



### Contrasting drought stress recovery strategies of rice breeding lines

Helena Bochmann<sup>1,2</sup>, Josefine Kant<sup>1</sup>, Heike Faßbender<sup>1</sup>, Amelia Henry<sup>4</sup>, Marie Klein<sup>1,3</sup>, Michelle Watt<sup>5</sup>

<sup>1</sup>Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences – Plant Sciences (IBG-2), 52425 Jülich, Germany <sup>2</sup>Faculty of Agriculture, University of Bonn, Bonn, Germany <sup>3</sup>University of California, Davis, USA <sup>4</sup>International Rice Research Institute, Los Baños, Philippines <sup>5</sup>School of BioSciences, The University of Melbourne, Melbourne, Australia





### Introduction

### Background

- 45% of the global rice production depends on rainfall.
- Water is a limiting factor for crop production.
- Shorter rainy seasons and longer dry spells in south-east Asia due to climate change.

#### Questions

- Which root formation leads to higher drought tolerance in dry direct-seeded rice and why?
- How does re-watering influence rice root system architecture?

# Contrasting lines

#### **Definition\*: conservative vs less-conservative**



\* Marie Klein, 2018 (Masterthesis)

#### Rice has an unique lateral root system



Rice lateral root classes:

- S-type (short): thin diameter (0-0.15 mm), non-branching.
- L-type (long): thick diameter (0.15-0.37 mm), branching in 2<sup>nd</sup> order Lor S-types.

# Conclusion and Outlook

#### Conclusion

- The conservative line had significantly reduced shoot and root dry weight under drought stress.
- The less-conservative root system was not significantly affected by drought stress. Hence, the less-conservative rice was affected less by drought stress.
- In areas with a high risk of drought the lessconservative line should be used, in areas with high water supply the Conservative line.

#### Outlook

Breeders have the possibility to breed high yielding and drought stress tolerant lines by in cooperating less-conservative lines into their breeding programs.

# Lateral root formation is a key function in drought stress recovery processes





Drought stress: reduction of S-Type lateral roots & increase of L-type lateral roots. Re-watering: stressed drought plants regain the same root length proportion as the well watered plants.

Conservative Less-conservative Drought stressWell-watered The lessconservative \*\*\* line maintained root length under drought stress compared to the wellwatered treatment Time [DAS] \*\* p<0.01, \*\*\* p<0.001 n=6

Dry weight difference

Lateral root plasticity

Member of the Helmholtz Association