000905087 001__ 905087
000905087 005__ 20240313103134.0
000905087 0247_ $$2doi$$a10.3389/fnins.2021.757790
000905087 0247_ $$2Handle$$a2128/30125
000905087 0247_ $$2pmid$$a35002599
000905087 0247_ $$2WOS$$aWOS:000743979800001
000905087 037__ $$aFZJ-2022-00386
000905087 082__ $$a610
000905087 1001_ $$0P:(DE-Juel1)176921$$aDasbach, Stefan$$b0$$eCorresponding author
000905087 245__ $$aDynamical Characteristics of Recurrent Neuronal Networks Are Robust Against Low Synaptic Weight Resolution
000905087 260__ $$aLausanne$$bFrontiers Research Foundation$$c2021
000905087 3367_ $$2DRIVER$$aarticle
000905087 3367_ $$2DataCite$$aOutput Types/Journal article
000905087 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641974576_25398
000905087 3367_ $$2BibTeX$$aARTICLE
000905087 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905087 3367_ $$00$$2EndNote$$aJournal Article
000905087 520__ $$aThe representation of the natural-density, heterogeneous connectivity of neuronalnetwork models at relevant spatial scales remains a challenge for ComputationalNeuroscience and Neuromorphic Computing. In particular, the memory demandsimposed by the vast number of synapses in brain-scale network simulations constitutea major obstacle. Limiting the number resolution of synaptic weights appears to bea natural strategy to reduce memory and compute load. In this study, we investigatethe effects of a limited synaptic-weight resolution on the dynamics of recurrent spikingneuronal networks resembling local cortical circuits and develop strategies for minimizingdeviations from the dynamics of networks with high-resolution synaptic weights. Wemimic the effect of a limited synaptic weight resolution by replacing normally distributedsynaptic weights with weights drawn from a discrete distribution, and compare theresulting statistics characterizing firing rates, spike-train irregularity, and correlationcoefficients with the reference solution. We show that a naive discretization of synapticweights generally leads to a distortion of the spike-train statistics. If the weights arediscretized such that the mean and the variance of the total synaptic input currents arepreserved, the firing statistics remain unaffected for the types of networks considered inthis study. For networks with sufficiently heterogeneous in-degrees, the firing statisticscan be preserved even if all synaptic weights are replaced by the mean of the weightdistribution. We conclude that even for simple networks with non-plastic neurons andsynapses, a discretization of synaptic weights can lead to substantial deviations in thefiring statistics unless the discretization is performed with care and guided by a rigorousvalidation process. For the network model used in this study, the synaptic weightscan be replaced by low-resolution weights without affecting its macroscopic dynamicalcharacteristics, thereby saving substantial amounts of memory.
000905087 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000905087 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000905087 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
000905087 536__ $$0G:(DE-HGF)SO-092$$aACA - Advanced Computing Architectures (SO-092)$$cSO-092$$x3
000905087 536__ $$0G:(DE-Juel1)jinb33_20191101$$aBrain-Scale Simulations (jinb33_20191101)$$cjinb33_20191101$$fBrain-Scale Simulations$$x4
000905087 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b1
000905087 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b2
000905087 7001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b3
000905087 773__ $$0PERI:(DE-600)2411902-7$$a10.3389/fnins.2021.757790$$p757790$$tFrontiers in neuroscience$$v15$$x1662-453X$$y2021
000905087 8564_ $$uhttps://juser.fz-juelich.de/record/905087/files/fnins-15-757790.pdf$$yOpenAccess
000905087 909CO $$ooai:juser.fz-juelich.de:905087$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000905087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176921$$aForschungszentrum Jülich$$b0$$kFZJ
000905087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b1$$kFZJ
000905087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b2$$kFZJ
000905087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b3$$kFZJ
000905087 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000905087 9141_ $$y2021
000905087 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000905087 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000905087 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04
000905087 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000905087 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000905087 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905087 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROSCI-SWITZ : 2019$$d2021-05-04
000905087 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000905087 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000905087 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-05-04
000905087 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000905087 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000905087 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000905087 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000905087 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-04
000905087 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000905087 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000905087 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000905087 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000905087 920__ $$lyes
000905087 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000905087 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000905087 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000905087 9801_ $$aFullTexts
000905087 980__ $$ajournal
000905087 980__ $$aVDB
000905087 980__ $$aUNRESTRICTED
000905087 980__ $$aI:(DE-Juel1)INM-6-20090406
000905087 980__ $$aI:(DE-Juel1)IAS-6-20130828
000905087 980__ $$aI:(DE-Juel1)INM-10-20170113
000905087 981__ $$aI:(DE-Juel1)IAS-6-20130828