000904885 001__ 904885
000904885 005__ 20230522125346.0
000904885 0247_ $$2doi$$a10.1016/j.ymben.2021.12.006
000904885 0247_ $$2ISSN$$a1096-7176
000904885 0247_ $$2ISSN$$a1096-7184
000904885 0247_ $$2Handle$$a2128/31034
000904885 0247_ $$2altmetric$$aaltmetric:119558680
000904885 0247_ $$2WOS$$aWOS:000793785100004
000904885 037__ $$aFZJ-2022-00201
000904885 082__ $$a610
000904885 1001_ $$00000-0003-4420-5609$$aTiso, Till$$b0
000904885 245__ $$aThe metabolic potential of plastics as biotechnological carbon sources – Review and targets for the future
000904885 260__ $$aOrlando, Fla.$$bAcademic Press$$c2022
000904885 3367_ $$2DRIVER$$aarticle
000904885 3367_ $$2DataCite$$aOutput Types/Journal article
000904885 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1649851729_29798
000904885 3367_ $$2BibTeX$$aARTICLE
000904885 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904885 3367_ $$00$$2EndNote$$aJournal Article
000904885 500__ $$aBiotechnologie 1
000904885 520__ $$aThe plastic crisis requires drastic measures, especially for the plastics’ end-of-life. Mixed plastic fractions are currently difficult to recycle, but microbial metabolism might open new pathways. With new technologies for degradation of plastics to oligo- and monomers, these carbon sources can be used in biotechnology for the upcycling of plastic waste to valuable products, such as bioplastics and biosurfactants. We briefly summarize well-known monomer degradation pathways and computed their theoretical yields for industrially interesting products. With this information in hand, we calculated replacement scenarios of existing fossil-based synthesis routes for the same products. Thereby, we highlight fossil-based products for which plastic monomers might be attractive alternative carbon sources. Notably, not the highest yield of product on substrate of the biochemical route, but rather the (in-)efficiency of the petrochemical routes (i.e., carbon, energy use) determines the potential of biochemical plastic upcycling. Our results might serve as a guide for future metabolic engineering efforts towards a sustainable plastic economy.
000904885 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000904885 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904885 7001_ $$0P:(DE-HGF)0$$aWinter, Benedikt$$b1
000904885 7001_ $$00000-0003-3876-1350$$aWei, Ren$$b2
000904885 7001_ $$0P:(DE-HGF)0$$aHee, Johann$$b3
000904885 7001_ $$0P:(DE-Juel1)184781$$ade Witt, Jan$$b4$$ufzj
000904885 7001_ $$0P:(DE-Juel1)176653$$aWierckx, Nick$$b5
000904885 7001_ $$0P:(DE-HGF)0$$aQuicker, Peter$$b6
000904885 7001_ $$00000-0003-0685-2696$$aBornscheuer, Uwe T.$$b7
000904885 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b8
000904885 7001_ $$0P:(DE-HGF)0$$aNogales, Juan$$b9
000904885 7001_ $$00000-0003-0961-4976$$aBlank, Lars M.$$b10$$eCorresponding author
000904885 773__ $$0PERI:(DE-600)1471017-1$$a10.1016/j.ymben.2021.12.006$$gp. S1096717621001920$$p77-98$$tMetabolic engineering$$v71$$x1096-7176$$y2022
000904885 8564_ $$uhttps://juser.fz-juelich.de/record/904885/files/Tiso%20et%20al%202022%20Metab%20Eng%2071%2077-98.pdf$$yOpenAccess
000904885 909CO $$ooai:juser.fz-juelich.de:904885$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184781$$aForschungszentrum Jülich$$b4$$kFZJ
000904885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176653$$aForschungszentrum Jülich$$b5$$kFZJ
000904885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b8$$kFZJ
000904885 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000904885 9141_ $$y2022
000904885 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000904885 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-28
000904885 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000904885 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904885 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904885 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-16$$wger
000904885 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETAB ENG : 2021$$d2022-11-16
000904885 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000904885 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000904885 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-16
000904885 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-16
000904885 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000904885 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000904885 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-16
000904885 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-16
000904885 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMETAB ENG : 2021$$d2022-11-16
000904885 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000904885 980__ $$ajournal
000904885 980__ $$aVDB
000904885 980__ $$aUNRESTRICTED
000904885 980__ $$aI:(DE-Juel1)IBG-1-20101118
000904885 9801_ $$aFullTexts