and for the latter, compromises regarding battery rate capability may be tolerated if investments in these properties prove successful. However, at current U.S. energy prices, technological development might be insufficient for clear cost advantages over DTs and thus, policy makers and industry need to direct their attention at decreasing electricity charging and hydrogen fueling prices to support their adoption. This includes supporting the availability of affordable green electricity, capital cost reductions for electric chargers, electrolyzers and hydrogen fueling stations, and increasing the equipment utilization along the value chain in order to reduce capital cost allocation per charging or fueling event.

While FCETs, by the nature of their suitability for very long trip distances, today are furthest from competitiveness in the U.S., they currently represent the cost-effective option to decarbonize weight-

constrained transportation with trip distances above 600 km. In addition, the commercialization of autonomous driving and their refueling time advantage may improve their market position considerably.

# **Funding**

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

# **Author contributions**

Lukas Mauler: Writing - original draft & revision, Conceptualization, Methodology, Investigation, Visualization, Data curation, Software, Formal analysis. Laureen Dahrendorf: Writing – original draft & revision, Investigation. Fabian Duffner: Visualization. Martin Winter: Supervision, Validation. Jens Leker: Supervision, Project administration.

## 6. References

- [1] International Energy Agency. Reaching international energy and climate goals requires a sharp acceleration in clean energy innovation. 2020. https://www.iea.org/news/reaching-international-energy-and-climate-goals-requires-a-sharp-acceleration-in-clean-energy-innovation (accessed February 10, 2021).
- [2] Milovanoff A, Posen ID, MacLean HL. Electrification of light-duty vehicle fleet alone will not meet mitigation targets. Nat Clim Chang 2020;10:1102–7. https://doi.org/10.1038/s41558-020-00921-7.
- [3] International Council on Clean Transportation. Transitioning to zero-emission heavy-duty freight vehicles 2017. https://theicct.org/sites/default/files/publications/Zero-emission-freight-trucks\_ICCT-white-paper\_26092017\_vF.pdf (accessed February 10, 2021).
- [4] Eberle C, Smith MT. Heavy vehicle mass reduction utilizing polymer composites 2003. http://www.temp.speautomotive.com/SPEA\_CD/SPEA2003/pdf/c04.pdf (accessed February 10, 2021).
- [5] Börjesson M, Johansson M, Kågeson P. The economics of electric roads. Transp Res Part C Emerg Technol 2021;125:102990. https://doi.org/10.1016/j.trc.2021.102990.
- [6] Hao H, Geng Y, Tate JE, Liu F, Chen K, Sun X, et al. Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment. Nat Commun 2019;10:5398. https://doi.org/10.1038/s41467-019-13400-1.
- [7] International Energy Agency. ETP Clean Energy Technology Guide 2020. https://www.iea.org/articles/etp-clean-energy-technology-guide (accessed February 10, 2021).
- [8] Kaur M, Pal K. Review on hydrogen storage materials and methods from an electrochemical viewpoint. J Energy Storage 2019;23:234–49. https://doi.org/10.1016/j.est.2019.03.020.
- [9] Liu Z, Song Z. Dynamic charging infrastructure deployment for plug-in hybrid electric trucks. Transp Res Part C Emerg Technol 2018;95:748–72. https://doi.org/10.1016/j.trc.2018.08.011.
- [10] Çabukoglu E, Georges G, Küng L, Pareschi G, Boulouchos K. Battery electric propulsion: An option for heavy-duty vehicles? Results from a Swiss case-study. Transp Res Part C Emerg Technol 2018;88:107–23. https://doi.org/10.1016/j.trc.2018.01.013.
- [11] Napoli G, Polimeni A, Micari S, Dispenza G, Antonucci V. Optimal allocation of electric vehicle charging stations in a highway network: Part 2. The Italian case study. J Energy Storage 2019;26:101015. https://doi.org/10.1016/j.est.2019.101015.
- [12] Napoli G, Polimeni A, Micari S, Andaloro L, Antonucci V. Optimal allocation of electric vehicle charging stations in a highway network: Part 1. Methodology and test application. J Energy Storage 2020;27:101102. https://doi.org/10.1016/j.est.2019.101102.
- [13] Clean Energy Wire. Climate targets force trucks into race to clean up transport 2021. https://www.cleanenergywire.org/news/climate-targets-force-trucks-race-clean-transport (accessed March 8, 2021).
- [14] He X, Wang F, Wallington TJ, Shen W, Melaina MW, Kim HC, et al. Well-to-wheels emissions, costs, and feedstock potentials for light-duty hydrogen fuel cell vehicles in China in 2017 and 2030. Renew Sustain Energy Rev 2021;137:110477. https://doi.org/10.1016/j.rser.2020.110477.

- [15] Davis SJ, Lewis NS, Shaner M, Aggarwal S, Arent D, Azevedo IL, et al. Net-zero emissions energy systems. Science 2018;360:1–9. https://doi.org/10.1126/science.aas9793.
- [16] Morrison G, Stevens J, Joseck F. Relative economic competitiveness of light-duty battery electric and fuel cell electric vehicles. Transp Res Part C Emerg Technol 2018;87:183–96. https://doi.org/10.1016/j.trc.2018.01.005.
- [17] Bain. Total Cost of Ownership Is Most Important to Europe's Truck Buyers 2018. https://www.bain.com/insights/total-cost-of-ownership-is-most-important-to-europes-truck-buyers-snap-chart/ (accessed February 20, 2021).
- [18] Zubi G, Dufo-López R, Carvalho M, Pasaoglu G. The lithium-ion battery: State of the art and future perspectives. Renew Sustain Energy Rev 2018;89:292–308. https://doi.org/10.1016/j.rser.2018.03.002.
- [19] Olmos J, Gandiaga I, Saez-de-Ibarra A, Larrea X, Nieva T, Aizpuru I. Modelling the cycling degradation of Li-ion batteries: Chemistry influenced stress factors. J Energy Storage 2021;40:102765. https://doi.org/10.1016/j.est.2021.102765.
- [20] Sripad S, Viswanathan V. Performance Metrics Required of Next-Generation Batteries to Make a Practical Electric Semi Truck. ACS Energy Lett 2017;2:1669–73. https://doi.org/10.1021/acsenergylett.7b00432.
- [21] Sripad S, Viswanathan V. Quantifying the Economic Case for Electric Semi-Trucks. ACS Energy Lett 2019;4:149–55. https://doi.org/10.1021/acsenergylett.8b02146.
- [22] Nykvist B, Olsson O. The feasibility of heavy battery electric trucks. Joule 2021;5:901–13. https://doi.org/10.1016/j.joule.2021.03.007.
- [23] McKinnon A. Should the maximum length and weight of trucks be increased? A review of European research. Proc. 13th Int. Symp. Logist. Integr. Glob. Supply Chain, Nottingham University Business School; 2008, p. 590.
- [24] U.S. Department of Transportation. FHWA Comprehensive truck size and weight study. 2000.
- [25] U.S. Department of Energy. Medium- and Heavy-Duty Vehicle Electrification. 2019.
- [26] U.S. Department of Transportation. Summary of Hours-of-Service Regulations 2021. https://www.fmcsa.dot.gov/regulations/hours-service/summary-hours-service-regulations#:~:text=Drivers must take a 30,combination of these taken consecutively). (accessed February 24, 2021).
- [27] Wolff S, Fries M, Lienkamp M. Technoecological analysis of energy carriers for long-haul transportation. J Ind Ecol 2020;24:165–77. https://doi.org/10.1111/jiec.12937.
- [28] Liimatainen H, van Vliet O, Aplyn D. The potential of electric trucks An international commodity-level analysis. Appl Energy 2019;236:804–14. https://doi.org/10.1016/j.apenergy.2018.12.017.
- [29] Tanco M, Cat L, Garat S. A break-even analysis for battery electric trucks in Latin America. J Clean Prod 2019;228:1354–67. https://doi.org/10.1016/j.jclepro.2019.04.168.
- [30] Earl T, Mathieu L, Cornelis S, Kenny S, Ambel Calco C, Nix J. Analysis of long haul battery electric trucks in EU. In: Environment EF for T and, editor., Graz: 8th Commercial Vehicle Workshop; 2018.
- [31] Mareev I, Becker J, Sauer D. Battery Dimensioning and Life Cycle Costs Analysis for a Heavy-Duty Truck Considering the Requirements of Long-Haul Transportation. Energies

- 2017;11:55. https://doi.org/10.3390/en11010055.
- [32] Sen B, Ercan T, Tatari O. Does a battery-electric truck make a difference? Life cycle emissions, costs, and externality analysis of alternative fuel-powered Class 8 heavy-duty trucks in the United States. J Clean Prod 2017;141:110–21. https://doi.org/10.1016/j.jclepro.2016.09.046.
- [33] Zhao H, Burke A, Zhu L. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications. EVS27 Int. Batter. Hybrid Fuel Cell Electr. Veh. Symp., Barcelona: Institute of Transportation Studies, University of California, Davis; 2013.
- [34] Tesla Motors Inc. Impact Report 2020 2021. https://www.tesla.com/ns\_videos/2020-tesla-impact-report.pdf (accessed November 19, 2021).
- [35] BYD. BYD Company website n.d. https://en.byd.com/wp-content/uploads/2018/07/8tt\_redesign6-23-18.pdf (accessed November 23, 2021).
- [36] BYD. BYD introduces next generation electric trucks at ACT Expo 2021. https://en.byd.com/news/byd-introduces-next-generation-electric-trucks-at-act-expo/ (accessed November 23, 2021).
- [37] Freightliner. Freightliner eCascadia Specs & Resources 2021. https://freightliner.com/trucks/ecascadia/ (accessed March 8, 2021).
- [38] Daimler AG. Daimler Trucks presents technology strategy for electrification 2021. https://media.daimler.com/marsMediaSite/de/instance/ko.xhtml?oid=47453560&ls=L2RlL2luc 3RhbmNlL2tvLnhodG1sP29pZD00NzQ2OTUyMiZyZWxJZD02MDgyOSZmcm9tT2lkPTQ3 NDY5NTIyJmJvcmRlcnM9dHJ1ZSZyZXN1bHRJbmZvVHlwZUlkPTQwNjI2JnZpZXdUeX BlPWxpc3Qmc29ydERlZmluaXRpb249UFVCTE (accessed March 8, 2021).
- [39] Daimler AG. Fuel-cell truck Start of testing of the new GenH2 Truck prototype 2021. https://www.daimler.com/innovation/drive-systems/hydrogen/start-of-testing-genh2-truck-prototype.html (accessed November 23, 2021).
- [40] Mercedes-Benz. eActros and Services n.d. https://www.mercedes-benz-trucks.com/de\_DE/emobility/world/our-offer/eactros-and-services.html (accessed November 23, 2021).
- [41] Nikola Motors. Nikola details North American fuel-cell vehicle program 2021. https://nikolamotor.com/press\_releases/nikola-details-north-american-fuel-cell-vehicle-program-112 (accessed March 8, 2021).
- [42] Nikola Motors. Investing in a cleaner future 2020. https://d32st474bx6q5f.cloudfront.net/nikolamotor/uploads/investor/presentation/presentation\_file/1/NikolaInvestorPresentation3-3-2020v4.pdf (accessed March 8, 2021).
- [43] Volvo Trucks. Specifications VNR Electric Series n.d. https://www.volvotrucks.us/trucks/vnr-electric/specifications/ (accessed November 23, 2021).
- [44] Hyundai Hydrogen Mobility. Hyundai Xcient Fuel Cell 2021. https://hyundai-hm.com/en/unser-truck/ (accessed March 8, 2021).
- [45] Siemens Mobility GmbH. Abschlussbericht ELANO. 2020.
- [46] DAF Trucks. DAF CF Electric 2021. https://www.daftrucks.de/de-de/lkw/alternative-kraftstoffe-und-antriebsstrange/batteriebetriebene-elektrofahrzeuge/daf-cf-electric (accessed

- March 8, 2021).
- [47] Futuricum. Designwerk öffnet seine Tore und präsentiert elektrischen 40-Tonnen Sattelschlepper 2019. https://www.futuricum.com/40-tonnen-elektrolastwagen-futuricum-semi-40e/ (accessed March 8, 2021).
- [48] Futuricum. Futuricum Semi 40E Electric Truck 2021. https://www.futuricum.com/wp-content/uploads/Factsheet\_Semi40E\_Futuricum\_Sattelzug\_EN.pdf (accessed March 8, 2021).
- [49] Peterbilt. Peterbilt model 579EV now available for customer orders 2020. https://www.peterbilt.com/about/news-events/news-releases/peterbilt-model-579EV-now-available-for-customer-orders (accessed March 8, 2021).
- [50] Peterbilt. Peterbilt electric heavy trucks n.d. https://excellence-peterbilt.com/en/new-trucks/electric-heavy-trucks/ (accessed November 23, 2021).
- [51] Freightwaves. Hino, Toyota bringing Class 8 fuel-cell truck to North America next year 2020. https://www.freightwaves.com/news/hino-toyota-bringing-class-8-fuel-cell-truck-to-north-america-next-year (accessed March 8, 2021).
- [52] Hino. 2020 Hino XL8 2020. https://www.hino.com/assets/hino\_xl8\_2020.pdf (accessed March 8, 2021).
- [53] XOS Inc. XOS Investor Presentation February 2021 2021. https://xostrucks.com/docs/Xos-PIPE-Deck-022121.pdf (accessed March 8, 2021).
- [54] TT News. Thor Trucks to Launch New Entry in Battery-Electric Class 8 Market 2018. https://www.ttnews.com/articles/thor-trucks-launch-new-entry-battery-electric-class-8-market (accessed March 8, 2021).
- [55] Reuters. Navistar to collaborate with GM, others on hydrogen fuel-cell commercial trucks 2021. https://www.reuters.com/article/us-navistar-intl-gm-fuel-cell-idUSKBN29W1R3 (accessed March 8, 2021).
- [56] Buchanan JM. Opportunity Cost. World Econ., London: Palgrave Macmillan UK; 1991, p. 520–5.
- [57] U.S. Department of Energy. Hydrogen Class 8 Long Haul Truck Targets. 2019.
- [58] National Renewable Energy Laboratory. Market Segmentation Analysis of Medium and Heavy Duty Trucks with a Fuel Cell Emphasis. 2019.
- [59] The International Council on Clean Transportation. Setting the Stage for Regulation of Heavy-Duty Vehicle Fuel Economy & GHG Emissions. 2009.
- [60] U.S. Bureau of Transportation Statistics. Average Freight Revenue per Ton-Mile 2020. https://www.bts.gov/content/average-freight-revenue-ton-mile (accessed February 22, 2021).
- [61] National Research Council. Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles. The National Academies; 2010.
- [62] CleanTechnica. Estimated Charging Curve Tesla Model 3 Long Range 2019. https://cleantechnica.com/2019/03/08/supercharger-v3-shocking-power-smart-strategy-by-tesla-charts/ (accessed March 8, 2021).
- [63] Farhad S, Nazari A. Introducing the energy efficiency map of lithium-ion batteries. Int J Energy Res 2019;43:931–44. https://doi.org/10.1002/er.4332.
- [64] Preger Y, Barkholtz HM, Fresquez A, Campbell DL, Juba BW, Romàn-Kustas J, et al.

- Degradation of Commercial Lithium-Ion Cells as a Function of Chemistry and Cycling Conditions. J Electrochem Soc 2020;167:120532. https://doi.org/10.1149/1945-7111/abae37.
- [65] Li W, Erickson EM, Manthiram A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat Energy 2020;5:26–34. https://doi.org/10.1038/s41560-019-0513-0.
- [66] Meister P, Jia H, Li J, Kloepsch R, Winter M, Placke T. Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency. Chem Mater 2016;28:7203–17. https://doi.org/10.1021/acs.chemmater.6b02895.
- [67] Ma S, Lin M, Lin T-E, Lan T, Liao X, Maréchal F, et al. Fuel cell-battery hybrid systems for mobility and off-grid applications: A review. Renew Sustain Energy Rev 2021;135:110119. https://doi.org/10.1016/j.rser.2020.110119.
- [68] Schmidt B. Tesla Model 3 order page update hints at China-made electric car. ThedrivenIo 2021. https://thedriven.io/2021/01/16/tesla-model-3-order-page-update-hints-at-china-made-version/ (accessed March 8, 2021).
- [69] Lima P. Comparison of different EV batteries in 2020 (update) 2020. https://pushevs.com/2020/04/04/comparison-of-different-ev-batteries-in-2020/ (accessed March 8, 2021).
- [70] Kane M. China: Tesla Approved To Produce Model 3 With LFP Batteries 2020. https://insideevs.com/news/428286/china-tesla-produce-model3-lfp-batteries/ (accessed March 8, 2021).
- [71] Cutting cobalt. Nat Energy 2020;5:825–825. https://doi.org/10.1038/s41560-020-00731-3.
- [72] U.S. Department of Energy. DOE Technical Targets for Fuel Cell Systems and Stacks for Transportation Applications 2021. https://www.energy.gov/eere/fuelcells/doe-technical-targets-fuel-cell-systems-and-stacks-transportation-applications (accessed March 9, 2021).
- [73] U.S. Department of Energy. DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles 2021. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboardhydrogen-storage-light-duty-vehicles (accessed March 9, 2021).
- [74] Yang X-G, Liu T, Wang C-Y. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat Energy 2021;6:176–85. https://doi.org/10.1038/s41560-020-00757-7.
- [75] Li J, Manthiram A. A Comprehensive Analysis of the Interphasial and Structural Evolution over Long-Term Cycling of Ultrahigh-Nickel Cathodes in Lithium-Ion Batteries. Adv Energy Mater 2019;9:1902731. https://doi.org/10.1002/aenm.201902731.
- [76] U.S. Department of Energy. DOE Hydrogen and Fuel Cells program report 2017. 2018.
- [77] Bloomberg New Energy Finance. Battery Pack Prices Cited Below \$100/kWh for the First Time in 2020, While Market Average Sits at \$137/kWh 2020. https://about.bnef.com/blog/battery-pack-prices-cited-below-100-kwh-for-the-first-time-in-2020-while-market-average-sits-at-137-kwh/ (accessed March 8, 2021).
- [78] James BD. 2019 DOE Hydrogen and Fuel Cells Program Review Presentation. 2019.
- [79] InsideEVs.com. 150 kW Tesla Supercharger V2: How Much Faster Is It? 2019. https://insideevs.com/news/347898/video-150-kw-tesla-supercharger-v2-faster/ (accessed March 8, 2021).
- [80] Tesla Motor Inc. Tesla Supercharger Database 2021. https://www.tesla.com/supercharger

- (accessed March 8, 2021).
- [81] California Fuel Cell Partnership. California Fuel Cell Partnership Cost to Refill 2021. https://cafcp.org/content/cost-refill (accessed March 9, 2021).
- [82] U.S. Energy Information Administration. Gasoline and Diesel Fuel Update 2021. https://www.eia.gov/petroleum/gasdiesel/ (accessed February 22, 2021).
- [83] Schmuch R, Wagner R, Hörpel G, Placke T, Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy 2018;3:267–78. https://doi.org/10.1038/s41560-018-0107-2.
- [84] Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat Energy 2021;6:123–34. https://doi.org/10.1038/s41560-020-00748-8.
- [85] Wegmann R, Döge V, Sauer DU. Assessing the potential of an electric vehicle hybrid battery system comprising solid-state lithium metal polymer high energy and lithium-ion high power batteries. J Energy Storage 2018;18:175–84. https://doi.org/10.1016/j.est.2018.05.001.
- [86] Ma S, Jiang M, Tao P, Song C, Wu J, Wang J, et al. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog Nat Sci Mater Int 2018;28:653–66. https://doi.org/10.1016/j.pnsc.2018.11.002.
- [87] Song Z, Pan Y, Chen H, Zhang T. Effects of temperature on the performance of fuel cell hybrid electric vehicles: A review. Appl Energy 2021;302:117572. https://doi.org/10.1016/j.apenergy.2021.117572.
- [88] Pocard N. Fuel Cell Price to Drop 70-80% as Production Volume Scales. Ballard 2020. https://blog.ballard.com/fuel-cell-price-drop (accessed November 17, 2021).
- [89] McKinsey & Company. Building better batteries: Insights on chemistry and design from China 2021. https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/building-better-batteries-insights-on-chemistry-and-design-from-china (accessed November 17, 2021).
- [90] Hydrogen Council, McKinsey & Company. Hydrogen Insights: A perspective on hydrogen investment, market development and cost competitiveness. 2021.
- [91] Electrek. How much does it cost to charge a Tesla? 2021. https://electrek.co/2021/10/27/how-much-does-it-cost-to-charge-a-tesla/ (accessed November 26, 2021).
- [92] U.S. Energy Information Administration. Annual Energy Outlook 2021 2021. https://www.eia.gov/outlooks/aeo/ (accessed November 26, 2021).
- [93] Kasnatscheew J, Evertz M, Streipert B, Wagner R, Nowak S, Cekic Laskovic I, et al. Improving cycle life of layered lithium transition metal oxide (Li M O 2) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions. J Power Sources 2017;359:458–67. https://doi.org/10.1016/j.jpowsour.2017.05.092.
- [94] Kasnatscheew J, Placke T, Streipert B, Rothermel S, Wagner R, Meister P, et al. A Tutorial into Practical Capacity and Mass Balancing of Lithium Ion Batteries. J Electrochem Soc 2017;164:A2479–86. https://doi.org/10.1149/2.0961712jes.
- [95] Luo Y, Jiao K. Cold start of proton exchange membrane fuel cell. Prog Energy Combust Sci 2018;64:29–61. https://doi.org/10.1016/j.pecs.2017.10.003.
- [96] Lohse-Busch H, Stutenberg K, Duoba M, Liu X, Elgowainy A, Wang M, et al. Automotive fuel cell stack and system efficiency and fuel consumption based on vehicle testing on a chassis

- dynamometer at minus 18 °C to positive 35 °C temperatures. Int J Hydrogen Energy 2020;45:861–72. https://doi.org/10.1016/j.ijhydene.2019.10.150.
- [97] Lin R, Zhu Y, Ni M, Jiang Z, Lou D, Han L, et al. Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start. Appl Energy 2019;241:420–32. https://doi.org/10.1016/j.apenergy.2019.03.091.
- [98] Jaguemont J, Van Mierlo J. A comprehensive review of future thermal management systems for battery-electrified vehicles. J Energy Storage 2020;31:101551. https://doi.org/10.1016/j.est.2020.101551.
- [99] Shi J, Ehteshami N, Ma J, Zhang H, Liu H, Zhang X, et al. Improving the graphite/electrolyte interface in lithium-ion battery for fast charging and low temperature operation: Fluorosulfonyl isocyanate as electrolyte additive. J Power Sources 2019;429:67–74. https://doi.org/10.1016/j.jpowsour.2019.04.113.
- [100] Kim J, Adiraju VAK, Chae OB, Lucht BL. Lithium Bis(trimethylsilyl) Phosphate as an Electrolyte Additive to Improve the Low-Temperature Performance for LiNi 0.8 Co 0.1 Mn 0.1 O 2 /Graphite Cells. J Electrochem Soc 2021;168:080538. https://doi.org/10.1149/1945-7111/ac1b00.
- [101] Zhu C, Lv W, Chen J, Ou C, Zhang Q, Fu H, et al. Butyl acrylate (BA) and ethylene carbonate (EC) electrolyte additives for low-temperature performance of lithium ion batteries. J Power Sources 2020;476:228697. https://doi.org/10.1016/j.jpowsour.2020.228697.
- [102] Xie X, Wang R, Jiao K, Zhang G, Zhou J, Du Q. Investigation of the effect of micro-porous layer on PEM fuel cell cold start operation. Renew Energy 2018;117:125–34. https://doi.org/10.1016/j.renene.2017.10.039.
- [103] Liu Y, Zhu Y, Cui Y. Challenges and opportunities towards fast-charging battery materials. Nat Energy 2019;4:540–50. https://doi.org/10.1038/s41560-019-0405-3.
- [104] Kang J, Yan F, Zhang P, Du C. A novel way to calculate energy efficiency for rechargeable batteries. J Power Sources 2012;206:310–4. https://doi.org/10.1016/j.jpowsour.2012.01.105.
- [105] Winter M. The Solid Electrolyte Interphase The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries. Zeitschrift Für Phys Chemie 2009;223:1395–406. https://doi.org/10.1524/zpch.2009.6086.
- [106] Xiao J, Li Q, Bi Y, Cai M, Dunn B, Glossmann T, et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat Energy 2020;5:561–8. https://doi.org/10.1038/s41560-020-0648-z.
- [107] Kasnatscheew J, Evertz M, Kloepsch R, Streipert B, Wagner R, Cekic Laskovic I, et al. Learning from Electrochemical Data: Simple Evaluation and Classification of LiMO 2 -type-based Positive Electrodes for Li-Ion Batteries. Energy Technol 2017;5:1670–9. https://doi.org/10.1002/ente.201700068.
- [108] Vicente N, Haro M, Cíntora-Juárez D, Pérez-Vicente C, Tirado JL, Ahmad S, et al. LiFePO 4 particle conductive composite strategies for improving cathode rate capability. Electrochim Acta 2015;163:323–9. https://doi.org/10.1016/j.electacta.2015.02.148.
- [109] Holtstiege F, Wilken A, Winter M, Placke T. Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries. Phys Chem Chem Phys 2017;19:25905–18. https://doi.org/10.1039/C7CP05405J.
- [110] Kasnatscheew J, Rodehorst U, Streipert B, Wiemers-Meyer S, Jakelski R, Wagner R, et al.

- Learning from Overpotentials in Lithium Ion Batteries: A Case Study on the LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) Cathode. J Electrochem Soc 2016;163:A2943–50. https://doi.org/10.1149/2.0461614jes.
- [111] Eftekhari A. Energy efficiency: a critically important but neglected factor in battery research. Sustain Energy Fuels 2017;1:2053–60. https://doi.org/10.1039/C7SE00350A.
- [112] Park K-Y, Park I, Kim H, Yoon G, Gwon H, Cho Y, et al. Lithium-excess olivine electrode for lithium rechargeable batteries. Energy Environ Sci 2016;9:2902–15. https://doi.org/10.1039/C6EE01266C.
- [113] Holtstiege F, Bärmann P, Nölle R, Winter M, Placke T. Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges. Batteries 2018;4:4. https://doi.org/10.3390/batteries4010004.
- [114] Klein S, Bärmann P, Fromm O, Borzutzki K, Reiter J, Fan Q, et al. Prospects and limitations of single-crystal cathode materials to overcome cross-talk phenomena in high-voltage lithium ion cells. J Mater Chem A 2021;9:7546–55. https://doi.org/10.1039/D0TA11775G.
- [115] Kim U, Ryu H, Kim J, Mücke R, Kaghazchi P, Yoon CS, et al. Microstructure-Controlled Ni-Rich Cathode Material by Microscale Compositional Partition for Next-Generation Electric Vehicles. Adv Energy Mater 2019;9:1803902. https://doi.org/10.1002/aenm.201803902.
- [116] Lipson AL, Ross BJ, Durham JL, Liu D, LeResche M, Fister TT, et al. Stabilizing NMC 811 Li-Ion Battery Cathode through a Rapid Coprecipitation Process. ACS Appl Energy Mater 2021;4:1972–7. https://doi.org/10.1021/acsaem.0c03112.
- [117] Wang J, Sun X. Understanding and recent development of carbon coating on LiFePO 4 cathode materials for lithium-ion batteries. Energy Environ Sci 2012;5:5163–85. https://doi.org/10.1039/C1EE01263K.
- [118] Gao Y, Park J, Liang X. Comprehensive Study of Al- and Zr-Modified LiNi 0.8 Mn 0.1 Co 0.1 O 2 through Synergy of Coating and Doping. ACS Appl Energy Mater 2020;3:8978–87. https://doi.org/10.1021/acsaem.0c01420.
- [119] Zou L, Li J, Liu Z, Wang G, Manthiram A, Wang C. Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability. Nat Commun 2019;10:3447. https://doi.org/10.1038/s41467-019-11299-2.
- [120] Zhao N, Li Y, Zhao X, Zhi X, Liang G. Effect of particle size and purity on the low temperature electrochemical performance of LiFePO4/C cathode material. J Alloys Compd 2016;683:123–32. https://doi.org/10.1016/j.jallcom.2016.04.070.
- [121] Lin HB, Huang WZ, Rong HB, Hu JN, Mai SW, Xing LD, et al. Surface natures of conductive carbon materials and their contributions to charge/discharge performance of cathodes for lithium ion batteries. J Power Sources 2015;287:276–82. https://doi.org/10.1016/j.jpowsour.2015.04.077.
- [122] Park S, Jeong SY, Lee TK, Park MW, Lim HY, Sung J, et al. Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries. Nat Commun 2021;12:838. https://doi.org/10.1038/s41467-021-21106-6.
- [123] Andre D, Kim S-J, Lamp P, Lux SF, Maglia F, Paschos O, et al. Future generations of cathode materials: an automotive industry perspective. J Mater Chem A 2015;3:6709–32. https://doi.org/10.1039/C5TA00361J.
- [124] Arinicheva Y, Wolff M, Lobe S, Dellen C, Fattakhova-Rohlfing D, Guillon O, et al. Ceramics

- for electrochemical storage. Adv. Ceram. Energy Convers. Storage. First Edit, Elsevier; 2019, p. 549–709.
- [125] Kim U-H, Park G-T, Son B-K, Nam GW, Liu J, Kuo L-Y, et al. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nat Energy 2020;5:860–9. https://doi.org/10.1038/s41560-020-00693-6.
- [126] Mauler L, Duffner F, Leker J. Economies of scale in battery cell manufacturing: The impact of material and process innovations. Appl Energy 2021;286:116499. https://doi.org/10.1016/j.apenergy.2021.116499.
- [127] Duffner F, Mauler L, Wentker M, Leker J, Winter M. Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs. Int J Prod Econ 2021;232:107982. https://doi.org/10.1016/j.ijpe.2020.107982.
- [128] Mauler L, Duffner F, Zeier WG, Leker J. Battery cost forecasting: a review of methods and results with an outlook to 2050. Energy Environ Sci 2021. https://doi.org/10.1039/D1EE01530C.
- [129] Roskill. Study on future demand and supply security of nickel for electric vehicle batteries. Luxembourg: 2021. https://doi.org/10.2760/212807.
- [130] Vahidi A, Sciarretta A. Energy saving potentials of connected and automated vehicles. Transp Res Part C Emerg Technol 2018;95:822–43. https://doi.org/10.1016/j.trc.2018.09.001.
- [131] Ghandriz T, Jacobson B, Laine L, Hellgren J. Impact of automated driving systems on road freight transport and electrified propulsion of heavy vehicles. Transp Res Part C Emerg Technol 2020;115:102610. https://doi.org/10.1016/j.trc.2020.102610.
- [132] Engholm A, Pernestål A, Kristoffersson I. Cost Analysis of Driverless Truck Operations. Transp Res Rec J Transp Res Board 2020;2674:511–24. https://doi.org/10.1177/0361198120930228.
- [133] Mohan A, Sripad S, Vaishnav P, Viswanathan V. Trade-offs between automation and light vehicle electrification. Nat Energy 2020;5:543–9. https://doi.org/10.1038/s41560-020-0644-3.