000904964 001__ 904964
000904964 005__ 20230123110549.0
000904964 0247_ $$2doi$$a10.3389/fpls.2021.767254
000904964 0247_ $$2Handle$$a2128/30008
000904964 0247_ $$2altmetric$$aaltmetric:120228173
000904964 0247_ $$2pmid$$a35058946
000904964 0247_ $$2WOS$$aWOS:000745216100001
000904964 037__ $$aFZJ-2022-00278
000904964 041__ $$aEnglish
000904964 082__ $$a570
000904964 1001_ $$0P:(DE-Juel1)129475$$aJablonowski, Nicolai D.$$b0$$ufzj
000904964 245__ $$aMicrowave Assisted Pretreatment of Szarvasi (Agropyron elongatum) Biomass to Enhance Enzymatic Saccharification and Direct Glucose Production
000904964 260__ $$aLausanne$$bFrontiers Media$$c2022
000904964 3367_ $$2DRIVER$$aarticle
000904964 3367_ $$2DataCite$$aOutput Types/Journal article
000904964 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641801534_14748
000904964 3367_ $$2BibTeX$$aARTICLE
000904964 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904964 3367_ $$00$$2EndNote$$aJournal Article
000904964 520__ $$aBiomass from perennial plants can be considered a carbon-neutral renewable resource. The tall wheatgrass hybrid Szarvasi-1 (Agropyron elongatum, hereafter referred to as “Szarvasi”) belongs to the perennial Poaceae representing a species, which can grow on marginal soils and produce large amounts of biomass. Several conventional and advanced pretreatment methods have been developed to enhance the saccharification efficiency of plant biomass. Advanced pretreatment methods, such as microwave-assisted pretreatment methods are faster and use less energy compared to conventional pretreatment methods. In this study, we investigated the potential of Szarvasi biomass as a biorefinery feedstock. For this purpose, the lignocellulosic structure of Szarvasi biomass was investigated in detail. In addition, microwave-assisted pretreatments were applied to Szarvasi biomass using different reagents including weak acids and alkali. The produced pulp, hydrolysates, and extracted lignin were quantitatively characterized. In particular, the alkali pretreatment significantly enhanced the saccharification efficiency of the pulp 16-fold compared to untreated biomass of Szarvasi. The acid pretreatment directly converted 25% of the cellulose into glucose without the need of enzymatic digestion. In addition, based on lignin compositional and lignin linkage analysis a lignin chemical model structure present in Szarvasi biomass could be established.
000904964 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000904964 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904964 7001_ $$0P:(DE-HGF)0$$aPauly, Markus$$b1
000904964 7001_ $$0P:(DE-HGF)0$$aDama, Murali$$b2$$eCorresponding author
000904964 773__ $$0PERI:(DE-600)2613694-6$$a10.3389/fpls.2021.767254$$gVol. 12, p. 767254$$p767254$$tFrontiers in plant science$$v12$$x1664-462X$$y2022
000904964 8564_ $$uhttps://juser.fz-juelich.de/record/904964/files/Jablonowski_EtAl_2022_Microwave%20Assisted%20Pretreatment%20of%20Szarvasi%20%28Agropyron%20elongatum%29%20Biomass%20to%20Enhance%20Enzymatic%20Saccharification%20and%20Direct%20Glucose%20Production.pdf$$yOpenAccess
000904964 909CO $$ooai:juser.fz-juelich.de:904964$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904964 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129475$$aForschungszentrum Jülich$$b0$$kFZJ
000904964 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000904964 9141_ $$y2022
000904964 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000904964 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-28
000904964 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904964 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000904964 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-28
000904964 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904964 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-28
000904964 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PLANT SCI : 2021$$d2022-11-10
000904964 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-10
000904964 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-10
000904964 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-12T10:38:44Z
000904964 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-12T10:38:44Z
000904964 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-12T10:38:44Z
000904964 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-10
000904964 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-10
000904964 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-10
000904964 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-10
000904964 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT PLANT SCI : 2021$$d2022-11-10
000904964 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000904964 980__ $$ajournal
000904964 980__ $$aVDB
000904964 980__ $$aUNRESTRICTED
000904964 980__ $$aI:(DE-Juel1)IBG-2-20101118
000904964 9801_ $$aFullTexts