001     904905
005     20220131120441.0
024 7 _ |a 10.1103/PhysRevLett.126.094802
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 1092-0145
|2 ISSN
024 7 _ |a 2128/29971
|2 Handle
024 7 _ |a altmetric:101668536
|2 altmetric
024 7 _ |a 33750150
|2 pmid
024 7 _ |a WOS:000627618200013
|2 WOS
037 _ _ |a FZJ-2022-00221
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Tavabi, Amir H.
|0 P:(DE-Juel1)157886
|b 0
245 _ _ |a Experimental Demonstration of an Electrostatic Orbital Angular Momentum Sorter for Electron Beams
260 _ _ |a College Park, Md.
|c 2021
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641539220_11384
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The component of orbital angular momentum (OAM) in the propagation direction is one of the fundamental quantities of an electron wave function that describes its rotational symmetry and spatial chirality. Here, we demonstrate experimentally an electrostatic sorter that can be used to analyze the OAM states of electron beams in a transmission electron microscope. The device achieves postselection or sorting of OAM states after electron-material interactions, thereby allowing the study of new material properties such as the magnetic states of atoms. The required electron-optical configuration is achieved by using microelectromechanical systems technology and focused ion beam milling to control the electron phase electrostatically with a lateral resolution of 50 nm. An OAM resolution of 1.5ℏ is realized in tests on controlled electron vortex beams, with the perspective of reaching an optimal OAM resolution of 1ℏ in the near future.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a Q-SORT - QUANTUM SORTER (766970)
|0 G:(EU-Grant)766970
|c 766970
|f H2020-FETOPEN-1-2016-2017
|x 1
536 _ _ |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)
|0 G:(EU-Grant)823717
|c 823717
|f H2020-INFRAIA-2018-1
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rosi, Paolo
|0 0000-0002-5789-6763
|b 1
700 1 _ |a Rotunno, Enzo
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Roncaglia, Alberto
|0 0000-0001-9819-7603
|b 3
700 1 _ |a Belsito, Luca
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Frabboni, Stefano
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pozzi, Giulio
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gazzadi, Gian Carlo
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Lu, Peng-Han
|0 P:(DE-Juel1)167381
|b 8
|u fzj
700 1 _ |a Nijland, Robert
|0 P:(DE-Juel1)188279
|b 9
|u fzj
700 1 _ |a Ghosh, Moumita
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Tiemeijer, Peter
|0 0000-0003-4872-1598
|b 11
700 1 _ |a Karimi, Ebrahim
|0 0000-0002-8168-7304
|b 12
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 13
700 1 _ |a Grillo, Vincenzo
|0 P:(DE-HGF)0
|b 14
|e Corresponding author
773 _ _ |a 10.1103/PhysRevLett.126.094802
|g Vol. 126, no. 9, p. 094802
|0 PERI:(DE-600)1472655-5
|n 9
|p 094802
|t Physical review letters
|v 126
|y 2021
|x 0031-9007
856 4 _ |u https://juser.fz-juelich.de/record/904905/files/PhysRevLett.126.094802.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904905
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157886
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)167381
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)188279
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV LETT : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV LETT : 2019
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21