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ABSTRACT

In this paper, we present a fast and adaptive correlation guided enhanced sampling method (CORE-MD II). The CORE-MD II technique
relies, in part, on partitioning of the entire pathway into short trajectories that we refer to as instances. The sampling within each instance is
accelerated by adaptive path-dependent metadynamics simulations. The second part of this approach involves kinetic Monte Carlo (kMC)
sampling between the different states that have been accessed during each instance. Through the combination of the partition of the total
simulation into short non-equilibrium simulations and the kMC sampling, the CORE-MD II method is capable of sampling protein folding
without any a priori definitions of reaction pathways and additional parameters. In the validation simulations, we applied the CORE-MD
II on the dialanine peptide and the folding of two peptides: TrpCage and TrpZip2. In a comparison with long time equilibrium Molecular
Dynamics (MD), 1 us replica exchange MD (REMD), and CORE-MD I simulations, we find that the level of convergence of the CORE-MD
II method is improved by a factor of 8.8, while the CORE-MD II method reaches acceleration factors of ~120. In the CORE-MD II simulation
of TrpZip2, we observe the formation of the native state in contrast to the REMD and the CORE-MD I simulations. The method is broadly
applicable for MD simulations and is not restricted to simulations of protein folding or even biomolecules but also applicable to simulations
of protein aggregation, protein signaling, or even materials science simulations.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0063664

I. INTRODUCTION understanding of the underlying molecular processes of protein

folding,'* protein aggregation,”® and protein signaling.” Both

5,6

Molecular Dynamics (MD) and Monte Carlo (MC) simula-
tions are important theoretical tools for the investigation of bio-
logical systems on a molecular level. For the last two decades,
theoretical improvements, the improvement of forcefield para-
meter sets, and a substantial rise of the performance of hard-
ware established MD and MC as methods that are complemen-
tary to experiments. MD and MC strongly contributed to a better

methods play an essential role in the modeling of drug-host interac-
tions,® protein self-assembly,” and protein membrane interactions.'’
Despite the importance of both techniques, the timescales of bio-
logical processes can exceed the accessible computable time-ranges
by many orders of magnitude due to the complexity of the under-
lying energy landscapes. This problem has been tackled through
the improvement of the computer hardware,'' a reduction in the
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complexity through the development of coarse-grained models,'* '*

and algorithmic improvements that raised the performance of MD
and MC.">""

Leaving aside advances based on coarse-grained modeling and
the development of efficient hardware and software, the group of
umbrella sampling methods solves the timescale problem through
projections of the trajectory space to underlying energy landscapes
that contain the dimensionality of specific collective variables. Sev-
eral groups and sub-groups of methods have emerged that belong
to the class of umbrella sampling methods.”””! Prominent mem-
bers of that class are the metadynamics method,”” A-dynamics,****
adaptive bias MD,” the hyperdynamics method,”® conformational
flooding,”” and the local elevation technique.”® Regardless of the
aforementioned classes of methods, techniques that accelerate the
sampling in the trajectory space are adaptive and in most cases do
not contain the need of a priori definitions of reaction coordinates.
This group of methods relies on first-principles conjectures, such as
approximations of the geometric degrees of freedom of a molecule
or propagation methods that coarse-grain fast thermal fluctuations
of a protein. Here, we refer to specific classes of constraint methods,
while the use of constraints is not interpreted as an enhanced sam-
pling in the community, although bonded, non-bonded, and angular
constraints can contribute to 2-15-fold speed-ups of the MD and
MC sampling.””*° More broadly, constraining the internal degrees
of motion will enable even much higher accelerations, such as in
simulations of the Brownian motion of protein complexes or the
extended capture of drug-host interactions.’’ Langevin and Brow-
nian dynamics in combination with constraints contain stochastic
terms in the propagation scheme and can be applied for the sim-
ulation of protein-aggregation phenomena on timescales ranging
from micro- to milli-seconds. Hybrid techniques use a combina-
tion of the stochastic nature of MC with the deterministic prop-
agation in MD and have the potential of further improvements
of the sampling efficiency. Hybrid MC approaches range from the
hybrid MC methodologies**** to hybrid kinetic Monte Carlo/MD
(kMC/MD)** ¥ approaches that apply an event-driven acceleration.
In particular, kMC/MD approaches allow for larger propagations
along the time-axis dependent on the nature of the move, which
has been shown in simulations of protein folding and protein sig-
naling.”” Although the classes, groups, and sub-groups of methods
we discuss here have proven their performance in simulations, a
larger fraction of the methods applies biases or modifications in
the energy space of the system, which leads to the occurrence of
non-equilibrium states and the need to define appropriate reaction
coordinates.’’*! Considerable efforts have been made in recent work
to address the problem of adaptive definitions of collective variables,
most notably using artificial intelligence (AI)-based techniques.**~*¢
The new approaches use projections to the principle components
of the system or generalize the trajectory-dependent variables to a
dimensionless space, which is suitable for supervised machine learn-
ing methods. Other approaches employ the Riemannian geometry
for a suitable transformation of the trajectory space and the identifi-
cation of collective variables. Although many of these approaches
have been deemed successful for the systems to which they have
been applied, the new techniques are mathematically complex, dif-
ficult to implement, or require large amounts of suitable training
data. In contrast to these very complex methods, trajectory space
enhanced sampling methods are based on simple conjectures, which
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resemble an alternative to very complex AI-driven approaches, while
they remain computationally easy to handle and lead to reproducible
results. In a recent work, we developed a correlation-dependent
enhanced sampling method (CORE-MD I)*’ that only depends on
one single energy parameter and does not need a priori defini-
tions of reaction coordinates. The CORE-MD I method relies on
a projection of the complex energy landscape on the dimensionless
space of the path-dependent correlation functions. The CORE-MD I
method accelerates the sampling through the formulation of history-
dependent correlation-dependent bias potentials and an additional
statistical bias, which also depends on the autocorrelation func-
tion of the adaptive paths. We successfully validated the method
on the folding of TrpCage and the conformational landscape of
dialanine.

In this work, we developed and implemented a novel
correlation-dependent MD method (CORE-MD II), which is
parameter-free and does not require an a priori definition of reac-
tion coordinates. Using a kinetic Monte Carlo (kMC) formalism, the
method performs a statistical sampling between configurations that
have been accessed previously. While the CORE-MD I methodology
is based on a correlation-dependent probability, the CORE-MD II
method partitions the simulation into sub-trajectories that we refer
to as instances. In an adaptive way, a correlation-dependent rate is
used as a sampling parameter for the selection of the instances on
the fly. In contrast to CORE-MD I, the CORE-MD II method uses
a path-dependent metadynamics formalism and a statistical bias to
accelerate the MD sampling within each instance. The set of tech-
niques that we apply in the CORE-MD II method allow for a faster
and more accurate sampling of protein folding than in the CORE-
MD I simulations. We validate the CORE-MD II method on the
conformational landscape of dialanine and the folding of two pep-
tides: TrpZip2 and TrpCage.*** In the simulations, we observe a
good agreement with the experiment and long time equilibrium
MD simulations. We find that the novel algorithm is capable of
sampling the systems with a high level of convergence compared
with equilibrium MD data, while the acceleration factors range from
20 to 120.

Il. METHODS

The CORE-MD II method uses a central path-definition and
calculates a path-dependent autocorrelation function of the incre-
ments along the pathway. Using a correlation-dependent path-
definition, a metadynamics algorithm samples the system along
adaptive pathways. The CORE-MD II method partitions the total
trajectory into instances with independent path-definitions and cor-
relations. The states that are obtained after each instance are sam-
pled using a hybrid kinetic Monte Carlo (kMC) algorithm. The
CORE-MD II method can be understood as a non-equilibrium sam-
pling strategy relying on an adaptive rate-dependent selection of
short enhanced MD trajectories. The total trajectory consists then
of a large number of adaptive and path-dependent non-equilibrium
simulations. In these terms, the CORE-MD II method can be inter-
preted as an adaptive rate-dependent state-to-state dynamics sam-
pling method between Markovian states.”’>> The hybrid kinetic
Monte Carlo/MD (kMC/MD) method does not require any a priori
information on reaction coordinates or collective variables and does
not need additional input parameters.
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A. Theory

We start with the definition of the global probability P(x;(t))
that can be defined over N time-slices or sub-trajectories k
with length 7y, which are described by local probability densities

Pr(xi(1)),
P(xi(t)) =1}LT°IJPk(xi(t))’ 1)

where x;(t) stands for the coordinate of an atom with the index i. As
a result, we divide the total trajectory into slices with periods of 7,
where we observe local pathways L; (¢) and local correlation func-
tions C;, (t) (see Fig. 1). In analogy, we express the partition of the
total pathway into instances with the index k,

Li(t) = A}iToi Li (). (2)
k

If we then consider the averaging process of a trajectory-
dependent quantity X(t), the partition into small trajectories allows
for a faster formation of time-averages than the determination of the
expectation value of the complete trajectory, which is linked to the
timescale problem of MD simulations. Therefore, the expectation
value of the complete trajectory can be approximated as

Enhanted Metadynamics &
Correlation-dependent Sampling

L I L I
Instance n Instance m/

FIG. 1. Schematic description of the CORE-MD Il algorithm. The CORE-MD Il
algorithm relies on two components: (1) a local path-dependent accelerated meta-
dynamics sampling and (2) a kinetic Monte Carlo (kMC) sampling in between the
states that are obtained in instances k. (a) Schematic diagram of the local path-
way L; (t) that is calculated from momenta p;(t) and positions Ax;(t), which
defines a correlation function C;, (t). In this graph, the correlation function C;, (t)
is displayed on the left y-axis, while the local pathway L; (f) is displayed on
the right y-axis. The CORE-MD |l formalism uses the correlation function C;, (t)
to define the statistical bias-function A;, (t), the collective variable o; (t) for the
path-dependent metadynamics simulation and the correlation-dependent time-
period 7 (t). (b) Schematic description of the state-to-state dynamics between
the instances n and m using a kinetic Monte Carlo (kMC) algorithm. Depending
on the correlation-dependent rates r (t), transitions are sampled in between the
states that arise in each instance. (The possible backward transition is indicated
by a dashed arrow. The selected kMC-step is indicated by a solid arrow.)
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(X(1)) = X(£)P(xi(1)) %X(t)lZ[Pk(xf(t)), 3)

which states that the partition of the complete trajectory into a finite
number of K sub-trajectories is approximately sufficient for the sam-
pling of the expectation value (X(t)). We define the number of
configurations K by a minimal set of the number of atoms N, in
the system, which guarantees a fast forward propagation. In the fol-
lowing, we introduce the expressions for the fragmented pathway
and the local correlation function. Within each sub-trajectory k, the
local pathway is described by the reduced action L;, (t),

Li (1) = > pi() Axi(t), (4)

<7k

where Ax;(t) = xi(t) — (xi(t)), p;(t) is the momentum, and ¢ is the
time. The local path L;, (¢) is used to define the local autocorrelation
function C;,,"’

e ()~ (L O) W () - L ()
Cult) = 2 XL () = (L (DL ()~ (L ()]

where L; (¢') is determined with a frequency equal to 1 ps™' and
(-- ) denotes the time-average. In our implementation, we define a
period 7 (t) that separates each individual instance k from the pre-
ceding instance [see Fig. 2, where we show an example of the index k
and the correlation function C;, (¢) as a function of time in a CORE-
MD II simulation of dialanine]. The CORE-MD 1II algorithm sam-
ples the system along a correlation-dependent probability between
states with an index k using a kinetic Monte Carlo (kMC) algorithm.
We limit the number of kMC configurations by a minimal set of
the number of atoms N, in the system, which guarantees a fast for-
ward propagation within a small window of possible selections in
each kMC-step. With a frequency of 7; ', we perform a kMC-step
and express a rate r, for each instance k as

(5)

1

(a)

—_~
S

= CORE-MD |
+ CORE-MD I
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FIG. 2. (a) Correlation function C;, (t) from a CORE-MD Il and CORE-MD | sim-
ulation of dialanine as a function of MD-time. (b) Instances k of the CORE-MD ||
simulation as a function of MD-time. The correlation patterns of the CORE-MD |l
technique differ from the CORE-MD | technique because the CORE-MD Il algo-
rithm sub-divides the trajectory into sub-instances k and performs a kinetic Monte
Carlo sampling between the states. The separation of the trajectory into instances
k yields an improvement in the sampling of equilibrium properties with an error that
is 4.2 times lower than in the CORE-MD | simulation of dialanine.
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re(t) = ve eAE(D) (6)

where v is a frequency factor (we apply v = N,7o, where N, is the
number of atoms and 7 is the minimal period equal to 10 ps~’,
which is a relation that connects to the friction terms in the pref-
actors of Kramer’s rate theory”**), AE(t) = Ex(t) — Ex_1(¢), and

E;(t) is the energy for the instance k,

E(#) = Epor, (1) + Vi(1), @)

where Epor, (t) stands for the potential energy in the instance k,

V(1) is the bias potential, and € = 7, where R = 8.314 ¢
T stands for the temperature. We then define the period Tk as

%o and
mo|

(1) = (8

o
re(t)’
which is the timescale for the instance k. We then calculate the
cumulative rates Ry (t) = Z]’;lrj(t) and Ry (1) = Zjlilrj(t) and apply
the kinetic Monte Carlo algorithm’*°>°° for the selection of a con-
figuration k with which a configuration is used for the subsequent
trajectory instance,

Ri_1 (1) < Ry(t) x & < Ri(1), 9)

where ¢ stands for a random number ranging from 0 to 1. The
kMC sampling guides the trajectory between equilibrium configu-
rations of the system, where each instance k resembles a state that
resides close to the equilibrium state. We continue with the descrip-
tion of the second component of the CORE-MD II algorithm that
applies the local biases. (1) At each initialization of a new trajectory-
fragment, the velocities are selected from a random distribution.
(2) In order to accelerate the sampling within each instance, we
apply a history-dependent bias potential V; (¢) that is related to
metadynamics,”” while the history dependency is limited by the
timescale of each instance. We consider the fragmented pathway that
depends on the correlation function and express that the expectation
value of a reaction coordinate (o; (¢)) equals the sum over all local
path-increments of individual instances k,

(0, (1)) ~ ZLik(t)(l + BiCi (1))e P, (10)

where 8, is a normalization factor ranging from 0 to 1. Therefore,
we define a bias potential consisting of an accumulation of Gaussian
functions along a collective variable g;, (¢) that we define through the
correlated path,”’

03, (1) = Ly (1) (1 + BCy (1) )e 4, (1)

which we normalize by the maximal correlated path occurring
within each instance. The history-dependent potential V; (t) is
accumulated with a frequency of 1 ps™,

Vi (t) = —WZ exp{—[oik(t)(sa%(tl)] }, (12)

where W is the height of the Gaussian, which we determine using
= 10kgT 122 ( t) , and do is the width of the Gaussians, which we
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set equal to the width of 2 bins in the histogram (consisting of
100 bins in our implementation). We add the Gaussians to the
history-dependent potential using the well-tempered metadyna-
mics technique through a normalization of the added Gaussians by
the factor exp(-V;, (1) /AT) where we apply AT = 1000 kJ/mol.”®
The correspondmg bias 55 ( o) Vi.(t) is added throughout the sim-

ulation. Finally, we accelerate the sampling within each instance
and apply the statistical bias as described in our recent work
on the CORE-MD algorithm.”” We implemented the correlation-
dependent bias by a factorization with the variable A;, (¢) with which
we scale the gradient of all atoms in the system. The factor A;, () is
described by

N (£) = (14 BCi (£))e P (13)

This statistical bias enhances the decay of the correlation func-
tion and accelerates the access of new states by the system.*’

B. Algorithm

o Calculate the path using expression (4) for each time step
and evaluate the correlation function given in (5).

e Accumulate the history-dependent potential V; (¢) as
described in Eq. (12) and apply the statistical bias from (13).

e With a frequency of 7;', apply the kinetic Monte Carlo
formalism and re-initialize the correlation function:

- Using the kMC formalism described in the expres-
sion (9), select a new configuration and re-initialize a
new sub-trajectory, while the path-dependent quan-
tities and the bias potential V; () are set to values
equal zero. Assign the present configuration to the
array of configurations and determine the rate ry.

C. Simulation parameters and system setup

For the simulations and parts of the trajectory analysis,
we used the GROMACS-4.5.5 simulation package.”” We imple-
mented the CORE-MD II method into the same package. In
all simulations, we used the AMBER99SB forcefield’®' and
the generalized Born implicit solvent model using the Still
algorithm with a continuum dielectric constant equal to 80.%
The electrostatics and van der Waals interactions were treated
using the twin-range cutoff equal to 1.0/1.2 nm with a neigh-
borlist cutoff equal to 1.0 nm. The neighborlist was updated
every integration step. We applied the Nosé-Hoover thermostat
with a coupling time of 77 =1.0 ps and a target temperature
of 300 K. We modeled the starting structures in an extended
conformation using the ribosome code that we downloaded from
http://folding.chemistry.msstate.edu/raj/Manuals/ribosome.html. In
validation simulations, we modeled dialanine (Ace-Ala-NMe),
tryptophan cage minipeptide (TrpCage) (NLYIQWLKDGG-
PSSGRPPPS),” and tryptophan zypper peptide 2 (TrpZip2)
(SWTWENGKWTWKX).* We capped both peptides N- and C-
terminal with an acetyl- and a methyl-group. For the comparison of
the CORE-MD II results, we applied the CORE-MD I algorithm in
simulations of TrpCage, TrpZip2, and dialanine using a parameter
a = 1.0 kJ/mol.*” For the generation of equilibrium MD data, we ran
an equilibrium MD simulation over 2 pus of dialanine and parallel
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tempering replica exchange MD (REMD) simulation of TrpCage
and TrpZip2 over 1 us using 24 replicas in the NVT ensemble
within a temperature range from 300 to 396 K. An exchange of
configurations was attempted every 1000 integration steps in the
conventional REMD simulation. We ran a total simulation time
of 200 ns for dialanine using CORE-MD I/II and simulated the
TrpCage and TrpZip2 minipeptides over 200 ns using the same
algorithms. For the calculation of the root-mean square deviation
of the backbone atoms Ca to the native structure (RMSDca—ca),
we used the NMR-model No. 1 from the protein data bank (PDB)
structure: 112y (TrpCage).”’ In parts, the trajectory analysis was
performed using in-house programs. For the determination of the
free energies AF, we used

AG:—kBTln( P ) (14)

min
where kg is Boltzmann’s constant, T is the temperature, P is the
probability, and Py is the minimal non-zero reference value of the
same function. We determined the level of convergence (AAG) by
the average difference value of the free energies from equilibrium
MD and the CORE-MD I/II simulations. We analyzed the frequency
v of transitions of the ®-angle of dialanine from values lower than
zero to positive values through counting the numbers of transitions
No from negative to positive values and normalizing by the total
number of frames N,
No
V= —.
Nt

We clustered the structures using RMSDcq—ca to the native
structure. We applied an RMSD threshold of ~0.1 nm for the clus-
tering of the structures. For TrpCage, we coarse-grained the total
configuration space into eight different clusters, while we divided
the conformation space of TrpZip2 into seven clusters. We define
the acceleration time by the approximate central processing unit
(CPU)-time that is required to sample the identical free energy par-
tition in relation to the CPU-time in conventional MD and REMD
simulations.

(15)

D. Program

The CORE-MD II simulation code is implemented into the
GROMACS-4.5.5 simulation package. The code is available at
www.github.com/epeter455/.

I1l. RESULTS AND DISCUSSION
A. Simulations of dialanine

We validated the CORE-MD II algorithm on the dialanine sys-
tem and compared our results with long time equilibrium MD and
with results from a CORE-MD 1 simulation. In Fig. 3, we show
the free energy landscapes as a function of dihedral angles ® and
Y (FELo-v) and our results related to the dynamical behavior of
dialanine. In the following, we define the regions along FELo_y
as follows: C7.4 (~180° < @ < —160°, 135° < ¥ < 170°) [panels (1)
and (2)], a (-110° < ® < —60°, =50° < ¥ < 5°) [panel (5)], and C7,«
(40° < ® < 70°, —5° < ¥ < 40°) [panel (4)]. We define the inter-
facial regions C7.; § C7ax [panel (3)] (-20° < @ < 30°, ¥ » 90°),
o § C7ac [panel (6)] (-30° < ® < 30°, ¥~ —80°), and a § C7
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[panel (7)] (-60° < ® < -90°, ¥ ~ —80°). In the FELo_y averaged
over 2 ys equilibrium MD, we find major minima at the C7,4 posi-
tion [(1) and (2)] (-11 to —12 kpT) at the region a (5) (11 to
—12 kpT) and the C7, position (4) (-6 to —8 kzT) [see Fig. 3(a)]. The
histogram of the CORE-MD I simulation is widened at the interfa-
cial regions [(6), (7), and (3)] by ~100 to 200, while C7.; and the
a-positions are approximately identical to the equilibrium MD result
at —11 to —12 kgT [see Figs. 3(e) and 3(g)]. We find a larger devia-
tion from the equilibrium MD result at the C7,, position (4), where
the minimum is widened and the regions for values of ¥ above and
below position (4) are populated with approximately —8 kpT. In the
CORE-MD II result, we find populations at (6), (7), and (3), with
energy values ranging from —11 to —12 kgT. At the C7,4x position
(4), we observe energy values of —6 kpT, which are approximately
equivalent to the equilibrium MD result [see Figs. 3(b) and 3(g)].
We then measured the free energy differences AAGo-w between the
simulations using CORE-MD I/II and the equilibrium MD result. In
a comparison between CORE-MD I and II, we find that the minima
at the C7,4 position (1) and (2) are shifted only in the CORE-MD I
result, where we find a positive shift of ~0.2 kpT [see Figs. 3(c), 3(f),
and 3(g)]. At that position, the CORE-MD II result agrees very well
with equilibrium MD. We observe an identical behavior for the a-
position (5), while we find the largest differences at the interfaces at
(3), (6), and (7), where we observe deviations of up to —3.5ksT in the
CORE-MD I simulation. In contrast, the CORE-MD II result shows
almost no deviation. At the C7,, position (4), we observe that the
CORE-MD I result is up to 0.5-1kpT lower compared with equilib-
rium MD. The CORE-MD II simulation result shows approximately
identical energy values in the sampling of the C7,, position (4). We
then looked at the average deviation in energy (AAGo-vy), where we
find a value of —0.67 kgT for CORE-MD I and —0.16kgT for the
CORE-MD II simulation. We further investigated the comparatively
strong improvement in the CORE-MD II simulation and measured
the autocorrelation function of the ®-angle Co (t) for all simulations
[see Figs. 4(a), 4(b), and 4(g)]. In the equilibrium MD simulation,
the value of Co(t) decays from 1 to a value of 0.7 and resides at
this value up to a lag time of 1 us. The correlation function Co(t)
of the CORE-MD I simulation indicates a less correlated behavior
with average values of Co(t) in the range from 0.6 to 0.65. In con-
trast, the CORE-MD 1II simulation shows a higher ®-correlation,
where Co (t) remains at values ranging from 0.72 to 0.73. This indi-
cates that the CORE-MD II approach enhances correlation effects
within dialanine, in contrast to the CORE-MD 1 technique. If we
consider the average correlation (Co(t)) and compare the different
approaches, the correlation behavior of the CORE-MD II simulation
agrees better with equilibrium MD than the CORE-MD I simula-
tion. CORE-MD 1 yields the highest transition rate of the ®-angle
with v=4x 107* ps_l, while the transition rates for CORE-MD II
reside at ~2 x 107 ps_1 [see Fig. 3(d)]. In a comparison with the
equilibrium MD result, we observe an acceleration factor of ~20
for the CORE-MD II algorithm, while the level of convergence of
the free energy landscapes is 4.2 times higher than the CORE-MD I
algorithm.

In the validation simulations on dialanine, we compared 2
us equilibrium MD with CORE-MD I/II simulations. The CORE-
MD II REMD simulation shows an optimal sampling behavior
with a level of convergence that is 4.2 higher than in the CORE-
MD 1 simulation, while we observe an acceleration factor of ~20.

J. Chem. Phys. 155, 104114 (2021); doi: 10.1063/5.0063664
© Author(s) 2021

155, 104114-5


https://scitation.org/journal/jcp
http://www.github.com/epeter455/

The Journal

of Chemical Physics ARTICLE scitation.org/journalljcp

/(a) TS ©)

MD 2us CORE-MD I CORE-MD I AAGyp
180 T 0 I 0 180 T T T
. v [ I o @y e G,
120 S HH -2 HH -2 1200\ L. 86 L
i | Al X2 )
o | X a 2RI
6 \ 1H -4 1p1-4 0/~ & ° 4
> 16 -6 M -6 > o0 ? 7 4 -1
/ |
‘ ‘ 1
-60 1l -8 -8 -60 N -2
-120 -l -10 - -10 120 [ T4 s
N § N 4
180 - : - 180 - M2 -180 .
-180 -120 -60 O 60 120 180 -180 -120 -60 0 60 120 180 -180 -120 -60 0 120 180
K ® NS ® %
AAGyp

Ay M- 120 [N

1l w0 120 [0

CORE-MD |
80

0,0004 0.1
= 0

0,0003~ . g-O,Fl
A -0,2

> B
0,0002| - 03
g 04
0,0001 V05
-0,6
0

180 = = - -180 : =
— VD 2415 180 -120 -60 O 60 120 180 180 -120 -60 O 60 120 180
. CORE-MD |1

K B CORE-MD | k [0) 0] /

(9)
(1) 2) @) «f» (5) «Y((}& {ﬁ‘ " (8)
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landscape of dialanine as a function of dihedral angles ® and ¥ (FEL«_v) averaged over 2 s MD (units on all color bars are given in kgT). (b) FELo—w averaged over a
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of ® and ¥ (AAGo—v). (d) (Left) Transition frequency v of the ®-angle for all simulations and (right) average free energy differences of the CORE-MD /Il simulations and
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The differences between the CORE-MD II and CORE-MD I system into sub-instances k in CORE-MD II yields a more realis-
sampling are given by the separation into instances k, the kMC tic description of the underlying collective variables that guide the
sampling between the instances, a re-evaluation of the correlation system along its reaction pathways.

function C;,(t) at each instance, and the flexible biasing expres-
sion (see Fig. 2). In general, the CORE-MD II method samples the . .
free energy landscapes with higher internal correlations in the sys- B. TrpZip2 folding

tem than CORE-MD I, where the system is strongly decorrelated. As a first validation example, we performed 1 ys REMD simu-
From that correlation behavior, we deduce that the separation of the lations with 24 replicas and enhanced MD simulations of TrpZip2
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FIG. 4. Autocorrelation function of the ®-dihedral angle from simulations of diala-
nine. (a) Autocorrelation function as a function of time. (b) Average autocorrelation
value from the different simulations of dialanine using equilibrium MD and the
CORE-MD /Il techniques. CORE-MD Il shows a higher correlated behavior than
the CORE-MD | technique, which explains the higher level of convergence of the
CORE-MD Il approach.

using CORE-MD I and II (see Fig. 5). We first analyzed RMSDca-ca
to the native structure as a function of simulation time. In the
REMD simulation, we observe a fast drop of the RMSD-value from
1.2 nm to RMSDcq-c« of 0.14 nm within the first 1 ps. In this sim-
ulation, RMSDca-c. migrates between extremum values of 0.8 and
0.14 nm with population maxima within 0.3-0.42 and 0.42-0.6 nm
[see Fig. 5(a)]. The REMD sampling does not form conformations
with RMSDcq—ca values below 0.22 nm, which are only accessed
within rare-event fluctuations. The CORE-MD II result on TrpZip2
shows a different behavior [see Fig. 5(b)]. The CORE-MD II simula-
tion forms a hairpin structure within the first 10 ps that remains sta-
ble for 13 ns (RMSDca-ca ~ 0.22 nm). The event of the first collapse
is followed by a re-opening of the hairpin and a re-orientation of the
Trp-sidechains as we find through a visual analysis of the conform-
ers. This reopening is followed by a subsequent collapse at 30 ns,
where the hairpin remains stable over the next 5 ns. The remaining
CORE-MD II simulation follows the order of hairpin opening and
a subsequent closure within a hydrophobic collapse, where the Trp-
sidechains reorient. The CORE-MD II simulation result on TrpZip2
is the only trajectory in which we observe the formation of a stable
hydrophobic core consisting of four stacked Trp-sidechains*® [con-
formation (1), see Fig. 5(j)]. RMSDcq-ca in the CORE-MD I simula-
tion shows a similar fluctuation behavior as the REMD simulation
on TrpZip2. Although the fluctuations in the CORE-MD I simu-
lation are the strongest of all three different simulations, the pep-
tide accesses RMSD-values below 0.22 nm only in rare fluctuations,
while TrpZip2 mainly resides around 0.3-0.6 nm [see Fig. 5(c)].
Next, we analyzed the free energy landscapes (FEL) as a function
of RMSDca-co and the radius of gyration Ry for each of the three
applied techniques [see Figs. 5(d)-5(f)]. The FEL averaged over 1
ys REMD results in a population ranging from 0.13 < RMSDca—ca
< 0.8 nm and 0.56 < Ry < 0.92 nm. We observe minor populations
ranging from 0 to —2 kpT in the range 0.13 < RMSDcu—ca < 0.24
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nm, 0.56 < Ry < 0.8 nm and 0.7 < RMSDcq-—cq < 0.8 nm, 0.65 < Ry
< 0.8 nm. We find higher populations with energies from -2 to —6
kT in the range 0.24 < RMSDcqs—ca < 0.4 nm [conformations (2)
and (3)], 0.56 < Rg < 0.8 nm and 0.6 < RMSDca-ca < 0.7 nm, 0.65
< Ry < 0.8 nm [conformations (4) and (5)] [see Fig. 5(j)]. We locate
the maximal population within the range 0.4 < RMSDcy—ca < 0.6
nm, 0.56 < Rg < 0.8 nm, where the energy ranges from -8 to —9
kpT. In contrast to CORE-MD I and the 1 ys REMD simulation,
the FEL in the CORE-MD II simulation contains the only minimum
in the collapsed state with a stable hydrophobic core [see Fig. 5(e),
conformation (1)]. In the CORE-MD II FEL, we observe minor pop-
ulations ranging from 0 to —4 kpT in the range 0.11 < RMSDca-ca
< 0.2 nm, 0.56 < Ry < 0.8 nm and 0.7 < RMSDca-ca < 0.9 nm, 0.9
<Ry < 1.05 nm. We find higher populations with energies from
-2 to —6 kgT in the range 0.6 < RMSDcq-ca < 0.7 nm and 0.65
< Rg < 0.8 nm. We locate two maxima in the population within
the range 0.2 < RMSDcy-ca < 0.25 nm, 0.56 < Ry < 0.8 nm corre-
sponding to the collapsed native state, and a near native state at 0.4
<RMSDcy-ca < 0.6 nm, 0.56 < R, < 0.8 nm, where the energy
ranges from —8 to —9 kgT. The CORE-MD I result shows the widest
population range and no energy minimum corresponding to the
native state [see Fig. 5(f)]. In that FEL averaged over the CORE-
MD I simulation, we find minor populations with energies ranging
from 0 to —2 kT within the range 0.13 < RMSDca-cq < 0.22 nm,
0.6 < Ry < 0.8 nmand 0.8 < RMSDcy—ca < 11m, 0.9 < Ry < 1.1 nm.
In that validation example, the population rises toward a main max-
imum in the range 0.4 < RMSDcq-ca < 0.6 nm and 0.65 < R, < 0.8
nm. We then calculated the relative differences in the free energies
between the CORE-MD I/II results and the 1 ys REMD simula-
tion of TrpZip2 [see Figs. 5(g)-5(i)]. For the CORE-MD II result,
the differences AAG in the populations range from ~5 to —2.5 kg T,
where the largest differences can be found for radii of gyration R,
below 0.65 nm and above 0.87 nm. In the center of the FEL, we
find a good agreement of the CORE-MD II simulation and the
REMD result. The CORE-MD I result differs only slightly from the
CORE-MD II difference plot [see Fig. 5(i)], where we find approx-
imately the same difference pattern. With —0.038 kg T, the average
deviation (AAG) of the CORE-MD II result shows that the CORE-
MD II method is 1.4 times more precise than the CORE-MD I
sampling with an average deviation of —0.052 kgT [see Fig. 5(g)].
In a final analysis, we performed a RMSDc,co-dependent clus-
tering of the conformations in the CORE-MD II simulation [see
Fig. 5(j)]. In contrast to the REMD and the CORE-MD I simula-
tion, CORE-MD II samples the formation of the native state with
a correct arrangement of the Trp-residues. As a general observa-
tion, we find that the folding pathways in the CORE-MD II simu-
lation follow a first hydrophobic collapse, after which a re-ordering
of the Trp-sidechain occurs leading to the final formation of the
native fold. The CORE-MD II simulation shows that only the near
native states can access the native state of TrpZip2, while coiled
conformers have to pass through the collapsed state of that pep-
tide toward folding events with a correct hydrophobic core. These
results agree with prior simulation studies and the observation
of a hydrophobic collapse mechanism of folding of TrpZip2.5* %
The approximate acceleration factor of the CORE-MD II method
compared with the 1 ys REMD simulation is ~120, while the
REMD simulation did not sample the formation of the native fold
correctly.
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FIG. 5. Results from simulations of the TrpZip2 minipeptide using 1 us replica exchange MD (REMD) with 24 replicas and CORE-MD I/l simulations over 200 ns. (a)
RMSDc¢, ¢, to the native structure (NMR-model No. 1, pdb-code: 1le148) as a function of time from the REMD simulation of TrpZip2. (b) RMSD¢,—c. as a function of time
from the CORE-MD |l simulation of TrpZip2. (c) RMSD¢,—c, as a function of time from the CORE-MD | simulation of TrpZip2. (d) Free energy landscape (FEL) as a function
of RMSDc¢,—c. and the radius of gyration Ry averaged over a 1 s REMD simulation. Energies in the color bar are given in units of kg T. (€) Free energy landscape (FEL) as a
function of RMSD¢,—c, and the radius of gyration Ry averaged over a 200 ns CORE-MD Il simulation. (f) Free energy landscape (FEL) as a function of RMSD¢,—c, and the
radius of gyration R averaged over a 200 ns CORE-MD | simulation. (g) Average free energy difference (AAG) to the 1 s REMD result for the CORE-MD | and the CORE-
MD Il result. (h) Free energy difference AAG between the CORE-MD |l result and 1 ys REMD as a function of RMSDc,—c, and the radius of gyration Ry. (i) Free energy
difference AAG between the CORE-MD | result and 1 ys REMD as a function of RMSD¢,—c, and the radius of gyration Ry. (j) Kinetic network of RMSD¢,— c,-dependent
clusters obtained from the CORE-MD I simulation of TrpZip2. The cluster indexes are given below each cluster, which are displayed in each of the plots above.

J. Chem. Phys. 155, 104114 (2021); doi: 10.1063/5.0063664

© Author(s) 2021

155, 104114-8


https://scitation.org/journal/jcp

The Journal

ARTICLE scitation.org/journalljcp

of Chemical Physics

1.6 0 0 e
—~ (®) y
21,4 (5) 5 )
<15 2 -2
g ) @) ) W)

O 1 -4 (6) 4

<]
O08F &0 3
[a] 2
0%® @)
0.4
x

0.2 1)

0
0.60.8 1 1.21.41.61.8 2 2.2

~

/o

CORE-MD |

~

CORE-MD I

Time (ps)

0
0.60.8 1 1.21.41.61.8 2 2.2

-

Rg (nm)

50000__ 100000 150000 200000

(6) -4

\ Rg (nm) Rg (nm) Ry (nm)
- ) (i
/ (g) 16 15 16 15
= 12,5 = ®) 125
. 001 [ | E 1: (5) @ §05 E 1: (5) %05
v g7 . ) 5 3 @ @) 5
£ o 1 @ 35 o 1 2
= -0 o] 0.8 (6) 0' =] 0.8 (6) o‘
(/D\ 0.3 oo (o) 25 o o 25
3 L A = 3 06 T
94 2 o4 ¥ 7.5 2 04 75
05 0.2 A -10 0.2 0
- 125 jg.s
BN CORE-MD Il 0608 1 12141618 2 2. 2,2/
W CORE-MD |

-15
y

—1.418) (N6 ()

E12 )

0
0.60.8 1 1.21.41.61.8 2 2.2

0
0608 1 12141618 2
Rg (nm)

FIG. 6. Results from simulations of the TrpCage minipeptide using 1 s replica exchange MD (REMD) with 24 replicas and CORE-MD /Il simulations over 200 ns. (a)
RMSDc,_c., to the native structure (NMR-model No. 1, pdb-code: 112y“°) as a function of time from the REMD simulation of TrpCage. (b) RMSDc,_c., as a function of
time from the CORE-MD I simulation of TrpCage. (c) RMSD¢,—_¢, as a function of time from the CORE-MD | simulation of TrpCage. (d) Free energy landscape (FEL)
as a function of RMSD¢,—c, and the radius of gyration Ry averaged over a 1 ys REMD simulation. Energies in the color bar are given in units of kgT. (e) Free energy
landscape (FEL) as a function of RMSD¢,—c, and the radius of gyration Ry averaged over a 200 ns CORE-MD I simulation. (f) Free energy landscape (FEL) as a function
of RMSD¢,.—c, and the radius of gyration Ry averaged over a 200 ns CORE-MD | simulation. (g) Average free energy difference (AAG) to the 1 us REMD result for the
CORE-MD | and the CORE-MD |l result. (h) Free energy difference AAG between the CORE-MD |l result and 1 us REMD as a function of RMSD¢,—c, and the radius of
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of RMSD¢,.—c,-dependent clusters obtained from the CORE-MD I simulation of TrpCage. The cluster indexes are given below each cluster, which are displayed in each of

the plots above.
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C. TrpCage folding

As a second validation example, we performed 1 ys REMD sim-
ulations with 24 replicas and enhanced MD simulations of TrpCage
using CORE-MD I and II (see Fig. 6). In a first analysis, we mea-
sured RMSDcq—ca to the native structure as a function of simula-
tion time. In the REMD simulation, the RMSD-value decreases from
1.6 nm to RMSDcy—co of 0.2 nm within the first 50 ns. RMSDca—ca
fluctuates between extremum values of 0.7 and 0.13 nm with a
population maximum at 0.2-0.32 nm [see Fig. 5(a)]. The CORE-
MD II result on TrpCage shows an almost identical behavior [see
Fig. 6(b)]. The CORE-MD II simulation forms a helical structure
within the first 1-2 ns that remains stable for 9.5 ns (RMSDcy—ca
~ 0.22 nm). The event of the first collapse is followed by a re-
opening of the native fold and a re-organization of the sidechain
involving Trp6 and Tyr3 as we find through a visual analysis of
the conformers. This reopening is followed by a subsequent col-
lapse at 25 ns, where the peptide remains stable over the next
56 ns. The remaining CORE-MD II simulation follows the order
of opening and a subsequent closure of the PPII helix and the N-
terminal a-helix within a hydrophobic collapse. The CORE-MD II
simulation result on TrpCage differs from the CORE-MD I result,
where we do not observe the formation of a stable hydrophobic
core [see Fig. 6(c)]. RMSDca—ca in the CORE-MD I simulation
shows the strongest fluctuations in contrast to the CORE-MD II
simulation. As the fluctuations in the CORE-MD I simulation are
the strongest of all three different simulations, the peptide accesses
RMSD-values below 0.22 nm only through rare-event fluctuations,
while TrpCage mainly resides around 0.3-0.6 nm [see Fig. 6(c)].
Next, we analyzed the free energy landscapes (FEL) as a function
of RMSDcq-cq and the radius of gyration Ry for each of the three
applied techniques [see Figs. 6(d)-6(f)]. The FEL averaged over 1 us
REMD results in a population ranging from 0.13 < RMSDca-ca
< 0.8 nm and 0.63 < Ry < 0.92 nm. We observe minor populations
ranging from 0 to —3 kpT in the range 0.13 < RMSDcy—ca < 0.17
nm, 0.63 <R, <0.85 nm and 0.7 < RMSDcy—cq < 0.93 nm, 0.63
< Rg < 0.8 nm. We find higher populations with energies from -3 to
-8 kT in the range 0.17 < RMSDcqa-co < 0.2 nm, 0.63 < Ry < 0.85
nm and 0.4 < RMSDcy—ca < 0.93 nm, 0.65 < Ry < 0.8 nm. We locate
the maximal population within the range 0.2 < RMSDca-ca < 0.3
nm, 0.63 < Rg < 0.8 nm, where the energy ranges from -9 to —10.5
kpT. In agreement with the 1 ys REMD simulation, the FEL in the
CORE-MD II simulation contains a single minimum in the col-
lapsed state with a stable hydrophobic core [see Fig. 6(e)]. In the
CORE-MD II FEL, we observe minor populations ranging from 0
to —4 kpT in the range 0.11 < RMSDcy-cq < 0.2 nm, 0.63 < Ry < 0.9
nm and 0.6 < RMSDcy—cqa < 0.9 nm, 0.9 < Ry < 1.1 nm. We find
higher populations with energies from -2 to —6 kgT in the range
0.5 < RMSDcy-ca < 0.8 nm and 0.65 < Rg < 0.9 nm. We locate the
maximum in the population within the range 0.19 < RMSDca-ca
< 0.42 nm and 0.63 < Ry < 0.7 nm corresponding to the collapsed
native state and a near native state, where the energy ranges from -8
to —8.5 kgT. The CORE-MD I result shows the widest population
range and an energy minimum corresponding to the native state
[see Fig. 6(f)]. In that FEL averaged over the CORE-MD I simula-
tion, we find minor populations with energies ranging from 0 to -2
kpT within the range 0.11 < RMSDca-ca < 0.24 nm, 0.63 < R, < 0.9
nm and 0.6 < RMSDcy—ca < 11nm, 0.9 < Ry < 1.1 nm. In that valida-
tion example, the population rises toward a main maximum in the
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range 0.22 < RMSDcy-ca < 0.4 nm and 0.65 < Rg < 0.8 nm. We then
calculated the relative differences in the free energies between the
CORE-MD I/II results and the 1 ys REMD simulation of TrpCage
[see Figs. 6(g)-6(i)]. For the CORE-MD II result, the differences
AAG in the populations range from ~5 to —5 kg T, where the largest
differences can be found for radii of gyration Ry below 0.8 nm and
above 0.9 nm. In the center of the FEL, we find a good agreement
of the CORE-MD II simulation and the REMD result. The CORE-
MD I result differs strongly from the CORE-MD II difference plot
[see Fig. 6(i)], where we observe that the CORE-MD I result shows
AAG values of up to —10 kT at R, values of 0.83 nm. With —0.063
kgT, the average deviation (AAG) of the CORE-MD II result shows
that the CORE-MD II method is 8.8 times more precise than the
CORE-MD I sampling with an average deviation of —0.53 kpT [see
Fig. 6(g)]. In a final analysis, we performed a RMSDca-cqo-dependent
clustering of the conformations in the CORE-MD II simulation [see
Fig. 6(j)]. As a general observation, we find that the folding path-
ways in the CORE-MD II simulation follow a first hydrophobic
collapse, after which a re-ordering of the N-terminal and the 3;0-
helical segment occurs leading to the final formation of the native
fold [conformations (4) and (5)], while the PPII helical element does
not perform a strong internal restructuring. The CORE-MD II sim-
ulation shows that only the near native states can access the native
state of TrpCage [conformations (2) and (3)], while opened con-
formers have to pass through the collapsed state of that peptide
toward folding events with a correct hydrophobic core [(conforma-
tion (1)]. The folding pathways observed in the CORE-MD 1II val-
idation simulation is dominated by the formation of the secondary
structure and an internal reorganization toward the formation of the
native fold.”*®” The CORE-MD I technique samples the formation
of the native state correctly, while the fluctuations in the CORE-
MD I simulation lead to a stronger relative deviation from the native
state as in the CORE-MD II simulation. Related to the total con-
vergence to the folded state, the CORE-MD II algorithm shows
an 8.8 times higher convergence than the CORE-MD I technique.
The approximate acceleration factor of the CORE-MD II method
compared with the 1 ys REMD simulation is ~120. Our results
are in agreement with our previous findings and other theoretical
studies.’®%%78

IV. CONCLUSIONS

In this paper, we presented a fast and adaptive correlation
guided enhanced sampling MD method (CORE-MD II) that raises
the performance of the CORE-MD I methodology. The CORE-MD
II technique applies a partition of the total pathway into short tra-
jectories that we refer to as instances. Within each instance, the
CORE-MD 1I technique samples independent states using adap-
tive path-dependent metadynamics. Using a detailed balance crite-
rion, the technique applies a kinetic Monte Carlo (kMC) sampling
between the different states that have been accessed in the individual
instances. Through the combination of the partition of the total sim-
ulation into short non-equilibrium simulations and the kMC sam-
pling, the CORE-MD II method is capable of sampling protein fold-
ing in an adaptive and non-parameter-dependent way. In contrast
to the CORE-MD I method, the CORE-MD II technique considers
the local heterogeneity of correlation patterns and reaction path-
ways, while the CORE-MD I method applies the global correlation
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function and the associated probability function. Compared to the
CORE-MD 1 technique, the combination of short path-dependent
metadynamics simulations and the kMC sampling of the instances
leads to an improvement in the accuracy and the performance of the
CORE-MD II algorithm. We applied the CORE-MD II state-to-state
dynamics on the dialanine peptide and the folding of two peptides:
TrpCage and TrpZip2. In a comparison with long time equilibrium
MD and 1 ys REMD simulations, we find that the level of conver-
gence of the CORE-MD II method is up to 8.8 times higher than
that of the CORE-MD I method, while the CORE-MD II method
reaches acceleration factors of ~120.
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