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COMPUTATIONAL NEUROSCIENCE TODAY

Copyright: Forschungszentrum Jülich

Increasingly large
computational power

Large amounts of multimodal 
experimental data

[Schoffelen, J.M. et. al. 2019]

Plethora of models

Molecular → 

Single cell → 

Whole brain → 

← Channels

← Networks of cells
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NEURAL NETWORKS

? ● Each component in the network shows non linear dynamics 
– chaotic system

● Unknown variables

→ connectivity

● Underconstrained and degenerate system

● Relevant to application fields like AI, robotics, and control
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NEURAL NETWORKS

?

● How can we efficiently find parameters (connectivity) for this chaotic, 
underconstrained, dynamic and degenerate system in order to obtain meaningful 
simulations of brain activity?

● Each component in the network shows non linear dynamics 
– chaotic system

● Unknown variables

→ connectivity

● Underconstrained and degenerate system

● Relevant to application fields like AI, robotics, and control
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NEURAL NETWORKS

?

● How can we efficiently find parameters (connectivity) for this chaotic, underconstrained, 
dynamic and degenerate system in order to obtain meaningful simulations of brain activity?

● Can we get inspiration from the brain to address this problem?

● Each component in the network shows non linear dynamics 
– chaotic system

● Unknown variables

→ connectivity

● Underconstrained and degenerate system

● Relevant to application fields like AI, robotics, and control
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INTRODUCTION TO NEUROSCIENCE CONCEPTS
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INTRODUCTION TO NEUROSCIENCE CONCEPTS:
STRUCTURAL PLASTICITY

Structural plasticity is the ability of neurons to change their structure in order to, among other 
things, create or rescind synapses with other neurons in a network.
It plays a key role in development, adaptation, healing, learning, and memory consolidation.
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FEATURES OF STRUCTURAL PLASTICITY

● Creation and deletion of synapses 

● Slow process 

● Neurons have local view and short range connectivity is 
more frequent

● Guided by homeostasis

● Metabolic equilibrium →  cell-autonomous set point
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MODELING STRUCTURAL PLASTICITY

Synaptic elements Synapse formation / deletion Network rewiring

Axonal bouton: presynaptic element
Dendritic spine: exc. postsynaptic element
Dendritic spine: inh. postsynaptic element

 A model of structural plasticity is described in [Butz & van Ooyen 2013]:
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IMPLEMENTING STRUCTURAL PLASTICITY

NEST Kernel
Neuron models

Connections

Synaptic Elements

Electrical activity

1

1

2

3

SP Manager2

3

User interface (PyNEST/SLI)

The number of synaptic elements is updated 
depending on the electrical activity of the neurons 

The SP manager:
Gathers the number of synaptic elements per 

           neuron
Creates/deletes synapses to update the 

           connections between the neurons

Diaz-Pier, et al. "Automatic generation of connectivity for large-
scale neuronal network models through structural plasticity." 
Frontiers in neuroanatomy 10 (2016): 57.

 Based on the model by [Butz & van Ooyen 2013]

 Includes all abstract features of structural plasticity 
except distance dependency *

 Algorithm implemented with MPI and 
multithreading parallelization in C++

 Compatible with all existing neuron and synapse 
models + other plasticity rules
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IMPLEMENTING STRUCTURAL PLASTICITY

● Updating the number of synaptic elements with homeostatic 
growth curves

● Change in synaptic elements depending on the firing rate of 
the neuron at time t

● Shape is important for stability of the system and       ε 
indicates the target firing rate of the neuron

● Progressively introduce disturbances in the system in the form 
of slow structural changes

Growth curves for synaptic 
elements

Structural 
plasticty



Slide 1216/12/2021

 Two population network    
(800 excitatory neurons, 
200 inhibitory neurons)

 Target activity 5Hz and 
20Hz respectively

STRUCTURAL PLASTICITY IN NEST



Slide 1316/12/2021

STRUCTURAL PLASTICITY IN NEST

MSPViz

 Web based tool for structural 
plasticity analysis

 Offline analysis of the 
evolution of the network 
through time

 Visualization at the neuron, 
sub-network and network level
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STRUCTURAL PLASTICITY IN NEST
[Potjans and Diesmann, 2014]

No initial connectivity

With initial connectivity (10% error)

Growth curves
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INTERACTIVE STEERING AND VISUALIZATION 

● First interactive steering and visualization 
simulations with NEST on HPC

● The user can define the growth trajectory 
of the network

● Interactive exploration of the parameter 
space

● Insight on higher level plasticity 
dependencies

Nowke, Diaz-Pier, et al. "Toward rigorous 
parameterization of underconstrained neural network 
models through interactive visualization and steering of 
connectivity generation." Frontiers in neuroinformatics 
12 (2018): 32.

Observing the dynamics of the connectivity in a network is not simple
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USING STRUCTURAL PLASTICITY

 Coordinated Reset Therapy is simulated on a model of the 
Sub Thalamic Nucelus (STN) and the Globus Palidus 
externus (GPe)

 Simulated unhealthy synchronization and stimulation 
protocols

 Model considers both synaptic (STDP) and structural 
plasticity

 Able to simulate long lasting effects of CR therapy
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USING STRUCTURAL PLASTICITY

* Manos, Thanos, Sandra Diaz-Pier, and Peter A. Tass. 
"Long-Term Desynchronization by Coordinated Reset 
Stimulation in a Neural Network Model With Synaptic and 
Structural Plasticity." Frontiers in physiology 12 (2021).
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HOMEOSTATIC GROWTH RULES
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HOMEOSTATIC GROWTH RULES

Growth curves for synaptic 
elements

?
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LEARNING HOMEOSTATIC RULES

 Meta optimization of homeostatic 
rules

 Learning the rules which allow a 
network to optimally generate 
connectivity for different target 
functions

 Integrated and developed with the 
Learning to learn [L2L] framework
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LEARNING HOMEOSTATIC RULES

Cortical microcircuit

● Identify homeostatic rules and relationships between them

● Critical features of homeostatic development towards stable system

Without negative growth
rates

With negative growth rates
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GOING BACK TO THE INITIAL QUESTIONS... ?

● How can we efficiently find parameters (connectivity) for this chaotic, underconstrained, 
dynamic and degenerate system in order to obtain meaningful simulations of brain 
activity?

● Can we get inspiration from the brain to address this problem?

With structural plasticity we can generate, modify and optimize connectivity in simulations 
of spiking neural networks inspired by neurobiology
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SUMMARY OF THE WORK

● The implemented software infrastructure can be used for simulating, visualizing 
and analyzing structural plasticity useful to modify, generate and optimize 
connectivity in simulations of neural networks

● Meta optimization of structural plasticity rules provides insight on network 
development dynamics

● New way to study the relationship between structure and function in spiking 
neural networks
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FUTURE WORK

 Applications in clinical neuroscience, design of brain computer interfaces, and treatment 
planning

 Extensions of the algorithm

 Compatibility with other simulators and neuromorphic hardware

 Usage of emerging computational architectures by co-simulation ᵻ

ᵻ  Klijn, W.; Diaz, S. ; Morrison, A. ; Peyser. “A.Staged deployment of interactive multi-application HPC workflows”. HPCS 2019  
[10.1109/HPCS48598.2019.9188104]
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SCALING NETWORKS WITH SP ON HPC

 Benchmarks performed with NEST 2.10  and two networks 5,000 (A) and 100,000 neurons (B & C)

 The 100,000 neuron network shows supralinear scaling (increasingly efficient caching Plesser et. al. 2007)

 Largest simulations done of up to 68*76,000 neurons on 70 nodes with sparse connectivity

[Plesser et. al. 2007] Hans E Plesser, Jochen M Eppler, Abigail Morrison, Markus Diesmann, and Marc-Oliver Gewaltig. Efficient parallel 
simulation of large-scale neuronal networks on clusters of multiprocessor computers. In Euro-Par 2007 parallel processing, pages 672–
681. Springer, 2007.
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VISUALIZATION 

Requirements for visualization and analysis of simulations with 
structural plasticity:

1. Observe changes of the network in time

2. Visualize the balance between different types of 
connections

3. Easily identify important structural components in the 
network

MSPViz

Observing the dynamics of the connectivity in a network is not simple
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STRUCTURAL PLASTICITY BEYOND NEUROSCIENCE

Applications:

 Optimization of connectivity in spiking neural networks

 Finding optimal architectures to ML problems 

 Solving multiobjective optimization problems in other scientific fields e.g.

➢ Economics

➢ Ecology

➢ Information networks

● New applications where the relatively static structure encodes the solution to an initial 
problem
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INTERACTIVE STEERING AND VISUALIZATION 

● Use structural plasticity to optimize connectivity from one 
scale to the next

● 68 regions of the brain

● Each region has 2 populations

● Plasticity is enabled only within regions

● Connections between regions are defined by 
experimental data
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INTERACTIVE STEERING AND VISUALIZATION 
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FUTURE WORK
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CONCLUSIONS

 Potential as new way to solve problems with a brain inspired algorithm
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INTRODUCTION TO NEUROSCIENCE CONCEPTS:
NEURONAL STRUCTURE

Soma

Dendrites

Axon

Nucleus
Axonal 
boutons

Dendritic
spines

Action potential
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OPTIMIZING MODELS TO FIT EXPERIMENTAL DATA

 Models based on sets of differential 
equations

 Fit to match expected behavior or 
experimental data

 Search vast parameter spaces

How do we search vast parameter spaces?
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