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Compositional ordering in relaxor ferroelectric Pb(BB′)O3: Nearest neighbor approach
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Relaxor ferroelectrics, which form a peculiar class of functional materials, are often composed of complex
perovskites Pb(BB′)O3, as represented by Pb(Mg1/3Nb2/3)O3 where the compositional ordering of Mg and Nb is
believed to be essential to its relaxor properties. In this work, analysis using a first-principles-based model shows
that, while the electrostatic interactions are important, the nearest neighbor assumption, which was used for
metallic alloys, can be adopted to understand the compositional ordering in Pb(BB′)O3. Numerical simulations
with the Kawasaki Monte Carlo method can model the experimentally observed compositional ordering by
maximizing the number of the unlike B-B′ pairs (or the Bethe’s parameter), which is the overriding factor that
determines the ordering. Subtle points of configuration energy degeneracy are also discussed, which explains the
partial disorder inherently present in such systems.
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Complex perovskites of general formulas A(BB′)O3 are
actively sought after to achieve specific properties such as
relaxor ferroelectricity with high dielectric constant and ex-
cellent electromechanical response. One of the canonical
relaxor ferroelectric materials is Pb(Mg1/3Nb2/3)O3 (PMN)
[1–4]. The ordering (disordering) of the cations on the B
site has crucial influence on their properties. For instance,
it has been argued that fully ordered perovskites cannot be
true relaxors [5,6] and a change in the compositional order
parameter can change dramatically the ferroelectric or relaxor
properties [7,8]. The ordering/disordering problem has been
studied intensively in the last few decades [9–11], but re-
mains a puzzling issue. Some recent studies include the use
of transmission electron microscopy (TEM) to show gradient
ordering in PMN [12] and the examination of the relaxor
behavior in ordered PMN thin films [13]. However, the reason
why PMN possesses alternating (111) planes is obscure to
many researchers, especially when the Coulomb interaction
between the B and B′ ions is emphasized [11,14,15]. In con-
trast, the nearest neighbor approach established in this work
provides a clear-cut explanation of this unique phenomenon
associated with relaxor physics.

The determination of complex perovskite structure is a
challenging task. Experimentally, the compositional ordering
can be determined with x-ray, neutron, or electron diffraction
[16]. While it is generally realized that the more differ-
ent the size and charge of B and B′ are, the more likely
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A(BB′)O3 has an ordered structure, a quantitative understand-
ing of the compositional ordering is not fully achieved yet.
For instance, despite some degrees of disorder, it is found
that a great portion of PMN (and similar systems) has the
rocksalt configuration where one layer of Nb alternates with
another layer of mixed Nb and Mg along the 〈111〉 direction
and there exist the βI and βII sublattices [12,13]. Interest-
ingly, many other systems with the 1:1 cation ratio, such
as Pb(Sc1/2Nb1/2)O3, also have this feature [17], giving rise
to the universal βI and βII sublattices [16]. This unique
phenomenon strongly indicates that an underlying principle
exists, which can quantitatively and simply explain the special
compositional structure. Revealing such a principle requires
a computationally tractable model based on first-principle
calculations.

If we strip the Pb and O atoms from the system, the re-
mainder of Pb(BB′)O3 is nothing but a binary alloy, which
has been investigated using the nearest neighbor assumption
(NNA) by Bragg, Williams, and Bethe [18,19]. Given the
similarity, it is sensible to consider the NNA in the modeling
of Pb(BB′)O3. In fact, Welberry built models to simulate scat-
tering data [20], based on the NNA without considering the
long-range Coulomb interactions. Bokov et al showed that the
temperature dependence of the compositional order parame-
ter, s, of Pb(Yb0.5Nb0.5)O3, derived based on the NNA, can
well fit the experimental data [9]. On the other hand, since B
and B′ (e.g., Mg2+ and Nb5+ in PMN) have different valence
states, their Coulomb interactions cannot be ignored [11]. Can
such different approaches both be applied to understand the
ordering in complex perovskites? Here, we show that both
perspectives are needed to model Pb(BB′)O3 accurately and
predict its compositional ordering. We find that, while the
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FIG. 1. Two configurations with different distribution of the B
and B′ ions are shown in (a) and (b). The Pb ions have been omitted
for clarity.

electrostatic energy is strong, the NNA can be adopted, which
implies that maximizing the number of unlike pairs (B-B′)
explains the compositional ordering.

We use both the NNA and the Coulomb energy [11] to
model the total energy:

Etotal = E0 + ENNA + Ecc, (1)

where E0 is the background energy independent of compo-
sitional ordering, and ENNA = ε̃BB′NBB′ + ε̃BBNBB + ε̃B′B′NB′B′

is the NNA energy arising when two unit cells are put as
nearest neighbors (NNs). Omitting Pb and O, there are two
types of like pairs (B-B, B′-B′) and one type of unlike pair
(B-B′) (see Fig. 1), and their numbers are denoted by NBB,
NB′B′ , and NBB′ , respectively. ε̃ is the “bare” short-range energy
between pairs; later we will also define εBB′ , which includes
the Coulomb contribution from neighboring B and B′ ions.
Ecc = ∑

i j Qi j�qi�q j is the Coulomb energy, where Qi j is
the Ewald Coulomb matrix element connecting the ith and
jth charges [21] and Δqi is the effective charge of the B or
B′ ion on site i. In a Pb(B1/3B′

2/3)O3 compound, to ensure the
electric neutrality, we assume that the effective charge of B is
�qB = −2q0 and �qB′ = q0 for B′.

The numbers of pairs are not independent since [18] NBB =
3NB − 0.5NBB′ and NB′B′ = 3NB′ − 0.5NBB′ , only one of them
being the independent variable (here we choose NBB′). There-
fore, the total energy is

Etotal = E ′
0 +

∑
i j

Qi j�qi�q j + ε′
BB′NBB′ , (2)

where ε′
BB′ defines the NN interaction and the second

Coulomb term has been used in the electrostatic model [11].
The parameters in Eq. (2) can be obtained by fitting ab

initio results. We use SUPERCELL [22] to generate a series
of 3 × 3 × 2 PMN and Pb(Cd1/3Nb2/3)O3 (PCN) supercells
with their lattice constants set to be the experimental values
(aPMN = 4.040 Å and aPCN = 4.138 Å), and perform ab initio
computation to obtain their energies, which are then used
to extract the parameters by fitting. The SUPERCELL auto-
matically generates symmetry nonequivalent configurations,
resulting in 178 different 3 × 3 × 2 supercells with energies
distributed over a wide range. All ab initio calculations are
performed with GPAW [23] using plane waves (PWs) with a
cutoff energy of 750 eV, a 3 × 3 × 4 Brillouin-zone sampling
grid [24], and the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional [25]. The fitting uses the least-square
method from SCIPY [26].
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FIG. 2. The fitting results (red dots) are compared to the GPAW
calculation results (black dots) for PMN (a) and PCN (b). The ac-
curacy of the fitting is demonstrated for PMN (c) and PCN (d) by
plotting the fitting energy against the GPAW energy. In (e) and (f),
the order parameters of 〈SR〉 and the Bethe’s parameter σ versus
temperature are shown, while (g) and (h) show the results after the
melting temperature is used to refine the theory.

Figures 1(a) and 1(b) show the configurations with the
lowest and highest energies, respectively. Table II shows the
parameters for PMN and PCN obtained by the fitting as shown
in Figs. 2(a) and 2(b). Figures 2(c) and 2(d) compare the
GPAW results to its fitting, showing that the model of Eq. (2)
is adequate. The parameters shown in Table I are not sensitive
to the lattice parameter. For instance, the same calculation for
PMN with a lattice constant of 4.08 Å (the extrapolated high-
temperature value) results in similar values for the parameters.
We note that fitting results (not shown here) with only the
long-range energy or the short-range energy for PMN are
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TABLE I. Fitting results for PCN and PMN using a 3 × 3 × 2
supercell. Note that εBB′ is not a direct fitting parameter, as discussed
in the text.

Parameter E ′
0 (eV) q0 (|e|) ε ′

BB′ (eV) εBB′ (eV)

PCN −616.713 0.1672 −0.19043 −0.52512
PMN −648.309 0.2763 −0.28393 −1.22052

reduced in accuracy, indicating the importance of including
both the long-range and short-range interactions.

Having obtained the parameters, we use the Monte Carlo
(MC) Kawasaki algorithm [27] to numerically obtain the
compositional ordering of PMN and PCN on a 12 × 12 × 12
supercell (1728 unit cells), and gradually cool down the sys-
tem from 10 000 to 100 K with a step of 100 K. At each
temperature, we sweep the system 20 000 times, and in each
sweep, we try to exchange each B (B′) with a randomly se-
lected B′ (B) ion, and decide whether or not to accept the
exchange according to the energy change. In total, at each
temperature, 20 000 × 1728 attempted exchanges are made.
A typical simulation result for PCN (or PMN) is shown in
Fig. 3(a) where two types of atom columns can be seen along
the 〈110〉 direction. The alternating structure becomes obvious
when the columns are shown differently according to whether
they contain all Nb ions or a mixture with more than two of
the minority ion (Cd for PCN, or Mg for PMN) in Fig. 3(b),
which constitute the βI and βII B-site sublattices [12,13].

Given the special 〈110〉 columns and the (111) planes,
we calculate the long-range order parameter, i.e., the R-point
averaged sum:

SR =
∑

i

σi(−1)ix+iy+iz ,

where σ = 1 for Nb and σ = −1 for Cd (or Mg), and ix, iy,
and iz are the x, y, and z coordinates of the ith site. For each
temperature, we collect many snapshots of the configuration
and calculate SR for each of them, which are then averaged
to obtain 〈SR〉. Figure 2(e) shows that 〈SR〉 undergoes sudden
changes at 6000 and 4000 K for PMN and PCN, respectively,
which signifies a compositional order-disorder phase transi-
tion.

It is commonly believed that the major driving forces re-
sponsible for compositional ordering in perovskites arise from
the differences in the valence and size of the mixed ions
[28] so that the order-disorder transition temperature should
be higher in those Pb(B1/3B′

2/3)O3 perovskites in which the
ionic radius difference, ΔR = |RB − RB′ |, is larger. However,
it was also suggested that, in contrast, the difference in ionic
sizes is not a significant factor [29]. Our calculations agree
with this suggestion. Indeed, given RNb = 0.64 Å, RMg =
0.72 Å, and RCd = 0.95 Å [30], ΔR = 0.36 Å for PCN is
significantly larger than ΔR = 0.08 Å for PMN, while the
transition temperature is significantly smaller [Fig. 2(e)].

We now discuss the underlying principle that generates the
typical configurations reported for PMN and other similar re-
laxor ferroelectrics [31,32] from the energy point of view. The
Coulomb energy in Eq. (2) can be split into two parts: the NN
part and the rest. For the NN part, there are only three types:
Q01ΔqBΔqB, Q01ΔqB′ΔqB′ , and Q01ΔqBΔqB′ , where Q01 is

FIG. 3. (a) Some 〈110〉 columns that contain only Nb (grey) form
a series of (111) planes, which alternate with planes containing both
Cd (or Mg) (blue) and Nb. (b) Projection along one [110] direction
shows alternating columns as type I (NCd � 3) or type II (NCd < 3)
lattices. Two low-energy configurations, which are denoted as 1:1
(c) and 1:2 (d), both have special (111) planes.

the Ewald matrix element for the NN Coulomb interaction
[21]. Given the fact that only NBB′ is independent, the total
energy can be converted to

Etotal =E ′′
0 +

′∑
i j

Qi j�qi�q j + εBB′NBB′ , (3)

where ′ in the
∑

indicates a sum without NN and εBB′ =
ε′

BB′ − 9Q01q2
0 and its value is shown in Table I for the 12 ×

12 × 12 supercell. We have verified that for PMN and PCN
the Coulomb energy excluding the NN part is smaller than the
others including both the NN Coulomb interaction and the
ENNA term (the former is about 10% of the latter for the low-
in-energy configurations).

The above analysis demonstrates the significance of the
NNA when the second term in Eq. (3), which is relatively
small, is omitted. It reveals an interesting situation where the
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TABLE II. The energies of PMN corresponding to the two con-
figurations shown in Figs. 3(c) and 3(d), where E0 = −35.1392 eV
is the same for both.

Configuration 1:2 1:1

NN (eV) −1.8848 −1.8848
Coulomb energy excluding NN (eV) 0.0369 0.0547
Sum (eV) −1.8479 −1.8301

NN interaction [the last term in Eq. (3)] can still dominate the
energy even when the Coulomb interaction is included. In his
seminal work on metallic alloys [33], Bethe introduced an or-
der parameter σ = [q − q(rand)]/[q(max) − q(rand)] where
q = NBB′/N is the fraction of the unlike pairs among all the
NN pairs. For perfect and random order, q has the values
q(max) and q(rand), respectively. For Pb(B1/3B′

2/3)O3, we
have q(max) = 2/3 and q(rand) = 4/9, and the order pa-
rameter becomes σ = 9q/2 − 2 [34]. The virtue of using the
Bethe’s parameter is that no prior information regarding or-
dering is needed, unlike SR, to obtain the relation between the
ordering parameter and temperature [see Fig. 2(f)].

It is easy to prove that minimizing the formation energy in
Eq. (3) requires maximizing σ , which is achieved by implying
the NNA. Configurations with maximal σ indeed appear in
our MC simulations with two examples shown in Figs. 3(c)
and 3(d) for a 6 × 6 × 6 supercell, both of which have σ = 1
(q = 2/3) with 432 B-B′ pairs, although the 1:2 configuration
in Fig. 3(d) is extremely rare to be seen. Locally or globally
maximizing the Bethe’s parameter thus constitutes a principle
to understand the compositional ordering in Pb(B1/3B′

2/3)O3,
consistent with the experimental findings that the special
〈110〉 columns or (111) planes are often observed [12,14].
The parallel between complex oxides (e.g., PMN and PCN)
and binary metallic alloys regarding compositional ordering
is remarkable.

The implication of NNA also reveals the configuration
degeneracy which in turn explains why perfect ordering is
often hard to achieve in Pb(B1/3B′

2/3)O3. For instance, the
two configurations shown in Figs. 3(c) and 3(d) have exactly
the same energy (see Table II) if only the NN interaction is
included. However, comparing to a simple 1:1 binary metallic
alloy, Pb(B1/3B′

2/3)O3 can exhibit more variants in terms of
configuration as they can (i) exchange B and B′ cations in the
βII columns, and (ii) form domain boundaries [12], due to the
antiphase (or “out-of-step”) domains [18] without changing
the number of unlike pairs. The degenerate configurations
under NNA can only be distinguished by considering the
Coulomb interaction beyond the NNs, which is smaller as
demonstrated in Table II. Interestingly, the results in Table II
also indicate that, if only the Coulomb interaction is included,
the 1:2 structure will be preferred because of its lower energy.

It is worth noting that the non-NN Coulomb energy has
an opposite trend to the NN energies, implying these two
types of energies compete with each other. As a matter of
fact, our simulations show that if the Coulomb interactions
beyond the NN are removed, the order-disorder transition
temperature will increase to 24 000 and 10 000 K for PMN
and PCN, respectively, indicating that non-NN Coulomb in-

C
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nt

Energy (eV/UnitCell)

FIG. 4. Energy configuration statistics of PMN for 3 × 3 × 2
supercells. There are a total of 18 564 different configurations (in-
cluding symmetrically equivalent ones), and the structures with the
lowest energy only make up a small fraction.

teraction prevents the ordered configurations from forming.
This can be understood by the fact that the first and second
NN Coulomb interactions both favor unlike pairs, effectively
working against each other and making the ordering more
difficult.

We note that the lowest-in-energy configuration is not of-
ten found in experiments (or in our simulations) due to the
entropy related to the number of equivalent configurations.
For instance, there are only a few equivalent states for the
1:2 configuration with a perfect long-range order as shown
in Fig. 3(d), while there are many more for the 1:1 configu-
ration as shown in Fig. 3(c). By enumerating every possible
configuration, we plot the distribution of configurations for
the 3 × 3 × 2 supercell (see Fig. 4). Even with such a small
supercell, the number of configurations at the lowest energy
can be much smaller than at a higher energy, indicating that
the entropy is also a factor determining the final configuration,
which explains why partially disordered configurations are
often observed in PMN.

Moreover, we have studied a few other well-known relaxor
ferroelectrics, and find that their εBB′ are all negative. Such
results are not accidental because it is a necessary condition to
form the complex perovskites with mixed occupancy on the B
site. It will be interesting to find ion pairs with positive εBB′ .
Such pairs, if they exist, may be used (e.g., by substitution)
to tune the ionic distribution or configuration in a complex
perovskite.

Figures 2(e) and 2(f) show that the the predicted order-
disorder transition temperature is quite high, which is most
likely due to the fact that the ab initio calculations (with GPAW

in our case) can only provide 0 K results, not taking into
account the kinetic energy of ions. At a finite temperature, the
energy spreading [see Figs. 2(a) and 2(b)] could be smaller,
which will lead to smaller fitting parameters and a lower
transition temperature. We can resolve this issue phenomeno-
logically by employing the melting temperature as a reference
and predict the order-disorder transition temperature.
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In order to include the influence of finite temperature, we
focus on the high-temperature end and use the Dulong-Petit
law [35] to determine the binding energy at a finite tempera-
ture T by

EB(T ) = E0 − NkBT, (4)

where E0 is the energy at 0 K calculated by GPAW and NkBT
is the kinetic energy. Since the actual degree of freedom
contributing to the kinetic energy is not reliably known, the
parameter N needs to be determined using additional infor-
mation. Equation (4) shows that the binding energy decreases
with temperature; at the melting temperature Tm, the material
will break down and thus EB(Tm) � 0, leading to

EB(T ) = E0

(
1 − T

Tm

)
. (5)

Given this additional constraint set by the melting tempera-
ture, it is natural that the fitting parameters in Eq. (2) will
scale with the temperature as q0(T ) = q0

√
1 − T/Tm and

ε′
BB′ (T ) = ε′

BB′ (1 − T/Tm). In essence, such variations of the
fitting parameters are the results of the energy landscape (with
respect to the 178 alloy configurations) changing with temper-
ature.

With the temperature-dependent parameters, we again per-
formed MC simulations for PMN and PCN with the melting
temperatures of 1600 [36] and 1350 K, respectively. Fig-
ures 2(g) and 2(h) show how the R-point averaged sum and
the Bethe’s parameter σ change with the temperature. It can
be seen that the order-disorder phase transitions of PMN
and PCN occur around 1200 and 900 K, respectively, con-
sistent with the known values from experiments [14,32,37].
Interestingly, Fig. 2(g) shows a sharp phase transition [unlike
Fig. 2(e)], which is consistent with Ref. [19], while Fig. 2(h)
shows that σ occupies the entire interval from zero to one,
indicating that the system has continuously become more
ordered (at least locally) as the temperature decreases from
the melting point.

The approximation employed in Eq. (4) results from two
considerations: (i) At high temperatures (∼1000 K) the Ein-
stein or the Debye model [38] converges to the Dulong-Petit
law since the Debye temperature of PMN is known to be
less than 600 K [39–41], and that of PCN is expected to
be even lower according to the Lindemann melting formula
[42]. (ii) After the order-disorder phase transition at a rather
high temperature [see Fig. 2(g)], no matter which equation is
used for the kinetic energy, the system remains ordered, not
affecting the predicted transition temperature. This approach
indeed results in a satisfactory prediction of the order-disorder
transition temperature.

In summary, using first-principles-based numerical simula-
tions, we have shown that NNA is a key factor accounting for
the compositional ordering in complex perovskite Pb(BB′)O3

even when the electrostatic energy is included. The analysis
reveals that NNA is responsible for the formation of the βI

and βII sublattices seen in PMN and PCN. In addition, we
have found that the configuration degeneracy with respect
to energy contributes to the partial order/disorder observed
in Pb(B1/3B′

2/3)O3. We hope that our study helps achieve a
better understanding of the ordering in relaxor ferroelectrics
of complex perovskite structure.
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