000905112 001__ 905112
000905112 005__ 20240712113129.0
000905112 0247_ $$2doi$$a10.1002/admi.202101898
000905112 0247_ $$2altmetric$$aaltmetric:121061517
000905112 0247_ $$2WOS$$aWOS:000739465900001
000905112 0247_ $$2Handle$$a2128/31296
000905112 037__ $$aFZJ-2022-00404
000905112 082__ $$a600
000905112 1001_ $$0P:(DE-Juel1)176954$$aWölke, Christian$$b0$$ufzj
000905112 245__ $$aInterfacing Si‐Based Electrodes: Impact of Liquid Electrolyte and Its Components
000905112 260__ $$aWeinheim$$bWiley-VCH$$c2022
000905112 3367_ $$2DRIVER$$aarticle
000905112 3367_ $$2DataCite$$aOutput Types/Journal article
000905112 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655194587_27082
000905112 3367_ $$2BibTeX$$aARTICLE
000905112 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905112 3367_ $$00$$2EndNote$$aJournal Article
000905112 520__ $$aAs the demand for mobile energy storage devices has steadily increased during the past decades due to the rising popularity of portable electronics as well as the continued implementation of electromobility, energy density has become a crucial metric in the development of modern batteries. It was realized early on that the successful utilization of silicon as negative electrode material in lithium-ion batteries would be a quantum leap in improving achievable energy densities due to the roughly ten-fold increase in specific capacity compared to the state-of-the-art graphite material. However, being an alloying type material rather than an intercalation/insertion type, silicon poses numerous obstacles that need to be overcome for its successful implementation as a negative electrode material with the most prominent one being its extreme volume changes on (de-)lithiation. While, as of today, a plethora of different types of Si-based electrodes have been reported, a universally common feature is the interface between Si-based electrode and electrolyte. This review focuses on the knowledge gained thus far on the impact of different liquid electrolyte components/formulations on the interfaces and interphases encountered at Si-based electrodes.
000905112 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000905112 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905112 7001_ $$0P:(DE-Juel1)187094$$aSadeghi, Bahareh A.$$b1$$ufzj
000905112 7001_ $$0P:(DE-HGF)0$$aEshetu, Gebrekidan G.$$b2
000905112 7001_ $$0P:(DE-Juel1)165182$$aFiggemeier, Egbert$$b3$$ufzj
000905112 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$ufzj
000905112 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b5$$eCorresponding author
000905112 773__ $$0PERI:(DE-600)2750376-8$$a10.1002/admi.202101898$$gp. 2101898 -$$n8$$p2101898 -$$tAdvanced materials interfaces$$v9$$x2196-7350$$y2022
000905112 8564_ $$uhttps://juser.fz-juelich.de/record/905112/files/Adv%20Materials%20Inter%20-%202022%20-%20W%20lke%20-%20Interfacing%20Si%25u2010Based%20Electrodes%20Impact%20of%20Liquid%20Electrolyte%20and%20Its%20Components.pdf$$yOpenAccess
000905112 8767_ $$d2022-11-16$$eHybrid-OA$$jDEAL
000905112 909CO $$ooai:juser.fz-juelich.de:905112$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$qOpenAPC
000905112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176954$$aForschungszentrum Jülich$$b0$$kFZJ
000905112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187094$$aForschungszentrum Jülich$$b1$$kFZJ
000905112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165182$$aForschungszentrum Jülich$$b3$$kFZJ
000905112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
000905112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b5$$kFZJ
000905112 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000905112 9141_ $$y2022
000905112 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000905112 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000905112 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000905112 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905112 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000905112 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER INTERFACES : 2021$$d2022-11-12
000905112 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000905112 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000905112 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000905112 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000905112 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000905112 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV MATER INTERFACES : 2021$$d2022-11-12
000905112 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000905112 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000905112 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000905112 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000905112 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000905112 9801_ $$aAPC
000905112 9801_ $$aFullTexts
000905112 980__ $$ajournal
000905112 980__ $$aVDB
000905112 980__ $$aUNRESTRICTED
000905112 980__ $$aI:(DE-Juel1)IEK-12-20141217
000905112 980__ $$aAPC
000905112 981__ $$aI:(DE-Juel1)IMD-4-20141217