000905105 001__ 905105
000905105 005__ 20240712113129.0
000905105 0247_ $$2doi$$a10.1016/j.ssi.2020.115497
000905105 0247_ $$2ISSN$$a0167-2738
000905105 0247_ $$2ISSN$$a1872-7689
000905105 0247_ $$2Handle$$a2128/30184
000905105 0247_ $$2WOS$$aWOS:000591907000020
000905105 037__ $$aFZJ-2022-00397
000905105 082__ $$a530
000905105 1001_ $$0P:(DE-HGF)0$$aMathies, Lena$$b0$$eCorresponding author
000905105 245__ $$aTransport mechanism of lithium ions in non-coordinating P(VdF-HFP) copolymer matrix
000905105 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000905105 3367_ $$2DRIVER$$aarticle
000905105 3367_ $$2DataCite$$aOutput Types/Journal article
000905105 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642075144_6705
000905105 3367_ $$2BibTeX$$aARTICLE
000905105 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905105 3367_ $$00$$2EndNote$$aJournal Article
000905105 520__ $$aPolymer films based on poly(vinylidene difluoride-co-hexafluoropropylene) (P(VdF-HFP)) with different amounts of bis(trifluoromethane)sulfonimide lithium salt (LiTfSI) were prepared from acetone solution in a doctor blade casting machine under controlled and reproducible drying conditions.The modification of the copolymer-based layers show a significant enhancement of conductivity over several orders of magnitude for increasing LiTfSI content and a constantly low electronic conductivity. The addition of salt results in a structural change of the crystalline areas in the semi-crystalline copolymer matrix from α- to γ-phase of P(VdF), which has been studied using Raman spectroscopy and X-Ray diffraction. Lithium ions are coordinated by oxygen atoms of TfSI− as verified by Raman spectroscopy and molecular dynamics simulations. Based on the experimental data and simulation results, we propose a transport mechanism for the lithium ions through salt channels in the amorphous regions of the non-coordinating copolymer matrix via hopping between stabilized positions.
000905105 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000905105 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x1
000905105 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905105 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b1$$eCorresponding author$$ufzj
000905105 7001_ $$0P:(DE-HGF)0$$aDong, Dengpan$$b2
000905105 7001_ $$0P:(DE-HGF)0$$aBedrov, Dmitry$$b3$$eCorresponding author
000905105 7001_ $$0P:(DE-HGF)0$$aLeipner, Hartmut$$b4$$eCorresponding author
000905105 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2020.115497$$gVol. 357, p. 115497 -$$p115497 -$$tSolid state ionics$$v357$$x0167-2738$$y2020
000905105 8564_ $$uhttps://juser.fz-juelich.de/record/905105/files/2020-10-07_Manuscript.pdf$$yOpenAccess
000905105 909CO $$ooai:juser.fz-juelich.de:905105$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000905105 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b1$$kFZJ
000905105 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000905105 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000905105 9141_ $$y2021
000905105 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000905105 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000905105 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28
000905105 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000905105 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000905105 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000905105 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000905105 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905105 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000905105 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE IONICS : 2019$$d2021-01-28
000905105 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000905105 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000905105 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000905105 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000905105 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000905105 9801_ $$aFullTexts
000905105 980__ $$ajournal
000905105 980__ $$aVDB
000905105 980__ $$aUNRESTRICTED
000905105 980__ $$aI:(DE-Juel1)IEK-12-20141217
000905105 981__ $$aI:(DE-Juel1)IMD-4-20141217