000904884 001__ 904884
000904884 005__ 20220131120440.0
000904884 0247_ $$2doi$$a10.1016/j.nicl.2021.102899
000904884 0247_ $$2Handle$$a2128/30185
000904884 0247_ $$2altmetric$$aaltmetric:117917738
000904884 0247_ $$2pmid$$apmid:34911202
000904884 0247_ $$2WOS$$aWOS:000726978300003
000904884 037__ $$aFZJ-2022-00200
000904884 082__ $$a610
000904884 1001_ $$0P:(DE-HGF)0$$aSteidel, Kenan$$b0$$eCorresponding author
000904884 245__ $$aDopaminergic pathways and resting-state functional connectivity in Parkinson’s disease with freezing of gait
000904884 260__ $$a[Amsterdam u.a.]$$bElsevier$$c2021
000904884 3367_ $$2DRIVER$$aarticle
000904884 3367_ $$2DataCite$$aOutput Types/Journal article
000904884 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643011290_26592
000904884 3367_ $$2BibTeX$$aARTICLE
000904884 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904884 3367_ $$00$$2EndNote$$aJournal Article
000904884 520__ $$aFreezing of gait is a common phenomenon of advanced Parkinson’s disease. Besides locomotor function per se, a role of cognitive deficits has been suggested. Limited evidence of associated dopaminergic deficits points to caudatal denervation. Further, altered functional connectivity within resting-state networks with importance for cognitive functions has been described in freezers. A potential pathophysiological link between both imaging findings has not yet been addressed. The current study sought to investigate the association between dopaminergic pathway dysintegrity and functional dysconnectivity in relation to FOG severity and cognitive performance in a well-characterized PD cohort undergoing high-resolution 6-[18F]fluoro-L-Dopa PET and functional MRI. The freezing of gait questionnaire was applied to categorize patients (n = 59) into freezers and non-freezers. A voxel-wise group comparison of 6-[18F]fluoro-L-Dopa PET scans with focus on striatum was performed between both well-matched and neuropsychologically characterized patient groups. Seed-to-voxel resting-state functional connectivity maps of the resulting dopamine depleted structures and dopaminergic midbrain regions were created and compared between both groups. For a direct between-group comparison of dopaminergic pathway integrity, a molecular connectivity approach was conducted on 6-[18F]fluoro-L-Dopa scans. With respect to striatal regions, freezers showed significant dopaminergic deficits in the left caudate nucleus, which exhibited altered functional connectivity with regions of the visual network. Regarding midbrain structures, the bilateral ventral tegmental area showed altered functional coupling to regions of the default mode network. An explorative examination of the integrity of dopaminergic pathways by molecular connectivity analysis revealed freezing-associated impairments in mesolimbic and mesocortical pathways. This study represents the first characterization of a link between dopaminergic pathway dysintegrity and altered functional connectivity in Parkinson’s disease with freezing of gait and hints at a specific involvement of striatocortical and mesocorticolimbic pathways in freezers.
000904884 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000904884 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904884 7001_ $$0P:(DE-HGF)0$$aRuppert, Marina C.$$b1
000904884 7001_ $$0P:(DE-HGF)0$$aPalaghia, Irina$$b2
000904884 7001_ $$0P:(DE-HGF)0$$aGreuel, Andrea$$b3
000904884 7001_ $$0P:(DE-Juel1)188400$$aTahmasian, Masoud$$b4
000904884 7001_ $$0P:(DE-HGF)0$$aMaier, Franziska$$b5
000904884 7001_ $$0P:(DE-Juel1)184744$$aHammes, Jochen$$b6
000904884 7001_ $$0P:(DE-Juel1)169110$$avan Eimeren, Thilo$$b7
000904884 7001_ $$0P:(DE-HGF)0$$aTimmermann, Lars$$b8
000904884 7001_ $$0P:(DE-HGF)0$$aTittgemeyer, Marc$$b9
000904884 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, Alexander$$b10
000904884 7001_ $$0P:(DE-HGF)0$$aPedrosa, David$$b11
000904884 7001_ $$0P:(DE-HGF)0$$aEggers, Carsten$$b12
000904884 773__ $$0PERI:(DE-600)2701571-3$$a10.1016/j.nicl.2021.102899$$gVol. 32, p. 102899 -$$p102899 -$$tNeuroImage: Clinical$$v32$$x2213-1582$$y2021
000904884 8564_ $$uhttps://juser.fz-juelich.de/record/904884/files/1-s2.0-S2213158221003430-main.pdf$$yOpenAccess
000904884 8564_ $$uhttps://juser.fz-juelich.de/record/904884/files/TP10_FOG_postprint.pdf$$yOpenAccess
000904884 909CO $$ooai:juser.fz-juelich.de:904884$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188400$$aForschungszentrum Jülich$$b4$$kFZJ
000904884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b10$$kFZJ
000904884 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000904884 9141_ $$y2021
000904884 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000904884 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000904884 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000904884 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904884 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE-CLIN : 2019$$d2021-02-02
000904884 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000904884 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000904884 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-02-02
000904884 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000904884 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000904884 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000904884 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904884 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000904884 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000904884 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000904884 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02
000904884 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000904884 920__ $$lyes
000904884 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000904884 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x1
000904884 980__ $$ajournal
000904884 980__ $$aVDB
000904884 980__ $$aI:(DE-Juel1)INM-7-20090406
000904884 980__ $$aI:(DE-Juel1)INM-2-20090406
000904884 980__ $$aUNRESTRICTED
000904884 9801_ $$aFullTexts